Добірка наукової літератури з теми "ZnSeS"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "ZnSeS".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "ZnSeS":

1

Kulakovich, O. S., L. I. Gurinovich, L. I. Trotsiuk, A. A. Ramanenka, Hongbo Li, N. A. Matveevskaya, and S. V. Gaponenko. "Manipulation of the quantum dots photostability using gold nanoparticles." Doklady of the National Academy of Sciences of Belarus 66, no. 2 (May 6, 2022): 148–55. http://dx.doi.org/10.29235/1561-8323-2022-66-2-148-155.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The effect of plasmonic films containing gold nanoparticles of different shape (nanospheres and nanorods) on the photostability of InP/ZnSe/ZnSeS/ZnS and CdSe/ZnCdS/ZnS quantum dots with core/shell structure has been determined. Gold nanospheres increase the photostability of InP/ZnSe/ZnSeS/ZnS quantum dots when excited by blue LED radiation when reducing the average lifetime of the excited state of quantum dots and, accordingly, when reducing the probability of Auger processes. An increase in the average lifetime of the excited state of CdSe/ZnCdS/ZnS quantum dots in complexes with gold nanorods leads to a decrease in the photostability upon excitation at 449 and 532 nm.
2

Bao, Zhen, Zhen-Feng Jiang, Qiang Su, Hsin-Di Chiu, Heesun Yang, Shuming Chen, Ren-Jei Chung, and Ru-Shi Liu. "ZnSe:Te/ZnSeS/ZnS nanocrystals: an access to cadmium-free pure-blue quantum-dot light-emitting diodes." Nanoscale 12, no. 21 (2020): 11556–61. http://dx.doi.org/10.1039/d0nr01019g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The emission wavelength of ZnSe/ZnS quantum dots was successfully tuned from the violet (∼420 nm) to pure-blue (∼455 nm) region by doping Te into the ZnSe core. A specific structure QLED fabricated with ZnSe:0.03Te/ZnSeS/ZnS QDs realized pure-blue emission.
3

Cingolani, R., M. Lomascolo, N. Lovergine, M. Dabbicco, M. Ferrara, and I. Suemune. "Excitonic properties of ZnSe/ZnSeS superlattices." Applied Physics Letters 64, no. 18 (May 2, 1994): 2439–41. http://dx.doi.org/10.1063/1.111592.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chen, Hsueh-Shih, Bertrand Lo, Jen-Yu Hwang, Gwo-Yang Chang, Chien-Ming Chen, Shih-Jung Tasi, and Shian-Jy Jassy Wang. "Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS Quantum Dots Synthesized from ZnO." Journal of Physical Chemistry B 108, no. 50 (December 2004): 19566. http://dx.doi.org/10.1021/jp040689k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chen, Hsueh-Shih, Bertrand Lo, Jen-Yu Hwang, Gwo-Yang Chang, Chien-Ming Chen, Shih-Jung Tasi, and Shian-Jy Jassy Wang. "Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS Quantum Dots Synthesized from ZnO." Journal of Physical Chemistry B 108, no. 44 (November 2004): 17119–23. http://dx.doi.org/10.1021/jp047035w.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Boemare, C., Maria Helena Nazaré, W. Taudt, J. Söllner, and M. Heuken. "Photoreflectance, Reflectivity and Photoluminescence of MOVPE Grown ZnSe/GaAs Epilayers and ZnSeS/ZnSe Superlattices." Materials Science Forum 196-201 (November 1995): 567–72. http://dx.doi.org/10.4028/www.scientific.net/msf.196-201.567.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Adegoke, Oluwasesan, Min-Woong Seo, Tatsuya Kato, Shoji Kawahito, and Enoch Y. Park. "Gradient band gap engineered alloyed quaternary/ternary CdZnSeS/ZnSeS quantum dots: an ultrasensitive fluorescence reporter in a conjugated molecular beacon system for the biosensing of influenza virus RNA." Journal of Materials Chemistry B 4, no. 8 (2016): 1489–98. http://dx.doi.org/10.1039/c5tb02449h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jang, Eun-Pyo, Jung-Ho Jo, Seung-Won Lim, Han-Byule Lim, Hwi-Jae Kim, Chang-Yeol Han, and Heesun Yang. "Unconventional formation of dual-colored InP quantum dot-embedded silica composites for an operation-stable white light-emitting diode." Journal of Materials Chemistry C 6, no. 43 (2018): 11749–56. http://dx.doi.org/10.1039/c8tc04095h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kulakovich, O., L. Gurinovich, Hui Li, A. Ramanenka, L. Trotsiuk, A. Muravitskaya, Jing Wei, et al. "Photostability enhancement of InP/ZnSe/ZnSeS/ZnS quantum dots by plasmonic nanostructures." Nanotechnology 32, no. 3 (October 22, 2020): 035204. http://dx.doi.org/10.1088/1361-6528/abbdde.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mabrouk, Salima, Hervé Rinnert, Lavinia Balan, Jordane Jasniewski, Sébastien Blanchard, Ghouti Medjahdi, Rafik Ben Chaabane, and Raphaël Schneider. "Highly Luminescent and Photostable Core/Shell/Shell ZnSeS/Cu:ZnS/ZnS Quantum Dots Prepared via a Mild Aqueous Route." Nanomaterials 12, no. 18 (September 19, 2022): 3254. http://dx.doi.org/10.3390/nano12183254.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
An aqueous-phase synthesis of 3-mercaptopropionic acid (3-MPA)-capped core/shell/shell ZnSeS/Cu:ZnS/ZnS QDs was developed. The influence of the Cu-dopant location on the photoluminescence (PL) emission intensity was investigated, and the results show that the introduction of the Cu dopant in the first ZnS shell leads to QDs exhibiting the highest PL quantum yield (25%). The influence of the Cu-loading in the dots on the PL emission was also studied, and a shift from blue–green to green was observed with the increase of the Cu doping from 1.25 to 7.5%. ZnSeS/Cu:ZnS/ZnS QDs exhibit an average diameter of 2.1 ± 0.3 nm and are stable for weeks in aqueous solution. Moreover, the dots were found to be photostable under the continuous illumination of an Hg–Xe lamp and in the presence of oxygen, indicating their high potential for applications such as sensing or bio-imaging.

Дисертації з теми "ZnSeS":

1

Mabrouk, Salima. "Synthèse par voie colloïdale et étude des propriétés optiques et structurales de nanocristaux ternaires ZnSeS dopés." Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0169.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Depuis quelques années, les QDs ternaires ont connu un développement exponentiel grâce à leurs propriétés, notamment leur photoluminescence, qui peut non seulement être contrôlée par leur taille mais également par leur composition. Dans le cadre de cette thèse, nous avons développé une nouvelle méthode de synthèse « verte » en milieu aqueux de QDs ternaires ZnSeS dopés et nous avons étudié l'effet de la variation du dopant (Mn2+, Cu2+ou Cu2+/Al3+) ainsi que de sa localisation (dans le cœur ou dans la coquille) sur leurs propriétés optiques et structurales. La première partie de ce travail décrit la synthèse des QDs ternaires cœur ZnSeS:Mn et cœur/coquille ZnSeS:Mn/ZnS en utilisant le 2-MPA comme ligand. Les résultats obtenus montrent que ces nanocristaux peuvent être préparés avec des rendements quantiques de 22 et 41%, respectivement. Ces QDs ont montré une excellente photostabilité sous irradiation UV et peuvent facilement être transférés en phase organique à l'aide du ligand hydrophobe octanethiol et cela sans altération de leurs propriétés optiques. Par la suite, des QDs cœur/coquille/coquille ZnSeS/ZnS:Cu/ZnS pour lesquels le dopant Cu est introduit dans la première coquille ont été préparés en utilisant le 3-MPA comme ligand. Une excellente (photo)stabilité en présence d'air et d'oxygène ont été observés. Les QDs cœur/coquille/coquille ZnSeS/ZnS:Cu/ZnS ont un rendement quantique de photoluminescence de 20% et ont été utilisés comme sondes photoluminescentes pour la détection des ions Pb2+ en milieu aqueux. Une extinction sélective de l'émission de photoluminescence en présence des ions Pb2+ a été observée. Enfin, des QDs co-dopés Cu et Al, ZnSeS/ZnS:Cu/ZnS:Al/ZnS (première coquille dopée avec Cu2+ et deuxième coquille dopée avec Al3+) ont été préparés. Le co-dopage permet l'amélioration des propriétés optiques, notamment du rendement quantique (jusqu'à 32%) ainsi que de la durée de vie de photoluminescence des QDs dopés Cu
In recent years, ternary QDs have experienced an exponential development thanks to their properties, especially their photoluminescence, which can be controlled not only by their size but also by their composition. As part of this thesis, we developed a new "green" synthesis in aqueous media of ZnSeS-doped ternary QDs and we studied the effect of the variation of the dopant (Mn2+, Cu2+, or Cu2+/Al3+) as well as its localization (in the core or in the shell) on their optical and structural properties. The first part of this work describes the synthesis of ZnSeS:Mn ternary QDs and ZnSeS:Mn/ZnS core/shell using 2-MPA as a ligand. The results obtained show that these nanocrystals can be prepared with quantum yields of 22% and 41%, respectively. These QDs have shown excellent photostability under UV irradiation and can easily be transferred to the organic phase using the hydrophobic octanethiol ligand without altering their optical properties. Subsequently, core/shell ZnSeS/ZnS:Cu/ZnS QDs for which the Cu dopant is introduced into the first shell were prepared using 3-MPA as a ligand. Excellent (photo)stability in the presence of air and oxygen was observed. ZnSeS/ZnS:Cu/ZnS core/shell QDs have a 20% photoluminescence quantum yield and have been used as photoluminescent probes for the detection of Pb2+ ions in aqueous media. A selective extinction of the photoluminescence emission in the presence of Pb2+ ions was observed. Finally, Cu and Al co-doped QDs, ZnSeS/ZnS:Cu/ZnS:Al/ZnS (first shell doped with Cu2+ and second shell doped with Al3+) were prepared. Co-doping allows the improvement of the optical properties, including quantum efficiency (up to 32%) as well as the photoluminescence lifetime of Cu-doped QDs
2

Suthagar, J., and Kissinger J. K. Suthan. "Synthesis and Characterization of ZnSe1-xTex Alloy Thin Films Deposited by Electron Beam Technique." Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/35012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ZnSe1-x Tex solid solutions were prepared and films were deposited on glass substrates with x 0.2, 0.4, 0.6 and 0.8. DTA/TGA analysis was carried out to study the alloy formation temperature. Structural studies by XRD results showed the polycrystalline nature of the films. The Full Width at Half Maximum (FWHM) values were observed from the XRD pattern and used to evaluate the microstructural parameters like crystallite size, strain, dislocation density and stacking fault density for all the films with x 0.2, 0.4, 0.6 and 0.8. These films were coated with a thickness of about 200 nm on glass substrates keeping the temperature constant at 200 C. All films showed cubic structure and the lattice parameter values are found to vary with „X‟. This confirms the solid solution formation between the ZnSe and ZnTe binary compounds which are found to obey Vegard‟s law. SEM and AFM studies have been arried out to observe their surface modification with solid solution formation. Raman studies confirm the formation of ZnSe1-xTex compound films. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/35012
3

Boemare, Claude. "Etude des propriétés optiques d'hétérostructures basées sur les semiconducteurs ZnSe, ZnSSe, ZnMgSSe élaborés par MOVPE." Montpellier 2, 1996. http://www.theses.fr/1996MON20222.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nous presentons une analyse detaillee des proprietes optiques d'heterostructures realisee en epitaxie par depot d'organometallique. Les architectures de ces heterostructures realisees a base de materiaux semi-conducteurs a grands gap vont de la simple hetero-epitaxie aux super reseaux en passant par les puits quantiques. Le controle de l'homogeneite des depots est mis en evidence a travers une approche originale utilisant la physique des excitations elementaires: nous mettons en evidence apres une modelisation semiclassique de la reflectance au voisinage des resonances excitoniques, la quantification des modes photons du polariton. Dans le cas des structures a confinement spatial des porteurs de charge, un modele complet faisant appel aux mecanismes thermo-induit de piegeage et d'echappement des porteurs de charges nous permet de rendre compte quantitativement des mecanismes physique regissant l'emission de lumiere dans ces materiaux
4

Кравченко, Владислав Миколайович. "Інфрачервона фотолюмінісценція кристалів ZnSe i ZnSe(Te)". Дис. канд. фіз.-мат. наук, КУ ім Т. Шевченка, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wang, Shouyin. "Characterisation of ZnSe and ZnCdSe/ZnSe opto-electronic devices." Thesis, Heriot-Watt University, 1994. http://hdl.handle.net/10399/1394.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Doughery, David J. (David Jordan). "Femtosecond optical nonlinearities in ZnSe and characterization of ZnSe/GaAs heterostructures." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/42617.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Abolhassani, N. "Cathodoluminescence of ion-implanted ZnSe." Thesis, University of Hull, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375624.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Milward, Jonathan Ray. "Electronic optical nonlinearities in ZnSe." Thesis, Heriot-Watt University, 1991. http://hdl.handle.net/10399/858.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Meredith, Wyn. "II-VI blue emitting lasers and VCSELs." Thesis, Heriot-Watt University, 1997. http://hdl.handle.net/10399/695.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Makuc, Boris. "Photoluminescence of ZnSe grown by MOVPE." Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61819.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "ZnSeS":

1

Karpa, Irena. Znes palenoho: Chtyvo idiotiv. Ivano-Frankivsʹk: Misto NV, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hazell, M. S. Investigation into the characteristics of ZnSe filters. London: Controller HMSO, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

YiGao, Sha, and United States. National Aeronautics and Space Administration., eds. Mass flux of ZnSe by physical vapor transport. [Washington, DC]: National Aeronautics and Space Administration, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

United States. National Aeronautics and Space Administration., ed. Crystal growth of ZnSe and related ternary compound semiconductors by physical vapor transport: Final report, contract number: NAS8-39718. [Washington, DC: National Aeronautics and Space Administration, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

United States. National Aeronautics and Space Administration., ed. Preliminary definition phase, crystal growth of ZnSe and related ternary compound semiconductors by physical vapor transport: Final report submitted to the National Aeronautics and Space Administration. Columbia, Md: The Association, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

United States. National Aeronautics and Space Administration., ed. Preliminary definition phase, crystal growth of ZnSe and related ternary compound semiconductors by physical vapor transport: Final report submitted to the National Aeronautics and Space Administration. Columbia, Md: The Association, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Guan, Yu. Tunable photopumping in developing ZnSe lasers. 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Greer, David Martin. Growth and characterization of ZnSe/CIS solar cells. 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Polʹskaı︠a︡ revolı︠u︡t︠s︡iı︠a︡. London: Overseas Publications Interchange, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

[Polʹskai͡a︡ revoli͡u︡t͡s︡ii͡a︡. London: Overseas Publications Interchange, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "ZnSeS":

1

Gutowski, J. "ZnSe: mobilities." In New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors, 637. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14148-5_356.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gutowski, J., K. Sebald, and T. Voss. "ZnSe: conductivity." In New Data and Updates for III-V, II-VI and I-VII Compounds, 468–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-92140-0_346.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Adachi, Sadao. "Zinc Selenide (ZnSe)." In Optical Constants of Crystalline and Amorphous Semiconductors, 459–72. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5247-5_35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chiaradia, P. "8.2.2.3.6 ZnSe(100)." In Physics of Solid Surfaces, 499–500. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47736-6_138.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gutowski, J. "ZnSe: dielectric constants." In New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors, 630. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14148-5_350.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gutowski, J. "ZnSe: transition energies." In New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors, 631. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14148-5_351.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gutowski, J. "ZnSe: transition energies." In New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors, 632–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14148-5_352.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gutowski, J. "ZnSe: muonium data." In New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors, 634. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14148-5_353.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gutowski, J. "ZnSe: transition energies." In New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors, 635. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14148-5_354.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Rössler, U. "ZnSe: phase transitions." In New Data and Updates for several Semiconductors with Chalcopyrite Structure, for several II-VI Compounds and diluted magnetic IV-VI Compounds, 214–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28531-8_97.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "ZnSeS":

