Добірка наукової літератури з теми "Wind energy conversion systems Stability"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Wind energy conversion systems Stability".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Wind energy conversion systems Stability"

1

Jayashri, R., and R. P. Kumudini Devi. "Rotor Speed Stability of Grid Connected Wind Energy Conversion Systems." Wind Engineering 31, no. 6 (December 2007): 475–85. http://dx.doi.org/10.1260/030952407784079726.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

B S, Yogananda, and Dr K. Thippeswamy. "Improvement of Power Quality in Wind Energy Conversion Systems." International Journal for Research in Applied Science and Engineering Technology 10, no. 5 (May 31, 2022): 12–20. http://dx.doi.org/10.22214/ijraset.2022.41877.

Повний текст джерела
Анотація:
Abstract: Wind Energy Conversion Systems (WECS) show variability in their output power as a result of changing their main engines (wind speed). This introduces a new grid uncertainty factor and poses many challenges to electricity system designers and utilities in terms of grid network integrity, ie power system security, power system stability and power quality. This paper discusses the various challenges of wind energy when integrated into the grid and identifies different mitigation strategies for its smooth integration. Keywords: wind energy system, Power quality, Power filters, Reactive Power, controllers
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shrivastava, Sarika, Rakhi Sharma, and Anurag Tripathi. "Voltage Stability Enhancement of Fixed Speed Wind Energy Conversion System." Global Journal of Enterprise Information System 9, no. 1 (May 5, 2017): 109. http://dx.doi.org/10.18311/gjeis/2017/15876.

Повний текст джерела
Анотація:
Fixed speed wind energy conversion systems based on squirrel cage induction generator (SCIG) has a significant existence in wind energy technology. Availability of reactive power is obligatory for the reliable and stable performance of the power system. Insufficient reactive power has navigated to voltage collapses and has been a foremost source of various recent major power outages universally. This paper exhibits the simulation results of a grid integrated wind farm with and without reactive power compensation by capacitor banks and static synchronous compensator (STATCOM) to achieve voltage stability improvement during startup, normal operation, symmetrical and unsymmetrical fault conditions. The effect of reactive power compensation on voltage profile is compared.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Abubakar, Ukashatu, Saad Mekhilef, Hazlie Mokhlis, Mehdi Seyedmahmoudian, Ben Horan, Alex Stojcevski, Hussain Bassi, and Muhyaddin Hosin Rawa. "Transient Faults in Wind Energy Conversion Systems: Analysis, Modelling Methodologies and Remedies." Energies 11, no. 9 (August 27, 2018): 2249. http://dx.doi.org/10.3390/en11092249.

Повний текст джерела
Анотація:
This paper presents an in-depth review of classical and state-of-the-art models for analysing the transient stability in wind energy conversion systems. Various transient simulation models for a number of wind turbine generator (WTG) configurations are introduced, under different disturbances. The mitigation is achieved, by manipulating the generator speed and power electronics control, whereas the protection is implemented using conventional, intelligent or digital relays for the safety of sensitive components, in case of transient fault occurrence. The various control systems in WECS are basically employed to transform and regulate the varying frequency, owing to the stochastic nature of wind speed, to the standard 50-Hz or 60-Hz frequency for coupling to an existing electrical utility grid. It has been observed that the control and protection schemes in wind energy systems are concurrently applied. Transient faults in WECSs are a dominant power quality problem especially in the doubly-fed induction generator (DFIG), and often classified as overcurrent or overvoltage transients. These transients are measured using the transient stability index and analysed using the EMTDC/PSCAD software. In addition, the inertia of the rotating masses of wind turbine generators is often characterized by a transient torque, which generates oscillations in power systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Abdelbadie, Heba T. K., Adel T. M. Taha, Hany M. Hasanien, Rania A. Turky, and S. M. Muyeen. "Stability Enhancement of Wind Energy Conversion Systems Based on Optimal Superconducting Magnetic Energy Storage Systems Using the Archimedes Optimization Algorithm." Processes 10, no. 2 (February 14, 2022): 366. http://dx.doi.org/10.3390/pr10020366.

Повний текст джерела
Анотація:
Throughout the past several years, the renewable energy contribution and particularly the contribution of wind energy to electrical grid systems increased significantly, along with the problem of keeping the systems stable. This article presents a new optimization technique entitled the Archimedes optimization algorithm (AOA) that enhances the wind energy conversion system’s stability, integrated with a superconducting magnetic energy storage (SMES) system that uses a proportional integral (PI) controller. The AOA is a modern population technique based on Archimedes’ law of physics. The SMES system has a big impact in integrating wind generators with the electrical grid by regulating the output of wind generators and strengthening the power system’s performance. In this study, the AOA was employed to determine the optimum conditions of the PI controller that regulates the charging and discharging of the SMES system. The simulation outcomes of the AOA, the genetic algorithm (GA), and particle swarm optimization (PSO) were compared to ensure the efficacy of the introduced optimization algorithm. The simulation results showed the effectiveness of the optimally controlled SMES system, using the AOA in smoothing the output power variations and increasing the stability of the system under various operating conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Shaaban, Hasan, Tamer A. Kawady, and Abdallah El-sherif. "STEP-BY-STEP MODELING OF WIND ENERGY CONVERSION SYSTEMS FOR TRANSIENT STABILITY STUDIES." ERJ. Engineering Research Journal 35, no. 1 (January 1, 2012): 9–15. http://dx.doi.org/10.21608/erjm.2012.67108.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mohamad, Ahmed M. I., Mohammadreza Fakhari Moghaddam Arani, and Yasser Abdel-Rady I. Mohamed. "Investigation of Impacts of Wind Source Dynamics and Stability Options in DC Power Systems With Wind Energy Conversion Systems." IEEE Access 8 (2020): 18270–83. http://dx.doi.org/10.1109/access.2020.2966363.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

You, Guodong, Tao Xu, Honglin Su, Xiaoxin Hou, and Jisheng Li. "Fault-Tolerant Control for Actuator Faults of Wind Energy Conversion System." Energies 12, no. 12 (June 19, 2019): 2350. http://dx.doi.org/10.3390/en12122350.

Повний текст джерела
Анотація:
The problem of robust fault-tolerant control for actuators of nonlinear systems with uncertain parameters is studied in this paper. Takagi–Sugeno (T-S) fuzzy model is used to describe the wind energy conversion system (WECS). Fuzzy dedicated observer (FDO) and fuzzy proportional integral observer (FPIO) are established to reconstruct the system state and actuator fault, respectively. Fuzzy Robust Scheduling Fault-Tolerant Controller (FRSFTC) is designed by parallel distributed compensation (PDC) method, so as to realize the purpose of active fault tolerance for actuator faults and ensure the robust stability of the system. The stability of the closed-loop system is proved by Taylor series, Lyapunov function, and Linear Matrix Inequalities (LMIs). Finally, the simulation results verify that the proposed method is feasible and effective applied to WECS with doubly fed induction generators (DFIG).
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bellarbi, Samir. "Electromechanical Study the Wind Energy Conversion System Based DFIG and SCIG Generators." International Journal of Mechanics 15 (July 14, 2021): 102–6. http://dx.doi.org/10.46300/9104.2021.15.11.

Повний текст джерела
Анотація:
Generally speaking, asynchronous generators are used more frequently in medium power in wind energy conversion systems WECS applications. Depending on the power electronics converter used in the specific application, the operation of the asynchronous machine can be controlled in nested speed torque loops, using different torque control algorithms. Because WECS are highly nonlinear systems, but with smooth nonlinearities, a possible optimal control design solution can be the maximum power point tracking MPPT in this paper. This research describes a comparison of the power quality for wind power systems based on two generators: the squirrel-cage induction generator (SCIG), the doubly fed induction generator (DFIG). At first, we simulated SCIG and DFIG in MATLAB/Simulink and investigates the impact of this generators on the power system stability for compare the results and to comment on the best option based on the output characteristics of the generator and wind turbine. The technical objective of this research is to choose the most suitable generator adaptive with changing wind speeds and the most energy production
Стилі APA, Harvard, Vancouver, ISO та ін.
10

K, Malarvizhi, and Baskaran K. "FACTS CONTROLLER FOR ENHANCEMENT OF VOLTAGE STABILITY IN FIXED SPEED WIND ENERGY CONVERSION SYSTEMS." International Journal on Intelligent Electronic Systems 3, no. 2 (2009): 56–62. http://dx.doi.org/10.18000/ijies.30057.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Wind energy conversion systems Stability"

1

Jayam, Prabhakar Aditya. "Application of STATCOM for improved dynamic performance of wind farms in a power grid." Diss., Rolla, Mo. : Missouri University of Science and Technology, 2008. http://scholarsmine.mst.edu/thesis/pdf/Jayam_Prabhakar_09007dcc804f7428.pdf.

Повний текст джерела
Анотація:
Thesis (M.S.)--Missouri University of Science and Technology, 2008.
Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed May 12, 2008) Includes bibliographical references (p. 64-66).
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Buehrle, Bridget Erin. "Modeling of Small-Scale Wind Energy Conversion Systems." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/50920.

Повний текст джерела
Анотація:
As wind turbines are increasingly being adopted for meeting growing energy needs, their implementation for personal home use in the near future is imminent. There are very few studies conducted on small-scale turbines in the one to two meter diameter range because the power generated at this scale is currently not sufficient to justify the cost of installation and maintenance. The problem is further complicated by the fact that these turbines are normally mounted at low altitudes and thus there is necessity to have the optimum operating regime in the wind speed range of 3-10 mph (1.34 -- 4.47 m/s). This thesis discusses two methods for increasing the efficiency of horizontal axis small-scale wind energy conversion systems, 1) adding a diffuser to increase the wind speed at the rotor and 2) designing tubercles to enhance the flow characteristics over blades. Further, it was identified during the course of thesis that for simple installation and maintenance in the residential areas vertical axis turbines are advantageous. Thus, the second chapter of this thesis addresses the design of vertical axis turbines with power generation capability suitable for that of a typical US household.
    The study of the diffuser augmented wind turbine provides optimum dimensions for achieving high power density that can address the challenges associated with small scale wind energy systems; these challenges are to achieve a lower start-up speed and low wind speed operation. The diffuser design was modeled using commercial computational fluid dynamics code. Two-dimensional modeling using actuator disk theory was used to optimize the diffuser design. A statistical study was then conducted to reduce the computational time by selecting a descriptive set of models to simulate and characterize relevant parameters\' effects instead of checking all the possible combinations of input parameters. Individual dimensions were incorporated into JMP® software and randomized to design the experiment. The results of the JMP® analysis are discussed in this paper. Consistent with the literature, a long outlet section with length one to three times the diameter coupled with a sharp angled inlet was found to provide the highest amplification for a wind turbine diffuser.
    The second study consisted of analyzing the capabilities of a small-scale vertical axis wind turbine. The turbine consisted of six blades of extruded aluminum NACA 0018 airfoils of 0.08732 m (3.44 in) in chord length. Small-scale wind turbines often operate at Reynolds numbers less than 200,000, and issues in modeling their flow characteristics are discussed throughout this thesis. After finding an appropriate modeling technique, it was found that the vertical axis wind turbine requires more accurate turbulence models to appropriately discover its performance capabilities.
    The use of tubercles on aerodynamic blades has been found to delay stall angle and increase the aerodynamic efficiency. Models of 440 mm (17.33 in) blades with and without tubercles were fabricated in Virginia Tech\'s Center for Energy Harvesting Materials and Systems (CEHMS) laboratory. Comparative analysis using three dimensional models of the blades with and without the tubercles will be required to determine whether the tubercle technology does, in fact, delays the stall. Further computational and experimental testing is necessary, but preliminary results indicate a 2% increase in power coefficient when tubercles are present on the blades.

Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Trilla, Romero Lluís. "Power converter optimal control for wind energy conversion systems." Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/134602.

Повний текст джерела
Анотація:
L'energia eòlica ha incrementat la seva presència a molts països i s'espera que tingui encara un pes més gran en la generació elèctrica amb la implantació de la tecnologia eòlica marina. En aquest context el desenvolupament de models dels Sistemes de Generació per Turbina de Vent (SGTV) precisos és important pels operadors de xarxa per tal d'avaluar-ne el comportament. Els codis de xarxa ofereixen un seguit de normes per validar models amb dades obtingudes de proves de camp. A la primera part d'aquesta tesi un model de SGTV amb màquina d'inducció doblement alimentada (DFIG) és validat d'acord amb les normatives espanyola i alemanya. Avui dia molts parc eòlics utilitzen DFIG i, en conseqüència, les dades de camp disponibles son per aquesta tecnologia. Per a la indústria eòlica marina un avanç prometedor son els SGTV amb generadors síncrons d'imants permanents (PMSG). Per aquesta raó la segona part d'aquesta tesi es centra en SGTV basats en PMSG amb convertidor back-to-back de plena potència. Aquest convertidor es pot dividir en dues parts: el costat de xarxa (GSC) que interactua amb la xarxa elèctrica i el costat de màquina (MSC) que controla el generador. En general, el sistema de control del convertidor recau en els tradicionals controladors PI i, en ocasions, incorpora desacoblaments per reduir les influencies creuades entre les variables. Aquest controlador pot ser sintonitzat i implementat fàcilment donat que la seva estructura és simple, però, no presenta una resposta ideal donat que no aprofita tots els graus de llibertat disponibles en el sistema. És important desenvolupar controladors fiables que puguin oferir una resposta previsible del sistema i proveir robustesa i estabilitat. En especial per zones on la presència eòlica és gran i per parcs eòlics connectats a xarxes dèbils. En aquest treball es proposa un sistema de control pel convertidor basat en teoria de control H-infinit i en controladors Lineals amb Paràmetres Variants (LPV). La teoria de control òptim proveeix un marc de treball on més opcions es poden tenir en consideració a l'hora de dissenyar el controlador. En concret la teoria de control H-inifinit permet crear controladors multivariables per tal d'obtenir una òptima resposta del sistema, proveir certa robustesa i assegurar l'estabilitat. Amb aquesta tècnica durant la síntesi del controlador el pitjor cas de senyals de pertorbació és contemplat, d'aquesta manera el controlador resultant robustifica l'operació del sistema. Es proposa aquest control per al GSC posant especial èmfasi en obtenir un control de baixa complexitat que mantingui els beneficis d'aplicar la teoria de control òptim i faciliti la seva implementació en computadors industrials. Pel MSC es proposa una estratègia diferent basada en control LPV donat que el punt d'operació del generador canvia constantment. El sistema de control basat en LPV és capaç d'adaptar-se dinàmicament al punt d'operació del sistema, així s'obté en tot moment la resposta definida durant el procés de disseny. Amb aquesta tècnica l'estabilitat del sistema sobre tot el rang d'operació queda garantida i, a més, s'obté una resposta predictible i uniforme. El controlador està dissenyat per tenir una estructura simple, com a resultat s'obté un control que no és computacionalment exigent i es proveeix una solució que pot ser utilitzada amb equips industrials. S'utilitza una bancada de proves que inclou el PMSG i el convertidor back-to-back per tal d'avaluar experimentalment l'estratègia de control dissenyada al llarg d'aquest treball. L'enfoc orientat a la implementació dels controls proposats facilita el seu ús amb el processador de senyals digitals inclòs a la placa de control de la bancada. Els experiments realitzats verifiquen en un ambient realista els beneficis teòrics i els resultats de simulació obtinguts prèviament. Aquestes proves han ajudat a valorar el funcionament dels controls en un sistema discret i la seva tolerància al soroll de senyals i mesures
Wind energy has increased its presence in many countries and it is expected to have even a higher weight in the electrical generation share with the implantation of offshore wind farms. Consequently, the wind energy industry has to take greater responsibility towards the integration and stability of the power grid. In this sense, there are proposed in the present work control systems that aim to improve the response and robustness of the wind energy conversion systems without increasing their complexity in order to facilitate their applicability. In the grid-side converter it is proposed to implement an optimal controller with its design based on H-infinity control theory in order to ensure the stability, obtain an optimal response of the system and also provide robustness. In the machine-side converter the use of a Linear Parameter-Varying controller is selected, this choice provides a controller that dynamically adapts itself to the operating point of the system, in this way the response obtained is always the desired one, the one defined during the design process. Preliminary analysis of the controllers are performed using models validated with field test data obtained from operational wind turbines, the validation process followed the set of rules included in the official regulations of the electric sector or grid codes. In the last stage an experimental test bench has been developed in order to test and evaluate the proposed controllers and verify its correct performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mendonca, Jose Manuel de Araujo Baptista. "Microcomputer on-line control of wind energy conversion systems." Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/38101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wu, Feng. "Modelling and control of wind and wave energy conversion systems." Thesis, University of Birmingham, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.525483.

Повний текст джерела
Анотація:
The modelling and control of wind and wave energy conversion systems is carried out in this thesis. The thesis comprises two parts. The first part is focused on the modelling and control of wind conversion system while the second part is on the modelling and control of wave energy conversion system (WEe). In the first part, the small signal stability of the \\lind turbine (\VT) with doubly fed induction generator (DFIG) and the WT with direct-drive permanent magnet generator (DDPMG) an: analysed using detailed models. A parameter tuning algorithm and a nonlinear controller are proposed, respectively, to improve dynamic performance of WT with DFIG. The impacts of WT with DFIG, WT with DDPMG and WT the induction generator (lG) on power system transient stability are compared. In the second part, a new coordinate transformation is proposed for the model of Archimedes wave swing (A WS) based WEe system, the transformed model is compatible with the power system dynamic analysis. The controllers for A WS based WEe are designed so as to extract maximum power from the wave, output constant power and maintain the terminal voltage. The application of battery energy storage in smoothing the output power of WEe system is studied.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

MacRae, Angus Neil. "Economic and cost engineering aspects of wind energy conversion systems." Thesis, Robert Gordon University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.258961.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Macmillan, Susan. "An appraisal of wind energy conversion systems for agricultural enterprises." Thesis, Robert Gordon University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.330282.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zoric, I. "Multiple three-phase induction generators for wind energy conversion systems." Thesis, Liverpool John Moores University, 2018. http://researchonline.ljmu.ac.uk/8387/.

Повний текст джерела
Анотація:
During the past decade, there has been a considerable increase in the number of published works on multiphase machines and drives. This increased interest has been largely driven by a need for the so-called green energy, i.e. energy generated from renewable sources such as wind, and also an increased emphasis on greener means for transportation. Some of the advantages multiphase machines offer over three-phase counterparts are better fault tolerance, smaller current and power per phase, and higher frequency torque ripple. This thesis examines use of a multiphase induction generator in wind energy conversion systems (WECS). In particular, multiphase generators that comprise multiple 3-phase winding sets, where each winding set is supplied using an independent 3-phase voltage source inverter (VSI), are studied. It is claimed that these topologies offer advantages in cases where a WECS is connected to a multitude of independent ac or dc microgrids, systems where a single high-voltage dc link is needed or where a simple fault tolerance is achieved when a complete winding set is switched off. All of these examples require an arbitrary power or current sharing between winding sets. In order to achieve arbitrary current and power sharing, the control can be implemented using multi stator (MS) variables, so that the flux and torque producing currents of each winding set can be arbitrarily set. As an alternative, this thesis uses vector space decomposition (VSD) to implement the control, while individual winding set flux/torque producing currents are governed by finding the relationships between MS and VSD variables. This approach has all the advantages of both MS and VSD, i.e. access to individual winding set variables of MS and the ability to implement control in the multiple decoupled two dimensional subspaces of VSD, while heavy cross coupling between winding set variables, a weakness of MS, is avoided. Since the goal of the thesis is to present use of multiphase machines in WECS, modelling and simulation of a simple multiphase WECS in back-to-back configuration has been performed at first. All systems relevant to machine control where considered, such as grid and machine side VSIs, grid filter, indirect rotor field oriented control, current control in both flux/torque producing and non-producing subspaces, low order harmonic elimination, maximum power point tracking control, and voltage oriented control of the grid side VSI. Moreover, various WECS supply topologies were considered where developed current and power sharing would be a necessary requirement. Development of the proposed current sharing control commences with an analysis of multiple 3-phase machine modelling in terms of both MS and VSD variables. Since the actual control is implemented using decoupled VSD variables, VSD modelling has been studied in detail, resulting in an algorithm for creation of the VSD matrix applicable to any symmetrical or asymmetrical multiphase machine with single or multiple neutral points. Developed algorithm always decouples the machine into orthogonal two-dimensional subspaces and zero sequence components while making sure that all odd-order harmonics are uniquely mapped. Harmonic mapping analysis is offered as well. Next, relationship between MS and VSD variables has been developed by mapping MS variables into VSD subspaces. Since VSD matrix creation algorithm is valid for any multiphase machine, relationship between MS and VSD variables is applicable to any multiple 3-phase machine regardless of the configuration (symmetrical/asymmetrical), number of neutral points or machine type (synchronous or induction). Established relationship between MS and VSD has been used to implement current sharing control in decoupled VSD subspaces of the machine. It is shown that in order to achieve arbitrary current sharing it is only necessary to impose currents in flux/torque non-producing subspaces. Hence, total machine’s flux and torque are not affected at all. Besides verification by Matlab simulations, two topologies are experimentally investigated, a parallel machine side converter configuration and the case when a single high voltage dc link is created by cascading dc-links of the machine side VSIs. In the first case the ability of arbitrary current sharing between winding sets is validated, while the second tested topology demonstrates use of the developed control for the purpose of voltage balancing of the cascaded dc links.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, Wenyan Kusiak Andrew. "Predictive engineering in wind energy a data-mining approach /." [Iowa City, Iowa] : University of Iowa, 2009. http://ir.uiowa.edu/etd/399.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Diaz, Matias. "Control of the modular multilevel matrix converter for wind energy conversion systems." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/47157/.

Повний текст джерела
Анотація:
The nominal power of single Wind Energy Conversion Systems has been steadily growing, reaching power ratings close to 10 MW. In the power conversion stage, medium-voltage power converters are replacing the conventional low-voltage back-to-back topology. Modular Multilevel Converters have appeared as a promising solution for Multi-MW WECSs due to their characteristics such as modularity, reliability and the capability to reach high nominal voltages. Thereby, this thesis discusses the application of the Modular Multilevel Matrix Converter to drive Multi-MW Wind Energy Conversion Systems (WECSs). The modelling and control systems required for this application are extensively analysed and discussed in this document. The proposed control strategies enable decoupled operation of the converter, providing maximum power point tracking capability at the generator-side, grid-code compliance and Low Voltage Ride Through Control at the grid-side and good steady-state and dynamic performance for balancing the capacitor voltages of the converter. The effectiveness of the proposed control strategies is validated through simulations and experimental results. Simulation results are obtained with a 10MW, 6.6 kV Modular Multilevel Matrix Converter based WECS model developed in PLECS software. Additionally, a 5 kVA downscale prototype has been designed and constructed during this Ph.D. The downscale prototype is composed of 27 H-Bridges power cells. The system is controlled using a Digital Signal Processor connected to three Field Programmable Gate Array which are equipped with 50 analogue-digital channels and 108 gate drive signals. Two programmable AMETEK power supplies emulate the electrical grid and the generator. The wind turbine dynamics is programmed in the generator-side power supply to emulate a generator operating in variable speed/voltage mode. The output port of the Modular Multilevel Matrix Converter is connected to another power source which can generate programmable grid sag-swell conditions. Simulation and experimental results for variable-speed operation, grid-code compliance, and capacitor voltage regulation have confirmed the successful operation of the Modular Multilevel Matrix Converter based WECSs. In all the experiments, the proposed control systems ensure proper capacitor voltage balancing, keeping the flying capacitor voltages bounded and with low ripple. Additionally, the performance of the generator-side and grid-side control system have been validated for Maximum Power Point Tracking and Low-Voltage Ride Through, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Wind energy conversion systems Stability"

1

Muyeen, S. M. Stability augmentation of a grid-connected wind farm. London: Springer, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Muyeen, S. M. Stability augmentation of a grid-connected wind farm. London: Springer, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Muyeen, S. M., ed. Wind Energy Conversion Systems. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2201-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

L, Freris L., ed. Wind energy conversion systems. New York: Prentice Hall, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Heier, Siegfried. Grid integration of wind energy conversion systems. Chichester: Wiley, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Muyeen, S. M. Wind energy conversion systems: Technology and trends. London: Springer, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sumathi, S., L. Ashok Kumar, and P. Surekha. Solar PV and Wind Energy Conversion Systems. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14941-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Grid integration of wind energy conversion systems. 2nd ed. Chichester, West Sussex, England: Wiley, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Khaligh, Alireza. Energy harvesting: Solar, wind, and ocean energy conversion systems. Boca Raton: Taylor & Francis, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Khaligh, Alireza. Energy harvesting: Solar, wind, and ocean energy conversion systems. Boca Raton: CRC Press, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Wind energy conversion systems Stability"

1

Wang, Li, Kuo-Hua Wang, Wei-Jen Lee, and Zhe Chen. "Power-Flow Control and Stability Enhancement of Four Parallel-Operated Offshore Wind Farms Using a Line-Commutated HVDC Link." In Wind Energy Conversion Systems, 385–414. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2201-2_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Abu-Siada, Ahmed, Mohammad A. S. Masoum, Yasser Alharbi, Farhad Shahnia, and A. M. Shiddiq Yunus. "Superconducting Magnetic Energy Storage, a Promising FACTS Device for Wind Energy Conversion Systems." In Recent Advances in Renewable Energy, 49–86. UAE: Bentham Science Publishers Ltd., 2017. http://dx.doi.org/10.2174/9781681085425117020004.

Повний текст джерела
Анотація:
The applications of FACTS devices have become popular in the last few decades. There are many types of FACTS devices that are currently used in power systems to improve system stability, power quality and the overall reliability of the power systems. Since the involvement of renewable energies based power plants such as wind and PV, problems related to power system stability and quality has become even more complex, therefore the deployment of FACTS devices has become a challenging task. In this chapter, a Superconducting Magnetic Energy Storage (SMES) Unit is applied to improve the performance of Doubly Fed Induction Generator (DFIG) based wind turbine during various disturbances such as voltage sag, short circuit faults and load variation, including problems related to internal faults within the DFIG converters.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Labbadi, Moussa, Kamal Elyaalaoui, Loubna Bousselamti, Mohammed Ouassaid, and Mohamed Cherkaoui. "Introduction to Power System Stability and Wind Energy Conversion System." In Studies in Systems, Decision and Control, 3–18. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98737-4_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mathew, Sathyajith. "Wind energy conversion systems." In Wind Energy, 89–143. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-30906-3_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mathew, Sathyajith. "Performance of wind energy conversion systems." In Wind Energy, 145–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-30906-3_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sumathi, S., L. Ashok Kumar, and P. Surekha. "Wind Energy Conversion Systems." In Solar PV and Wind Energy Conversion Systems, 247–307. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14941-7_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Belu, Radian. "Wind Energy Conversion Systems." In Fundamentals and Source Characteristics of Renewable Energy Systems, 253–302. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, 2020. | Series: Nano and energy series |: CRC Press, 2019. http://dx.doi.org/10.1201/9780429297281-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Muyeen, S. M. "Introduction." In Wind Energy Conversion Systems, 1–22. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2201-2_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rachidi, F., M. Rubinstein, and A. Smorgonskiy. "Lightning Protection of Large Wind-Turbine Blades." In Wind Energy Conversion Systems, 227–41. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2201-2_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yasuda, Yoh. "Lightning Surge Analysis of a Wind Farm." In Wind Energy Conversion Systems, 243–65. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2201-2_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Wind energy conversion systems Stability"

1

Yutong Zhang and Ka Wing Chan. "Rotor speed stability analysis of grid connected wind energy conversion systems." In 8th International Conference on Advances in Power System Control, Operation and Management (APSCOM 2009). IET, 2009. http://dx.doi.org/10.1049/cp.2009.1797.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ravichandran, Sharon, S. G. Bharathi Dasan, and R. P. Kumudini Devi. "Small signal stability analysis of grid connected wind energy conversion systems." In 2011 International Conference on Recent Advancements in Electrical, Electronics and Control Engineering (ICONRAEeCE). IEEE, 2011. http://dx.doi.org/10.1109/iconraeece.2011.6129760.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kangwa, Nsofwa, and David G. Dorrell. "Analysis of Impact on Small Signal Stability on Onshore Wind Integrated VSC HVDC Systems." In 2018 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2018. http://dx.doi.org/10.1109/ecce.2018.8557391.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mosetlhe, Thapelo C., Adedayo A. Yusuff, and Yskandar Hamam. "Assessment of small signal stability of power systems with wind energy conversion unit." In 2017 IEEE AFRICON. IEEE, 2017. http://dx.doi.org/10.1109/afrcon.2017.8095634.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ali, Mohd Hasan, and Roger A. Dougal. "Comparison of SMES and SFCL for transient stability enhancement of wind generator system." In 2010 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2010. http://dx.doi.org/10.1109/ecce.2010.5618322.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kumar, Varun, Akanksha Shukla, and A. S. Pandey. "Transient Stability Enhancement of Grid Integrated DFIG Based Wind Energy Conversion System." In 2020 International Conference on Contemporary Computing and Applications (IC3A). IEEE, 2020. http://dx.doi.org/10.1109/ic3a48958.2020.233316.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kamel, Bassem Khaled, Walid Atef Omran, and Mahmoud A. Attia. "Enhancement of Wind Energy Conversion System Voltage Stability by Using STATCOM with Different Controllers." In 2021 16th International Conference on Computer Engineering and Systems (ICCES). IEEE, 2021. http://dx.doi.org/10.1109/icces54031.2021.9686179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dixit, A., N. Mishra, P. Singh, and D. Singh. "Maximum power tracking with voltage stability studies in wind energy conversion system : a review." In IET Chennai 3rd International Conference on Sustainable Energy and Intelligent Systems (SEISCON 2012). Institution of Engineering and Technology, 2012. http://dx.doi.org/10.1049/cp.2012.2232.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kwon, JunBum, Xiongfei Wang, Claus Leth Bak, and Frede Blaabjerg. "Analysis of harmonic coupling and stability in back-to-back converter systems for wind turbines using Harmonic State Space (HSS)." In 2015 IEEE Energy Conversion Congress and Exposition. IEEE, 2015. http://dx.doi.org/10.1109/ecce.2015.7309762.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lamichhane, S., N. Mithulananthan, and Rakibuzzaman Shah. "Examination of Low-Frequency Oscillatory Stability of Power systems with Detailed Wind Farm Model." In 2018 5th International Conference on Electric Power and Energy Conversion Systems (EPECS). IEEE, 2018. http://dx.doi.org/10.1109/epecs.2018.8443485.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії