Добірка наукової літератури з теми "Wetting"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Wetting".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Wetting"

1

Churaev, N. V. "Wetting films and wetting." Revue de Physique Appliquée 23, no. 6 (1988): 975–87. http://dx.doi.org/10.1051/rphysap:01988002306097500.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Butt, Hans-Jürgen, Rüdiger Berger, Werner Steffen, Doris Vollmer, and Stefan A. L. Weber. "Adaptive Wetting—Adaptation in Wetting." Langmuir 34, no. 38 (August 15, 2018): 11292–304. http://dx.doi.org/10.1021/acs.langmuir.8b01783.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Karmakov, Iordan. "Wetting or non-wetting liquid?" Physics Education 35, no. 6 (November 2000): 435–38. http://dx.doi.org/10.1088/0031-9120/35/6/310.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kalogeropoulou, S., C. Rado, and N. Eustathopoulos. "Mechanisms of reactive wetting: the wetting to non-wetting case." Scripta Materialia 41, no. 7 (August 1999): 723–28. http://dx.doi.org/10.1016/s1359-6462(99)00207-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

de Gennes, P. G. "Wetting." Revue de Physique Appliquée 23, no. 6 (1988): 974. http://dx.doi.org/10.1051/rphysap:01988002306097400.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Blokhuis, Edgar M., and Benjamin Widom. "Wetting." Current Opinion in Colloid & Interface Science 1, no. 3 (June 1996): 424–29. http://dx.doi.org/10.1016/s1359-0294(96)80143-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Leermakers, Frans A. M., Gustavo S. Luengo, Nawel Baghdadli, Christian Mazilier, Anne Potter, and Fabien Léonforte. "Turning autophobic wetting on biomimetic surfaces into complete wetting by wetting additives." Soft Matter 16, no. 20 (2020): 4823–39. http://dx.doi.org/10.1039/d0sm00129e.

Повний текст джерела
Анотація:
Autophobicity or pseudo partial wetting, a phenomenon of a liquid not spreading on its own monolayer, is characterized by an energy barrier that prevents the growth of a wetting film beyond the monolayer thickness, which additionally may have an impact on the conditioning performance of films.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

TAKAHASHI, Gennosuke. "Wetting Dispersant." Journal of the Japan Society of Colour Material 67, no. 1 (1994): 44–51. http://dx.doi.org/10.4011/shikizai1937.67.44.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rapp, Michael, and William A. Ducker. "Enantiospecific Wetting." Journal of the American Chemical Society 132, no. 51 (December 29, 2010): 18051–53. http://dx.doi.org/10.1021/ja109598z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Verberck, Bart. "Lattice wetting." Nature Physics 12, no. 2 (February 2016): 111. http://dx.doi.org/10.1038/nphys3664.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Wetting"

1

Ding, Ailin. "Particle Assisted Wetting." Doctoral thesis, Universitätsbibliothek Chemnitz, 2007. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200701494.