1

Xiao, Hua, Xijian Duan, Junjie Hao, Kunjian Li, Yanglie Li, and Weiming Qu. "Lumination-property characterization for InP/ZnSe/ZnSeS/ZnS quantum dots with variable temperature." In 2023 International Conference on Energy, Materials, and Photonics (EMP). IEEE, 2023. http://dx.doi.org/10.1109/emp59310.2023.10373207.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kim, Byeongseok, Bumsoo Chon, Samir Kumar, Sanghoon Shin, Taewoo Ko, Sang Ook Kang, Ho-Jin Son, and Sungkyu Seo. "Size-Controllable Fabrication of Quantum Dot Micro-Beads Using a Custom Developed UV-Curable CdSe and InP QD Photoresist." In Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.cfa8g_04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This study reports the size on-demand fabrication of Quantum Dot (QD) micro-beads using a microfluidic chip with a specially designed InP/ZnSeS/ZnS and CdSe/ZnS QD photoresist mixed with a UV-curable composition called Super Coater.
3

Armijo, Leisha M., Brian A. Akins, John B. Plumley, Antonio C. Rivera, Nathan J. Withers, Nathaniel C. Cook, Gennady A. Smolyakov, Dale L. Huber, Hugh D. C. Smyth, and Marek Osiński. "Highly efficient multifunctional MnSe/ZnSeS quantum dots for biomedical applications." In SPIE BiOS, edited by Wolfgang J. Parak, Marek Osinski, and Kenji Yamamoto. SPIE, 2013. http://dx.doi.org/10.1117/12.2009563.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chylii, Maksym, Liudmila Loghina, Anastasia Kaderavkova, Jakub Houdek, and Miroslav Vlcek. "The Thermal Mode Crucial Influence on the ZnSeS QDs Formation." In 2022 IEEE 12th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2022. http://dx.doi.org/10.1109/nap55339.2022.9934209.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Xue, Qiwen, Peiqing Cai, Qianmin Dong, Chun Deng, Hong Zhao, and Zugang Liu. "Synthesis of narrow half-peak width green InP/ZnSeS/ZnS core/shell/shell quantum dots." In 2023 21st International Conference on Optical Communications and Networks (ICOCN). IEEE, 2023. http://dx.doi.org/10.1109/icocn59242.2023.10236117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Liu, Chuangping, and Xiaoli Zhang. "Gallium-doped InP/ZnSeS/ZnS quantum dots as a saturable absorber for passive Q-switched fiber laser." In 2023 International Conference on Energy, Materials, and Photonics (EMP). IEEE, 2023. http://dx.doi.org/10.1109/emp59310.2023.10373208.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tanahashi, I., Y. Manabe, S. Hayashi, M. Yoshida, and T. Mitsuyu. "Third-order optical nonlinearities in ZnCdSe/ZnSSe multiple quantum well." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/cleo_europe.1994.ctum2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
MQWs with II-VI compound semiconductors such as ZnSe/ZnS, ZnTe/ZnSe, and CdSe/ZnSe are promising materials for optoelectronic devices.1 Because of a large exciton binding energy due to a small exciton Bohr radius of II-VI compound semiconductors,2 the stable exciton peak can be seen at room temperature in II-VI MQWs. These MQWs have the potential to show large optical nonlinearities. Here, we report on the characterization and third-order nonlinear optical properties of ZnCdSe/ZnSSe MQW fabricated by MBE.
8

Yang, X. H., W. Shan, J. M. Hays, and J. J. Song. "Near Infrared Pumped ZnSe and ZnSSe Blue Lasers." In Compact Blue-Green Lasers. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/cbgl.1993.jwe.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ZnSe and ZnSe-based materials are receiving a great deal of attention for their potential blue opto-electronic applications.1,2 We have previously reported observations of room temperature blue laser oscillations from ZnSe and ZnSSe single crystals employing the above-the-band-gap one-photon pumping method.3,4 Here we report our recent study of blue laser action in these crystals where optical pumping was achieved via two-photon transitions. In particular, we have used near-infrared (~850 nm) excitation with two photon energies in the vicinity of the fundamental energy gaps in these wide gap materials.
9

Jans, J. C., J. Petruzzello, J. M. Gaines, and D. J. Olego. "Optical properties and lineshape analysis of II-VI compounds obtained by spectroscopic ellipsometry." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/cleo_europe.1994.cwf45.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Developments in the use of wide-gap II-VI semiconductor materials have recently led to the demonstration of blue-green diode laser action in ZnSe-based heterostructures.1,2 We have used spectroscopic ellipsometry to investigate the optical constants of several II-VI compounds involved in the realisation of such laser devices. Ellipsometric modelling has allowed access to the above and below bandgap optical constants of the films involved. Thin films of ZnSe, ZnSSe, ZnCdSe, and ZnMgSSe grown by molecular beam epitaxy (MBE) on GaAs were compared. The alloy composition (S, Cd, and/or Mg content) of the compound materials has been varied and variations in the energy position of the interband transitions with alloy composition were observed. Lineshape studies were performed and data for the optical interband transitions in the films mentioned were obtained. The position and presence of the optical interband transitions E0, E0 + A0, E1 and E1 + Δ1 in the measured data for the ZnSe films is in good agreement with data available on bulk material and with recent data for thin films.3 Our results for the optical behaviour of the ZnSe films are in reasonable agreement with data obtained from a simplified model of interband transitions for single crystalline non-doped ZnSe bulk material available in recent literature.3 This model allows a further parametrisation of optical response for the films. Lineshapes of MBE-grown ternary and quaternary II-VI compound films were studied for the first time. Figure 1 shows the lineshape results for a ZnS0.15Se0.85 film on GaAs. Best fit results were obtained using an excitonic lineshape.4 Figure 2 shows an evaluation of the E0, E0 + Δ0, and E1 E1 + Δ1 interband transitions with change in alloy composition for the ZnSSe films examined. Similar results were obtained for ZnCdSe and for ZnMgSSe thin films.
10

GURSKII, A. L., E. V. LUTSENKO, V. N. YUVCHENKO, G. P. YABLONSKII, H. HAMADEH, J. SÖLLNER, H. KALISCH, and M. HEUKEN. "RADIATIVE RECOMBINATION IN ZnMgSSe / ZnSSe / ZnSe MULTIPLE QUANTUM WELLS." In Reviews and Short Notes to Nanomeeting '97. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789814503938_0017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "ZnSeS":

1

Kolodziejski, Leslie A. Chemical Beam Epitaxy of ZnSe. Fort Belvoir, VA: Defense Technical Information Center, April 1989. http://dx.doi.org/10.21236/ada206635.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kolodziejski, Leslie A. Chemical Beam Epitaxy of ZnSe. Fort Belvoir, VA: Defense Technical Information Center, July 1989. http://dx.doi.org/10.21236/ada213265.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kolodziejski, Leslie A. Chemical Beam Epitaxy of ZnSe. Fort Belvoir, VA: Defense Technical Information Center, January 1990. http://dx.doi.org/10.21236/ada217375.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Duxstad, Kristin Joy. Metal contacts on ZnSe and GaN. Office of Scientific and Technical Information (OSTI), May 1997. http://dx.doi.org/10.2172/491565.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Eissler, E. E., and K. G. Lynn. Properties of melt-grown ZnSe solid-state radiation detectors. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/10104816.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Macdonald, J. R., S. J. Beecher, and A. K. Kar. Ultrashort Pulse Inscription of Photonic Structures in ZnSe and GaAs for Mid Infrared Applications. Fort Belvoir, VA: Defense Technical Information Center, April 2013. http://dx.doi.org/10.21236/ada580036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Semendy, Fred, Neal Bambha, Marie C. Tamargo, A. Cavus, and L. Zeng. Etch Pit Studies of II-VI-Wide Bandgap Semiconductor Materials ZnSe, ZnCdSe, and ZnCdMgSe Grown on InP. Fort Belvoir, VA: Defense Technical Information Center, October 1999. http://dx.doi.org/10.21236/ada372188.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Olsen, L. C. Investigation of polycrystalline thin-film CuInSe{sub 2} solar cells based on ZnSe windows. Annual subcontract report, 15 Febraury 1992--14 February 1993. Office of Scientific and Technical Information (OSTI), May 1994. http://dx.doi.org/10.2172/10152998.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Olsen, L. C. Investigation of polycrystalline thin film CuInSe{sub 2} solar cells based on ZnSe windows. Annual subcontract report, 15 February, 1993--14 February, 1994. Office of Scientific and Technical Information (OSTI), March 1995. http://dx.doi.org/10.2172/41328.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Olsen, L. C. Investigation of polycrystalline thin-film CuInSe{sub 2} solar cells based on ZnSe and ZnO buffer layers. Final report, February 16, 1992--November 15, 1995. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/266650.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії