Добірка наукової літератури з теми "Voltage generator and current generator"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Voltage generator and current generator".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Voltage generator and current generator"
Azis, Hastuti, Pawenary Pawenary, and Meyhart Torsna Bangkit Sitorus. "Simulasi Pemodelan Sistem Eksitasi Statis pada Generator Sinkron terhadap Perubahan Beban." Energi & Kelistrikan 11, no. 2 (July 30, 2019): 46–54. http://dx.doi.org/10.33322/energi.v11i2.483.
Повний текст джерелаZalhaf, Amr, Mazen Abdel-Salam, and Mahmoud Ahmed. "An Active Common-Mode Voltage Canceler for PWM Converters in Wind-Turbine Doubly-Fed Induction Generators." Energies 12, no. 4 (February 21, 2019): 691. http://dx.doi.org/10.3390/en12040691.
Повний текст джерелаVeinović, Slavko, Žarko Janda, Đorđe Stojić, Jasna Dragosavac, Dušan Joksimović, Ilija Klasnić, and Milan Đorđević. "Load angle estimation of synchronous generator." Zbornik radova Elektrotehnicki institut Nikola Tesla 30, no. 30 (2020): 81–91. http://dx.doi.org/10.5937/zeint30-29158.
Повний текст джерелаOktaviani, Wiwin A., Taufik Barlian, and Yosi Apriani. "Studi Awal Karakteristik Tegangan Ouput Generator Magnet Permanen dan Generator DC pada Turbin Kubah Masjid Putar." Electrician 14, no. 2 (May 15, 2020): 56–63. http://dx.doi.org/10.23960/elc.v14n2.2149.
Повний текст джерелаNajma Safienatin Najah, Arief Muliawan, and Febria Anita. "Perancangan Prototipe Turbin Angin Sumbu Horizontal Skala Laboratorium Dengan Inverter." Jurnal Teknik Juara Aktif Global Optimis 1, no. 1 (June 30, 2021): 24–29. http://dx.doi.org/10.53620/jtg.v1i1.7.
Повний текст джерелаEnemor, C. G., D. C. Idoniboyeobu, and S. L. Braide. "Performance Analysis of Synchronous Reluctance Generator." International Journal for Research in Applied Science and Engineering Technology 10, no. 5 (May 31, 2022): 765–74. http://dx.doi.org/10.22214/ijraset.2022.41501.
Повний текст джерелаWu, Xiushan, Yanzhi Wang, Siguang An, Jianqiang Han, and Ling Sun. "A Four Quadrature Signals’ Generator with Precise Phase Adjustment." Journal of Electrical and Computer Engineering 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/2138794.
Повний текст джерелаAmin, Darojatul, Trapsilo Prihandono, and Alex Harijanto. "ANALISIS LOST ENERGY PADA OVERUNITY GENERATOR MAGNET PERMANEN DENGAN PROTOTIPE DINAMO JENIS FLUKS RADIAL." JURNAL PEMBELAJARAN FISIKA 11, no. 1 (April 1, 2022): 28. http://dx.doi.org/10.19184/jpf.v11i1.30638.
Повний текст джерелаKwok, C. Y. "Low-voltage peaking complementary current generator." IEEE Journal of Solid-State Circuits 20, no. 3 (June 1985): 816–18. http://dx.doi.org/10.1109/jssc.1985.1052389.
Повний текст джерелаKozak, Maciej. "Initial Excitation Issues of Synchronous Generator with VSI Inverter in Varying Rotational Speed Operation." Multidisciplinary Aspects of Production Engineering 1, no. 1 (September 1, 2018): 377–83. http://dx.doi.org/10.2478/mape-2018-0048.
Повний текст джерелаДисертації з теми "Voltage generator and current generator"
Mylonas, Georgios. "Programmable voltage reference generator for a SAR-ADC." Thesis, Linköpings universitet, Elektroniksystem, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-98567.
Повний текст джерелаAlla, Ravi Chandar. "Design and Implementation of an analog to digital conversion mechanism for an in-situ monitoring microelectrode SOC." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1227042824.
Повний текст джерелаLaotaveerungrueng, Noppasit. "A High-Voltage, High-Current Multi-Channel Arbitrary Waveform Generator ASIC for Neural Interface and MEMS Applications." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1291675462.
Повний текст джерелаLiu, Jingbo. "Modeling, analysis and design of integrated starter generator system based on field oriented controlled induction machines." Columbus, Ohio : Ohio State University, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1132763176.
Повний текст джерелаBaggu, Murali Mohan. "Advanced control techniques for doubly fed induction generator-based wind turbine converters to improve low voltage ride-through during system imbalances." Diss., Rolla, Mo. : Missouri University of Science and Technology, 2009. http://scholarsmine.mst.edu/thesis/pdf/Baggu_09007dcc806684bd.pdf.
Повний текст джерелаVita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed May 27, 2009) Includes bibliographical references (p. 126-130).
Weissbach, Joel. "Measuring forces on a hydropower generator using strain gages." Thesis, Uppsala universitet, Elektricitetslära, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-256575.
Повний текст джерелаВеселова, Надія Вікторівна. "Становлення і розвиток харківських наукових шкіл у галузі техніки та електрофізика високих напруг (1930–2010 рр.)". Thesis, НТУ "ХПІ", 2015. http://repository.kpi.kharkov.ua/handle/KhPI-Press/17177.
Повний текст джерелаThe thesis for the competition of the academic degree of the candidate of the historical sciences, the speciality 07.00.07 – The history of science and technique. – National Technical University "Kharkiv Polytechnic Institute". – Kharkiv, 2015. The thesis is devoted to the complex research of the establishment and the development of Kharkiv scientific schools in the field of the technique and the electrophysics of the high-voltages in 1930's – 2010's. In this work the Kharkiv scientific schools in this field were identified for the first time. They are: the scientific school of the high-voltage accelerators in the UFTI headed by academician of USSR A.K. Walter; the scientific school of the technique of high-voltages in the KhPI, the founder of which was the acacademician of the Academy of Sciences of USSR V. M. Khrushchev; the scientific school of magnetic-pulse treatment of metals in KhPI which was founded by professor I. V. Belii. A holistic scientific-historical analysis of the process of technical solutions in electrophysics and the creation of high-voltage installations in leading scientific centers of Kharkiv is carried out in this work. The importance and uniqueness of the high-voltage installations is shown here. The importance and the uniqueness of the high-voltage structures, the conditions of their creation usage in home industry and science are shown here.
Веселова, Надія Вікторівна. "Становлення і розвиток харківських наукових шкіл у галузі техніки та електрофізика високих напруг (1930–2010 рр.)". Thesis, НТУ "ХПІ", 2015. http://repository.kpi.kharkov.ua/handle/KhPI-Press/17176.
Повний текст джерелаThe thesis for the competition of the academic degree of the candidate of the historical sciences, the speciality 07.00.07 – The history of science and technique. – National Technical University "Kharkiv Polytechnic Institute". – Kharkiv, 2015. The thesis is devoted to the complex research of the establishment and the development of Kharkiv scientific schools in the field of the technique and the electrophysics of the high-voltages in 1930's – 2010's. In this work the Kharkiv scientific schools in this field were identified for the first time. They are: the scientific school of the high-voltage accelerators in the UFTI headed by academician of USSR A.K. Walter; the scientific school of the technique of high-voltages in the KhPI, the founder of which was the acacademician of the Academy of Sciences of USSR V. M. Khrushchev; the scientific school of magnetic-pulse treatment of metals in KhPI which was founded by professor I. V. Belii. A holistic scientific-historical analysis of the process of technical solutions in electrophysics and the creation of high-voltage installations in leading scientific centers of Kharkiv is carried out in this work. The importance and uniqueness of the high-voltage installations is shown here. The importance and the uniqueness of the high-voltage structures, the conditions of their creation usage in home industry and science are shown here.
Chazottes-Leconte, Aurélien. "Conception et fabrication d'un dispositif de mise en compression par impulsions électro magnétiques (EMP)." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1082.
Повний текст джерелаPenning processes are widely used in industries to apply compressive residual stresses into the most solicited part of mechanical pieces. In that way, the compressive residual stresses limit the priming and the propagation of micro-cracks in the material. This increases significantly the lifespan of the treated mechanical piece under fatigue stresses. These existing peening processes have proved their efficiency and also their limitations and weaknesses. The main recurrent defaults are a shallow depth of treatment, a degradation of the surface condition, a random control of the treatment, a material contamination, etc. These problems have led towards the development of news innovative peening processes which allow better performance avoiding some previous defaults briefly evoked. Among these news processes, the electromagnetic peening process seems especially interesting. This process uses high energy electromagnetic fields to induce Lorentz forces into a metallic piece and thus residual stresses. Actually, there is not much information about this process in the literature and no prototype was ever built. The work of this thesis is dedicated to development and realization of an electromagnetic peening prototype. The first chapter of this thesis adresses the state of the art of major peening processes actually in industrial use. Next, the electromagnetic peening process, or EMP process, is described and the electrical needs are exposed. A second state of the art is made about the technological solutions to respond to the EMP needs. The second chapter is about the conception of the EMP prototype with the electrical structure adopted in the previous chapter. The first step is about the inductor sizing to generate an electromagnetic field sufficient enough for a peening application. Next, the storage system is designed depending on the inductor parameters and finally the closing switch is created considering the electrical parameters used for the EMP process. To validate the previous results, a 3D electromagnetic simulation is done. The prototype assembly is presented in the third chapter and also the first experimental test on the EMP prototype. To begin with, an aluminium alloy with low yield strength is selected to be treated. Two different samples forms are used, a thin one, to realize a similar test to the Almen test and thick one to check the EMP depth of treatment. A 3D multiphysics simulation of these experiments is made and these numeric results are next correlated to the experimental ones. In the fourth chapter, an exploratory study is realized on the effects of the residual stresses on magnetic properties of ferromagnetic material, the mumetal
Katic, Janko. "Highly-Efficient Energy Harvesting Interfaces for Implantable Biosensors." Doctoral thesis, KTH, Integrerade komponenter och kretsar, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-206588.
Повний текст джерелаEnergiskörd har identifierats som en alternativ lösning för att driva inplanterbara biosensorer. Det kan potentiellt möjliggöra utveckling av själv-drivna inplanterbara biosensorer. Denna utveckling innebär att batterier, som sätter många begränsningar, ersätts av miniatyriserade energiskördsenheter. Anpassade gränssnittskretsar är nödvändiga för att korrigera för de skillnader i spänning och effektnivå som produceras av de energialstrande enheterna, och de som krävs av biosensorkretsarna. Denna avhandling undersöker de tillgängliga källorna för energiskörd i den mänskliga kroppen, föreslår olika metoder och tekniker för att utforma effektsnåla gränssnitt och presenterar två CMOS-implementeringar av sådana gränssnitt. Baserat på undersökningen av lämpliga energiskördskällor, fokuserar denna avhandling på glukosbiobränsleceller och termoelektriska energiskördare, som har lämpliga prestanda i termer av effektdensitet och livstid. För att maximera effektiviteten hos effektöverföringen innehåller denna avhandling följande steg. Först görs en detaljerad analys av alla potentiella förluster inom boost-omvandlare. Sedan föreslår denna avhandling en designmetodik som syftar till att maximera den totala effektiviteten och effektförbrukningen. Slutligen presenterar den flera designtekniker för att ytterligare förbättra den totala effektiviteten. Kombinationen av de föreslagna metoderna och teknikerna är varierade genom två högeffektiva lågeffekts energigränssnittskretsar. Den första inplementeringen är ett termoelektriskt energiskördsgränssnitt baserat på en induktor, med dubbla utgångsomvandlare. Mätresultaten visar att omvandlaren uppnår en maximal effektivitet av 86.6% vid 30 μW. Det andra genomförandet kombinerar energin från två källor, en glukosbiobränslecell och en termoskördare, för att åstadkomma en tillförlitlig multi-källas energiskördslösning. Mätresultaten visar att omvandlaren uppnår en maximal effektivitet av 89.5% när den kombinerade ineffekten är 66 μW.
QC 20170508
Mi-SoC
Книги з теми "Voltage generator and current generator"
Tanzawa, Toru. On-chip High-Voltage Generator Design. New York, NY: Springer New York, 2013.
Знайти повний текст джерелаTanzawa, Toru. On-chip high-voltage generator design. New York: Springer, 2013.
Знайти повний текст джерелаTanzawa, Toru. On-chip High-Voltage Generator Design. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21975-2.
Повний текст джерелаTanzawa, Toru. On-chip High-Voltage Generator Design. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-3849-6.
Повний текст джерелаZuev, Sergey, Ruslan Maleev, and Aleksandr Chernov. Energy efficiency of electrical equipment systems of autonomous objects. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1740252.
Повний текст джерелаShokrollah-Timorabadi, Hamid. Voltage source inverter for voltage and frequency control of a stand-alone self-excited induction generator. Ottawa: National Library of Canada, 1998.
Знайти повний текст джерелаInstitute Of Electrical and Electronics Engineers. IEEE guide for synchronous generator modeling practices in stability analyses. New York, NY, USA: Institute of Electrical and Electronics Engineers, 1991.
Знайти повний текст джерелаDodd, C. V. Improved eddy-current inspection for steam generator tubing progress report for period January 1985 to December 1987. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1990.
Знайти повний текст джерелаDodd, C. V. Improved eddy-current inspection for steam generator tubing progress report for period January 1985 to December 1987. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1990.
Знайти повний текст джерелаIEEE Power Engineering Society. Switchgear Committee. and IEEE Standards Board, eds. IEEE standard for AC high-voltage generator circuit breakers rated on a symmetrical current. New York, N.Y: The Institute of Electrical and Electronics Engineers, 1997.
Знайти повний текст джерелаЧастини книг з теми "Voltage generator and current generator"
Popa, Cosmin. "Superior-Order Curvature-Corrected Voltage Reference Using a Current Generator." In Artificial Neural Networks – ICANN 2010, 12–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15819-3_2.
Повний текст джерелаAmit Bhattacharyya. "Differential Voltage Current Conveyor-Based One-Shot Pulse Generator Circuit Implementation." In Proceeding of International Conference on Intelligent Communication, Control and Devices, 1–7. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1708-7_1.
Повний текст джерелаCoeur, F., Y. Arnal, J. Pelletier, O. Lesaint, O. Maulat, and M. Roche. "Monoatomic Ion Rich DECR Plasmas for Ion Implantation by Plasma Immersion Using a New High Voltage — High Current Pulse Generator." In Advanced Technologies Based on Wave and Beam Generated Plasmas, 493–94. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-0633-9_32.
Повний текст джерелаAbu-Siada, Ahmed, Mohammad A. S. Masoum, Yasser Alharbi, Farhad Shahnia, and A. M. Shiddiq Yunus. "Superconducting Magnetic Energy Storage, a Promising FACTS Device for Wind Energy Conversion Systems." In Recent Advances in Renewable Energy, 49–86. UAE: Bentham Science Publishers Ltd., 2017. http://dx.doi.org/10.2174/9781681085425117020004.
Повний текст джерелаSchenk, Michael. "The Greinacher high-voltage generator." In Studies with a Liquid Argon Time Projection Chamber, 67–84. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09430-0_4.
Повний текст джерелаRen, Gu, and Xiao Xiangning. "High-Power Controllable Voltage Quality Disturbance Generator." In Lecture Notes in Electrical Engineering, 587–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21697-8_74.
Повний текст джерелаTanzawa, Toru. "System Overview and Key Design Considerations." In On-chip High-Voltage Generator Design, 1–14. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3849-6_1.
Повний текст джерелаTanzawa, Toru. "Charge Pump Circuit Theory." In On-chip High-Voltage Generator Design, 15–95. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3849-6_2.
Повний текст джерелаTanzawa, Toru. "Charge Pump State of the Art." In On-chip High-Voltage Generator Design, 97–114. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3849-6_3.
Повний текст джерелаTanzawa, Toru. "Pump Control Circuits." In On-chip High-Voltage Generator Design, 115–54. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3849-6_4.
Повний текст джерелаТези доповідей конференцій з теми "Voltage generator and current generator"
Grawer, G., F. Cordobes Dominguez, T. Fowler, and N. Voumard. "A 400A programmable linear current pulse generator." In 2016 IEEE International Power Modulator and High Voltage Conference (IPMHVC). IEEE, 2016. http://dx.doi.org/10.1109/ipmhvc.2016.8012874.
Повний текст джерелаRehman, M. Z., J. Hallstrom, and J. Havunen. "Current Step Generation and Measurement with Nanosecond Rise Time using Coaxial Cable Generator." In 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE). IEEE, 2018. http://dx.doi.org/10.1109/ichve.2018.8642188.
Повний текст джерелаHaryono, T., K. T. Sirait, Tumiran, and Hamsah Berahim. "The Design of A High Amplitude Impulse Current Generator." In 2008 International Conference on High Voltage Engineering and Application (ICHVE). IEEE, 2008. http://dx.doi.org/10.1109/ichve.2008.4773942.
Повний текст джерелаLundin, Staffan, Ma˚rten Grabbe, Katarina Yuen, and Mats Leijon. "A Design Study of Marine Current Turbine-Generator Combinations." In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79350.
Повний текст джерелаEl Kholy, Muhammad M. "Low noise low voltage sub bandgap reference voltage with PTAT current generator." In 2009 4th International Design and Test Workshop (IDT 2009). IEEE, 2009. http://dx.doi.org/10.1109/idt.2009.5404101.
Повний текст джерелаPatil, Apeksha N., Sachin Angadi, and A. B. Raju. "Voltage control of PWM-VSI Assisted Standalone Self Excited Induction Generator." In 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT). IEEE, 2018. http://dx.doi.org/10.1109/icctct.2018.8550943.
Повний текст джерелаPinto, Marcus Vinicius Viegas, Regis Pinheiro Landim, and Rodrigo Pereira David. "Evaluation of a voltage ramp generator for low current calibration." In 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2021. http://dx.doi.org/10.1109/i2mtc50364.2021.9460045.
Повний текст джерелаNazarova, Natalia, and Dmitriy Vinnichenko. "Electrotechnical control and current protection system of the high-voltage pulse-current generator." In 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON). IEEE, 2017. http://dx.doi.org/10.1109/ukrcon.2017.8100307.
Повний текст джерелаGang, Liu, Zeng Han, Lee Li, Lin Fu-chang, Hu Guan, Liu Ning, Cai Li, and Zhou Zheng-yang. "Research on ground potential of Marx generator in large current switch system." In 2010 IEEE International Power Modulator and High Voltage Conference (IPMHVC). IEEE, 2010. http://dx.doi.org/10.1109/ipmhvc.2010.5958421.
Повний текст джерелаShi, Haozheng, Jian Qiu, Weigang Dong, and Kefu Liu. "Design of inductive pulsed current generator based on solid-state Marx adder." In 2016 IEEE International Power Modulator and High Voltage Conference (IPMHVC). IEEE, 2016. http://dx.doi.org/10.1109/ipmhvc.2016.8012830.
Повний текст джерелаЗвіти організацій з теми "Voltage generator and current generator"
Burkhart, S. C. Voltage controlled MESFET pulse shape generator. Office of Scientific and Technical Information (OSTI), October 1994. http://dx.doi.org/10.2172/61208.
Повний текст джерелаO'Sullivan, G. A. Ocean Current Power Generator. Final Report. Office of Scientific and Technical Information (OSTI), July 2002. http://dx.doi.org/10.2172/824331.
Повний текст джерелаZhao, Y. The waveform analysis for Zarem type high voltage pulse generator. Office of Scientific and Technical Information (OSTI), October 1995. http://dx.doi.org/10.2172/188614.
Повний текст джерелаRader, Mark S., Carol Sullivan, and Tim D. Andreadis. Experimental Observation of RF Radiation Generated by an Explosively Driven Voltage Generator. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada438014.
Повний текст джерелаChang, F. C., S. Bakhtiari, and D. Kupperman. Modeling of eddy current NDE probe for steam generator tubes. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/808427.
Повний текст джерелаBakhtiari, S., and D. S. Kupperman. Modeling of eddy current probe response for steam generator tubes. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/414381.
Повний текст джерелаLipo, Thomas A., and Velimir Nedic. Induced Voltage Self-Excitation for a Switched-Reluctance Generator. Experimental Verification of Concept. Fort Belvoir, VA: Defense Technical Information Center, March 2000. http://dx.doi.org/10.21236/ada381428.
Повний текст джерелаZhao, Yongxiang, and Hai-peng Wang. A high voltage pulse generator for the mod-anode of the cluster klystron. Office of Scientific and Technical Information (OSTI), October 1995. http://dx.doi.org/10.2172/183209.
Повний текст джерелаKurtz, R. J., P. G. Heasler, and C. M. Anderson. Performance demonstration tests for eddy current inspection of steam generator tubing. Office of Scientific and Technical Information (OSTI), May 1996. http://dx.doi.org/10.2172/257304.
Повний текст джерелаBoscolo, I., and J. Gong. Powerful electrostatic FEL: Regime of operation, recovery of the spent electron beam and high voltage generator. Office of Scientific and Technical Information (OSTI), February 1995. http://dx.doi.org/10.2172/88784.
Повний текст джерела