Повний текст джерела
Анотація:
Die Benetzbarkeit und Nichtbenetzbarkeit von Oberflächen durch eine Flüssigkeit sind faszinierende und wichtige Phänomene in Wissenschaft und Technologie. Jüngst wurde entdeckt, dass Partikel die Benetzung einer Wasseroberfläche durch ein Öl unterstützen können. Es wurde eine Theorie entwickelt, das Prinzip der zu beschreiben. In der vorliegenden Doktorarbeit wurde diese Theorie im Experiment sowohl qualitativ als auch quantitativ untersucht, wobei zwei Arten von Kieselgelpartikeln Verwendung fanden. Mit Hilfe einer Reihe unregelmäßig geformter Partikel mit variierender Hydrophobie wurde der Einfluss der Oberflächenhydrophobie der Partikel auf die partikel-assistierte Benetzung untersucht. Es wurde herausgefunden, dass die Partikel mit höchster Hydrophilie Linsen aus reinem Öl bilden, während die Partikel in die Wasserphase abtauchen. Die Partikel mit größter Hydrophobie hingegen bewirken die Ausbildung von kleinen Bereichen, in denen Öl und Partikel eine stabile homogene Schicht formen. Für Partikel mit mittlerer Hydrophobie wurden beide Phänomene beobachtet. Diese drei verschiedenen Beobachtungen bestätigen, dass die Oberflächenhydrophobie der Partikel das Benetzungsverhalten des Öls auf der Wasseroberfläche bestimmen. Für die unregelmäßig geformten Partikel war aufgrund des unbekannten Kontaktwinkels ein direkter Vergleich zur Theorie nicht möglich. Um die Theorie quantitativ zu prüfen, wurden sphärische Partikel synthetisiert und ihre Oberflächen mit Hilfe von zehn Silanisierungsmittel modifiziert. Anschließend wurde ein Vergleich der experimentellen Ergebnisse mit dem entsprechenden theoretischen Phasendiagramm durchgeführt. Die Untersuchungen zeigten, dass die theoretischen Vorhersagen zum Großteil mit den experimentellen Ergebnissen übereinstimmen. Es wurden alle Fälle der Benetzung beobachtet, die auch in der theoretischen Beschreibung berücksichtigt wurden. Darüber hinaus wurden auch Abweichungen von der Theorie festgestellt. Haben die Partikel ähnliche Affinitäten zur Luft/Öl- und Öl/Wasser-Grenzfläche, hängt die Beschaffenheit der Benetzungsfilme zusätzlich vom Oberflächendruck ab. Deshalb könnte es notwendig sein, die einfache Theorie zu erweitern um den beschriebenen Beobachtungen Rechnung zu tragen
Wetting and de-wetting of surfaces by a liquid are fascinating and important phenomena in science and technology. Recently, it was discovered that particles can assist the wetting of a water surface by an oil, and a theory describing the principle behind particle assisted wetting was developed. In this thesis, the theory was experimentally investigated qualitatively and quantitatively by using two series of silica particles. The influence of the surface hydrophobicity of the particles on particle assisted wetting was investigated by a series of irregular shaped particles with varying hydrophobicity. By applying mixtures of particles and oil to a water surface, it was found that for the most hydrophilic particles, only lenses of pure oil formed, with the particles being submerged into the aqueous phase. The most hydrophobic particles helped to form patches of stable homogenous mixed layers composed of oil and particles. For particles with intermediate hydrophobicity, lenses and patches of mixed layers were observed. These three different observations verified that the hydrophobicity of the particle surface determines the wetting behaviour of the oil at the water surface. For the irregular shaped particles with unknown contact angles with liquid interfaces, no direct comparison to the theory was possible. To test the theory quantitatively, a series of spherical particles was synthesized and their surfaces were modified by ten kinds of silane coupling agents; then the experimental results were compared with the corresponding theoretical phase diagram. It indicated that the theory agrees at large with the experimental results. All scenarios of wetting layers taken into account in the theoretical description were observed. In the fine print, deviations from the theory were also observed. If the particles have similar affinities to air/oil and oil/water interfaces, the experimentally observed morphology of the wetting layers depends in addition on the surface pressure. It might therefore be necessary to extend the simple theoretical picture to take these observations into accounts
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Burgess, Ian Bruce. "Wetting in Color." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10524.

Повний текст джерела
Анотація:
Colorimetric litmus tests such as pH paper have enjoyed wide commercial success due to their inexpensive production and exceptional ease of use. However, expansion of colorimetry to new sensing paradigms is challenging because macroscopic color changes are seldom coupled to arbitrary differences in the physical/chemical properties of a system. In this thesis I present in detail the development of Wetting in Color Technology, focusing primarily on its application as an inexpensive and highly selective colorimetric indicator for organic liquids. The technology exploits chemically-encoded inverse-opal photonic crystals to control the infiltration of fluids to liquid-specific spatial patterns, projecting minute differences in liquids’ wettability to macroscopically distinct, easy-to-visualize structural color patterns. It is shown experimentally and corroborated with theoretical modeling using percolation theory that the high selectivity of wetting, upon-which the sensitivity of the indicator relies, is caused by the highly symmetric structure of our large-area, defect-free \(SiO_2\) inverse-opals. The regular structure also produces a bright iridescent color, which disappears when infiltrated with liquid naturally coupling the optical and fluidic responses. Surface modification protocols are developed, requiring only silanization and selective oxidation, to facilitate the deterministic design of an indicator that differentiates a broad range of liquids. The resulting tunable, built-in horizontal and vertical chemistry gradients allow the wettability threshold to be tailored to specific liquids across a continuous range, and make the readout rely only on countable color differences. As wetting is a generic fluidic phenomenon, Wetting in Color technology could be suitable for applications in authentication or identification of unknown liquids across a broad range of industries. However, the generic nature of the response also ensures chemical non-specificity. It is shown that combinatorial measurements from an array of indicators add a degree of chemical specificity to the platform, which can be further improved by monitoring the drying of the inverse-opal films. While colorimetry is the central focus of this thesis, applications of this platform in encryption, fluidics and nanofabrication are also briefly explored.
Engineering and Applied Sciences
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lee, Khai S. "Kinetics of wetting." Thesis, Loughborough University, 2008. https://dspace.lboro.ac.uk/2134/33866.

Повний текст джерела
Анотація:
Wetting and de-wetting processes play an important role in many natural and technological processes. In many cases, wetting is an essential prerequisite for application, for example in paint films, crop sprays, cosmetics, pharmaceutical tablets and in preparation of suspensions. Both equilibrium and dynamic processes of wetting are important in coatings. In many industrial and medical applications, some strategies to control drop-spreading on solid surfaces are being developed. One possibility is that a surfactant, a surface-active polymer, a polyelectrolyte or their mixture are added to a liquid (usually water). Recently discovered trisiloxane and other silicone-based surfactants show very unusual behaviour.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wålinder, Magnus. "Wetting phenomena on wood." Doctoral thesis, KTH, Production Systems, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-2908.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Carlson, Andreas. "Capillarity and dynamic wetting." Doctoral thesis, KTH, Strömningsfysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-91329.

Повний текст джерела
Анотація:
In this thesis capillary dominated two–phase flow is studied by means of nu- merical simulations and experiments. The theoretical basis for the simulations consists of a phase field model, which is derived from the system’s thermody- namics, and coupled with the Navier Stokes equations. Two types of interfacial flow are investigated, droplet dynamics in a bifurcating channel and sponta- neous capillary driven spreading of drops. Microfluidic and biomedical applications often rely on a precise control of droplets as they traverse through complicated networks of bifurcating channels. Three–dimensional simulations of droplet dynamics in a bifurcating channel are performed for a set of parameters, to describe their influence on the resulting droplet dynamics. Two distinct flow regimes are identified as the droplet in- teracts with the tip of the channel junction, namely, droplet splitting and non- splitting. A flow map based on droplet size and Capillary number is proposed to predict whether the droplet splits or not in such a geometry. A commonly occurring flow is the dynamic wetting of a dry solid substrate. Both experiments and numerical simulations of the spreading of a drop are presented here. A direct comparison of the two identifies a new parameter in the phase field model that is required to accurately predict the experimental spreading behavior. This parameter μf [P a · s], is interpreted as a friction factor at the moving contact line. Comparison of simulations and experiments for different liquids and surface wetting properties enabled a measurement of the contact line friction factor for a wide parameter space. Values for the contact line friction factor from phase field theory are reported here for the first time. To identify the physical mechanism that governs the droplet spreading, the different contributions to the flow are measured from the simulations. An im- portant part of the dissipation may arise from a friction related to the motion of the contact line itself, and this is found to be dominating both inertia and viscous friction adjacent to the contact line. A scaling law based on the con- tact line friction factor collapses the experimental data, whereas a conventional inertial or viscous scaling fails to rationalize the experimental observation, supporting the numerical finding.

QC 20120313

Стилі APA, Harvard, Vancouver, ISO та ін.
6

Modaressi-Esfeh, Hedieh. "Wetting on heterogeneous surfaces." Thesis, McGill University, 2001. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=38084.

Повний текст джерела
Анотація:
Dynamic wetting and absorption of water droplets on heterogeneous surfaces, including paper, was studied. The objective was to elucidate the role of surface heterogeneities on wetting and absorption properties of paper. To better understand the phenomena, wetting on glass slides with a controlled level of heterogeneity was investigated. Also, partially hydrophobized glass capillaries were used to simulate capillary penetration into the pores on sized paper.
Dynamic wetting on paper followed a power law model with a lower rate than wetting on a smooth surface. The chemical composition of the paper surface did not affect the wetting dynamics, which was mainly affected by surface roughness in a micron scale. The super-hydrophobic properties of the sized papers were due to air entrapment in the micron-scale roughness on the surface.
Wetting and absorption of water droplets on sized paper occurred in different time scales. A pseudo-equilibrium contact angle was reached at the end of wetting just before absorption of water droplets. Increasing the surface coverage of the hydrophobic domains on paper by sizing increased the pseudo-equilibrium contact angle and delayed absorption into paper. This delay was related to partial dissolution of the surface sizing polymers in the water droplets on the surface.
The equilibrium contact angle of water droplets on partially hydrophobized glass slides was a linear function of a characteristic dimension of the hydrophobic domains and the length of the three phase contact line.
The dynamic rise of water in partially hydrophobized vertical capillaries followed two mechanisms. First, capillary rise was a function of the dynamic contact angle, changing with the velocity of the contact line. Second, local changes of the advancing contact angle due to the heterogeneities on the capillary walls lowered the capillary rise velocity. The stick (pause) and jump of the contact line was another effect of the hydrophobic domains. Capillary rise dynamics was a function of the advancing contact angle of water droplets measured on a flat glass slide with the same coverage of hydrophobic domains.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Aqil, Sanaa. "Wetting of microstructured surfaces." Thesis, Nottingham Trent University, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431843.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Marczewski, Dawid. "Membranes via particle assisted wetting." Doctoral thesis, Universitätsbibliothek Chemnitz, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200901190.

Повний текст джерела
Анотація:
Spreading of mixtures of oil with suitable silica particles onto a water surface leads to the formation of composite layers in which particles protrude at the top and at the bottom from the oil. Solidification of the oil and removal of the particles give rise to porous membranes. Pore widths and membrane thicknesses depend on particle sizes and usually are in the range of 70 – 80% of their diameters. Often freely suspended porous membranes are too fragile to operate them in pressure filtration without supportive structure. To improve mechanical stability of porous membranes, a mixture of silica particles with an oil is spread onto a nonwoven fibrous support that was drenched with water. Solidification of the oil and removal of particles yields porous membrane attached to the fibers of the support. Due to inhomogeneous surface of the fabric, the membranes that are attached to it are corrugated. To obtain flat supportive structures, glass beads with 75 μm in diameter are spread onto the water surface with the oil. Solidification of the oil and then removal of particles gives rise to porous membranes with pore diameters in micrometer range. Another concept of improvement of mechanical stability is the preparation of asymmetric membranes via spreading of a mixture of two sorts of particles with opposite surface properties with the oil onto the water surface. After solidification of the oil and removal of particles, membranes with pores width in the range from 30 – 50 nm are obtained. Slow removal of silica particles from composite monolayer that floats on the water surface gives rise to silica rings in intermediate stages of removal. Mixed matrix membranes with embedded carbon molecular sieves are prepared in a similar process as detailed above by using carbon particles instead of silica. Carbon molecular sieves protrude at the top and bottom from the polymeric matrix. Theoretical prediction of permeability and selectivity through these membranes are much higher than in membranes where particles are smaller than the membrane thickness
Spreitet man Mischungen eines Öls mit geeigneten Kieselgelpartikeln auf eine Wasseroberfläche, führt dies zur Bildung gemischter Schichten, in denen die Partikel auf der Ober- und Unterseite aus dem Öl herausragen. Härtet man das Öl aus und entfernt die Partikel, erhält man poröse Membranen mit einheitlichen Poren. Dabei hängen die Porenweiten und Membrandicken von der Partikelgröße ab und betragen üblicherweise 70 – 80 % von deren Durchmesser. Oft sind freitragende poröse Membranen zu zerbrechlich um mit ihnen Druckfiltration ohne Stützstruktur durchzuführen. Um die mechanische Stabilität von porösen Membranen zu erhöhen spreitet man eine Mischung aus Kieselgelpartikeln und einem Öl auf einem Vliesstoff, der mit Wasser getränkt ist. Das Aushärten des Öls und die Entfernung der Partikel führt zu einer porösen Membran, die an die Fasern der Stützstruktur angeheftet ist. Durch die inhomogene Oberfläche des Vliesgewebes sind die daran angehefteten Membranen gewellt. Um eine ebene Stützstruktur zu erhalten, werden Mischungen aus dem Öl und Glaskugeln mit einem Durchmesser von 75 μm verwendet. Das Aushärten des Öls und die Entfernung der Partikel führt zu ebenen porösen Membranen mit Porendurchmessern im Mikrometerbereich. Ein weiteres Konzept, um die mechanische Stabilität zu erhöhen, ist die Herstellung asymmetrischer Membranen mit Hilfe des Spreitens einer Mischung zweier Partikelsorten mit unterschiedlichen Oberflächeneigenschaften mit dem Öl auf die Wasseroberfläche. Nach dem Aushärten des Öls und der Entfernung der Partikel erhält man eine asymmetrische Membran mit kleinen Porenweiten an der Oberseite und großen Porenweiten an der Unterseite. Durch langsames Entfernen der Kieselgelpartikel aus der gemischten Schicht, die auf der Wasseroberfläche schwimmt, kann man in einem Zwischenstadium Kieselgelringe erhalten. Kompositmembranen (mixed matrix membranes) mit eingebetteten Kohlenstoffmolekularsieben werden in einem gleichen Prozess wie oben beschrieben hergestellt, indem man Kohlenstoffpartikel anstatt der Kieselgelpartikel verwendet. Die Kohlenstoffmolekularsiebe ragen auf der Ober- und Unterseite aus der Polymermatrix heraus. Die theoretisch vorhersagten Durchlässigkeiten und Selektivitäten solcher Membranen sind wesentlich höher als bei Membranen, in denen die Partikel kleiner als der Membrandicke sind
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cowan, Nicola. "Wetting and Spreading of Mucus." Thesis, Heriot-Watt University, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.490937.

Повний текст джерела
Анотація:
The wetting and spreading of aqueous solutions of gastric pig mucin has been studied on both high-energy and low-energy surfaces. Static and dynamic contact angles of mucin droplets were measured directly on glass and collagen surfaces of both flat and fibre substrate geometries, using a novel laser-assisted measurement method. The surface tension of the mucin solutions were measured using the du Nouy ring ,.' method, and found to be independent of mucin concentration. // The non-Newtonian properties of mucus was further evidenced by the dynamic wetting on flat glass substrates; the change in contact angle and droplet radius with time could be described by a power law relation with exponents slightly smaller than that observed for Newtonian fluids which obey Tanner's law. The spreading kinetics of mucus on flat collagen substrates were shown to follow a different rule of spreading to that observed on flat glass substrates. Dynamic wetting studies on cylindrical fibre substrates were shown to differ significantly from that observed on flat substrates. Tanner's law was not obeyed for wetting on either glass or collagen fibres. The power law behaviour of the spreading ()(t) t -O.SS±O.06 mucin droplets was characterised by ~ on both glass and collagen fibres. All concentrations of mucus droplets exhibited measurable non-zero contact angles on fibre substrates, regardl~ss 'of the complete wetting nature on a chemically identical flat substrate.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kang, Suk Chae. "Fundamentals of solder interconnect wetting." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/16391.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Wetting"

1

Law, Kock-Yee, and Hong Zhao. Surface Wetting. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25214-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

De Coninck, Joël, and François Dunlop, eds. Wetting Phenomena. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/3-540-52338-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lu, Gui. Dynamic Wetting by Nanofluids. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48765-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

de Gennes, Pierre-Gilles, Françoise Brochard-Wyart, and David Quéré. Capillarity and Wetting Phenomena. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-0-387-21656-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ash, Michael. Emulsifiers and wetting agents. London: Edward Arnold, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hosseini, Majid, and Ioannis Karapanagiotis, eds. Materials with Extreme Wetting Properties. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-59565-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Waqi, Alam, ed. Wettability. Houston, TX: Gulf Pub. Company, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

B, Probst Hubert, and United States. National Aeronautics and Space Administration., eds. Effects of crucible wetting during solidification of immiscible Pb-Zn. [Washington, DC]: National Aeronautics and Space Administration, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

1945-, Mittal K. L., ed. Contact angle, wettability and adhesion. Leiden: VSP, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yakimov, Audrey-Olga. Wetting kinetics and polypropylene-aluminum bond strength. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Wetting"

1

Starov, Victor. "Wetting." In Encyclopedia of Colloid and Interface Science, 1399–422. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-20665-8_45.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gooch, Jan W. "Wetting." In Encyclopedic Dictionary of Polymers, 810. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12808.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Law, Kock-Yee, and Hong Zhao. "Background." In Surface Wetting, 1–6. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25214-8_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Law, Kock-Yee, and Hong Zhao. "Contact Angle Measurements and Surface Characterization Techniques." In Surface Wetting, 7–34. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25214-8_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Law, Kock-Yee, and Hong Zhao. "Wetting on Flat and Smooth Surfaces." In Surface Wetting, 35–54. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25214-8_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Law, Kock-Yee, and Hong Zhao. "Wetting on Rough Surfaces." In Surface Wetting, 55–98. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25214-8_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Law, Kock-Yee, and Hong Zhao. "What Do Contact Angles Measure?" In Surface Wetting, 99–121. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25214-8_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Law, Kock-Yee, and Hong Zhao. "Terminologies and Definitions." In Surface Wetting, 123–33. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25214-8_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Law, Kock-Yee, and Hong Zhao. "Determination of Solid Surface Tension by Contact Angle." In Surface Wetting, 135–48. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25214-8_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Law, Kock-Yee, and Hong Zhao. "Summary and Final Remarks." In Surface Wetting, 149–55. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25214-8_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Wetting"

1

Busek, D., M. Placek, and D. Ruzicka. "Wetting balance test — Comparison of solder alloys wetting." In 2017 40th International Spring Seminar on Electronics Technology (ISSE). IEEE, 2017. http://dx.doi.org/10.1109/isse.2017.8000923.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Smyth, Katherine, Adam Paxon, Hyuk-min Kwon, Tao Deng, and Kripa K. Varanasi. "Dynamic wetting on superhydrophobic surfaces: Droplet impact and wetting hysteresis." In 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, 2010. http://dx.doi.org/10.1109/itherm.2010.5501329.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Moyer, Jerome, and Weiming Zhang. "Solder wetting measurement of back contact paste using a wetting balance." In 2009 34th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2009. http://dx.doi.org/10.1109/pvsc.2009.5411516.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gnecchi, Jose Antonio Gutierrez, Philippe Lobit, Fernando Landeros Paramo, Adriana Tellez Anguiano, and Arturo Mendez Patino. "Automated wetting front detector." In 2011 IEEE Electronics, Robotics and Automotive Mechanics Conference (CERMA 2011). IEEE, 2011. http://dx.doi.org/10.1109/cerma.2011.59.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wang, Tao, Xuegong Hu, Chaohong Guo, Xuelei Nie, and Ningning Xie. "Theoretical Study on the Wetting Length in Triangle Wetting Region of Rectangular Microgrooves." In ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2011. http://dx.doi.org/10.1115/icnmm2011-58096.

Повний текст джерела
Анотація:
The mathematical model is established in this article to describe the relationship between the wetting length of working liquid in the triangular wetting region of rectangular capillary microgrooves and the geometric dimension, tilt angle, type of working liquid and heat flux when heating the back of microgrooves heat sink. The model supposes that the vapour-liquid interface of meniscus is quadratic parabola but not arc. The predictions from the theoretical analysis are successfully compared with the experimental results.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cheng, Rong, Kewei Jiang, and Xinxin Li. "Electro-wetting enhanced bonding strength." In TRANSDUCERS 2011 - 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2011. http://dx.doi.org/10.1109/transducers.2011.5969481.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Allier, C. P., V. Poher, J. G. Coutard, G. Hiernard, and J. M. Dinten. "Thin wetting film lensless imaging." In SPIE BiOS, edited by Robert J. Nordstrom and Gerard L. Coté. SPIE, 2011. http://dx.doi.org/10.1117/12.874876.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chen, Tailian. "Heat transfer to wetting and non-wetting liquid droplets deposited onto a heated microgroove surface." In 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, 2016. http://dx.doi.org/10.1109/itherm.2016.7517653.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dusek, Karel, Petr Vesely, Denis Fros, Martin Kozak, Kristina Sorokina, Zbynek Plachy, David Busek, et al. "A Weakness of Wetting Balance Method during the Diagnostic of Connector Pins with Wetting Issue." In 2022 45th International Spring Seminar on Electronics Technology (ISSE). IEEE, 2022. http://dx.doi.org/10.1109/isse54558.2022.9812772.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yao, Erdong, Jie Wang, Yanpeng Xue, Fujian Zhou, Le Zhang, and Yafei Li. "Evaluation Adaptability of Nano Wetting Fluid for Releasing Tight Sandstone Gas Reservoir Water Locking Effect." In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-95402.

Повний текст джерела
Анотація:
Abstract At present, the most effective means of releasing the “water blocking damage” in the near-well zone is to change the wettability of the rock surface from liquid wetting to gas wetting. In this study, a novel nano wetting fluid was used to change the sandstone surface wettability aqueous phase from wetting phase to non-wetting phase. The adaptability of 0.5 wt% nano wetting fluid at different aging times, pH, salinity type, salinity and temperature was evaluated. The results show that 0.5 wt% nano wetting fluid has better adaptability under different conditions. The aqueous phase of the core surface can be changed from wetting phase to non-wetting phase; after adding nano wetting fluid, the drainage rate increased by 19.09%; at the same time, SEM characterization experiments showed that nano wetting fluid could achieve hydrophobic effect by changing the surface roughness of illite and chlorite.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Wetting"

1

Webb, Edmund Blackburn, III, ), Christopher Jay Bourdon, Anne Mary Grillet, Philip A. Sackinger, Gary Stephen Grest, John Allen Emerson, et al. Elucidating the mysteries of wetting. Office of Scientific and Technical Information (OSTI), November 2005. http://dx.doi.org/10.2172/875609.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rothman, A. Wick wetting experiments for copper vapor lasers. Office of Scientific and Technical Information (OSTI), January 1986. http://dx.doi.org/10.2172/7120617.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Paolinelli, Luciano, and Srdjan Nesic. PR646-173609-Z01 Water Wetting Prediction Tool for Pipeline Integrity. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), July 2021. http://dx.doi.org/10.55274/r0012111.

Повний текст джерела
Анотація:
Current approaches for pipeline integrity management, as related to internal corrosion, largely depend on Internal Corrosion Direct Assessment (ICDA) type approach. An essential part of these assessments is to predict if corrosive water phase is in direct contact with the internal pipe wall, a phenomenon commonly called "water wetting". In general, water wetting prediction models currently used by pipe integrity engineers are lagging behind the current level understanding. The Institute for Corrosion and Multiphase Technology (ICMT) at Ohio University has developed and validated a mechanistic model that combines multiphase flow and wetting physics of oil and water on steel surfaces. This work that is the outcome of many years of focused industrially sponsored research is published in the open literature. However, its implementation into an integrity management tool has not been done yet. This PRCI project is devoted to developing a tool to predict water wetting for product pipelines as well as for crude oil pipelines and flow lines, based on Ohio University's work.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

van Swol, Frank. Predictive modeling of reactive wetting and metal joining. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1104763.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

LOEHMAN, RONALD E. Wetting and Reaction of Monazite (LaPO4) by Aluminum. Office of Scientific and Technical Information (OSTI), June 2001. http://dx.doi.org/10.2172/786624.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yost, F. G., E. J. O`Toole, P. A. Sackinger, and T. P. Swiler. Model determination and validation for reactive wetting processes. Office of Scientific and Technical Information (OSTI), January 1998. http://dx.doi.org/10.2172/564079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wapner, Phillip, Kengqing Jian, Yuming Gao, Gregory Crawford, Robert Hurt, and Wesley Hoffman. Pitch Wetting on Model Basal and Edge-Plane Surfaces. Fort Belvoir, VA: Defense Technical Information Center, June 2004. http://dx.doi.org/10.21236/ada443495.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Porro, I. Hydrologic Behavior of Two Engineered Barriers Following Extreme Wetting. Office of Scientific and Technical Information (OSTI), September 2000. http://dx.doi.org/10.2172/799880.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

G.Q. Tang and N.R. Morrow. WETTING BEHAVIOR OF SELECTED CRUDE OIL/BRINE/ROCK SYSTEMS. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/772382.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Brooks, Carlton, F., Michael J. Brooks, Alan Lyman Graham, David F. Noble, )), Patrick K. Notz, Matthew Morgan Hopkins, et al. Wetting and free surface flow modeling for potting and encapsulation. Office of Scientific and Technical Information (OSTI), June 2007. http://dx.doi.org/10.2172/909911.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії