Добірка наукової літератури з теми "Volcanic geochemisty"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Volcanic geochemisty".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Volcanic geochemisty"

1

Price, Jonathan G. "SEG Presidential Address: I Never Met a Rhyolite I Didn’t Like – Some of the Geology in Economic Geology." SEG Discovery, no. 57 (April 1, 2004): 1–13. http://dx.doi.org/10.5382/segnews.2004-57.fea.

Повний текст джерела
Анотація:
ABSTRACT Rhyolites and their deep-seated chemical equivalents, granites, are some of the most interesting rocks. They provide good examples of why it is important to look carefully at fresh rocks in terms of fıeld relationships, mineralogy, petrography, petrology, geochemistry, and alteration processes. Because of their evolved geochemisty, they commonly are important in terms of ore-forming processes. They are almost certainly the source of metal in many beryllium and lithium deposits and the source of heat for many other hydrothermal systems. From other perspectives, rhyolitic volcanic eruptions have the capacity of destroying civilizations, and their geochemistry (e.g., high contents of radioactive elements) is relevant to public policy decision-making.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ganelin, A. V., E. V. Vatrushkina, and M. V. Luchitskaya. "Geochemistry and geochronology of cretaceous volcanism of Chauna region, Central Chukotka." Геохимия 64, no. 1 (January 15, 2019): 20–42. http://dx.doi.org/10.31857/s0016-752564120-42.

Повний текст джерела
Анотація:
New geochronological and geochemical data on the age and composition of Cretaceous volcanism of Palyavaam River basin (Central Chukotka, Chauna region) are presented. First complex is composed of rhyolites, ignimbrites and felsic tuffs of Chauna Group of Okhotsk-Chukotka volcanic belt (OCVB). Second complex is represented by volcanic rocks of latite-shoshonite series of Early Cretaceous age, distinguished as Etchikun’ Formation. Its origin is still debatable. Some researchers refer deposits of Etchikun’ Formation to magmatic stage before OCVB activity. Other authors include in Chauna Group composition. Obtained data indicate heterogeneity of Etchikun’ Fomation volcanics and allow to divide them in two groups. Andesites of the first group (Etchikun’ Formation sensu stricto) have Early Cretaceous age and belong to magmatic stage before OCVB activity. Andesites of the second group correlate in age and composition with OCVB volcanic rocks. They occur at the base of Chauna Group and indicate homodromous character of volcanism evolution in the Central-Chukotka of Okhotsk-Chukotka volcanic belt.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mather, Ben R., R. Dietmar Müller, Maria Seton, Saskia Ruttor, Oliver Nebel, and Nick Mortimer. "Intraplate volcanism triggered by bursts in slab flux." Science Advances 6, no. 51 (December 2020): eabd0953. http://dx.doi.org/10.1126/sciadv.abd0953.

Повний текст джерела
Анотація:
Long-lived, widespread intraplate volcanism without age progression is one of the most controversial features of plate tectonics. Previously proposed edge-driven convection, asthenospheric shear, and lithospheric detachment fail to explain the ~5000-km-wide intraplate volcanic province from eastern Australia to Zealandia. We model the subducted slab volume over 100 million years and find that slab flux drives volcanic eruption frequency, indicating stimulation of an enriched mantle transition zone reservoir. Volcanic isotope geochemistry allows us to distinguish a high-μ (HIMU) reservoir [>1 billion years (Ga) old] in the slab-poor south, from a northern EM1/EM2 reservoir, reflecting a more recent voluminous influx of oceanic lithosphere into the mantle transition zone. We provide a unified theory linking plate boundary and slab volume reconstructions to upper mantle reservoirs and intraplate volcano geochemistry.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Koloskov, A. V., M. Yu Puzankov, V. V. Ananiev, and D. V. Kovalenko. "BOLSHOI PAYALPAN VOLCANO (SREDINNY RANGE, KAMCHATKA). PROBLEMATIC ASPECTS OF CONVERGENCE OF ISLAND-ARC AND INTRAPLATE PETROLOGICAL AND GEOCHEMICAL SIGNATURES IN THE MAGMATIC SYSTEM." Tikhookeanskaya Geologiya 41, no. 2 (2022): 3–24. http://dx.doi.org/10.30911/0207-4028-2022-41-2-3-24.

Повний текст джерела
Анотація:
The paper presents the data on age, mineralogy, geochemistry, and isotope composition of rocks from the Bolshoi Payalpan Volcano (Sredinny Range, Kamchatka). We compared these data with those on the Nosichan and Belogolovsky volcanoes, located within the Belogolovsky volcanic center. The basalts of the neck and the upper lava complex of Bolshoi Payalpan are compositionally similar to the intraplate-type trachybasalts of the Belogolovsky Volcano, and the basaltic andesites of the lower lava and the cone complex are similar to the island arc rocks of the Nosichan Volcano. Analysis of the data obtained evidences that spatial and temporal manifestations of intraplate and island-arc volcanism at the Bolshoi Payalpan Volcano are not accidental, but may be a consequence of a change in the degree and depth of melting of the same deep source with the involvement of a mantle diapir. The Belogolovsky volcanic center formed in a setting of the Late Miocene-Early Pliocene rifting. Its evolution, right up to its extinction, proceeded in the same geodynamic setting with an increase in depth of the mantle source and a decrease in the degree of its melting. Rock compositions of the Lower-Middle Pliocene Nosichan Volcano remain of the island-arc type under conditions of rifting, since they are associated with the mantle reservoir located at a shallower depth, which has experienced a higher degree of melting. There is good reason for considering large volcanic centers as spontaneously-developing geological entities. As the endogenous activity dies down, the degree of melting decreases and the depth of melting increases with the replacement of island-arc volcanism by intraplate volcanism. The volcanic center becomes extinct.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zakharikhina, L. V., and Yu S. Litvinenko. "Volcanism and geochemistry of soil and vegetation cover of Kamchatka. Communication 2. Specificity of forming the elemental composition of volcanic soil in cold and humid conditions." Вулканология и сейсмология, no. 3 (May 14, 2019): 25–33. http://dx.doi.org/10.31857/s0203-03062019325-33.

Повний текст джерела
Анотація:
Volcanic soils of Kamchatka have the low contents of most the chemical elements in relation to their overall prevalence in the soils of continents and volcanic soils of Europe. Relatively increased gross contents of elements typical for volcanic rocks of medium and basic composition: Na, Ca, Mg, Cd, Mn, Co, Cu, and steadily low contents of elements characteristic of acid volcanics: La, Ce, Pr, Nd, Nb, Hf, Tl, Rb and Th, is most characteristic of the soils of different areas of the peninsula. The existing in the past and currently observed different conditions of volcanism in the previously allocated soil areas of Kamchatka determine the diversity of the chemical composition of the soils in these territories.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zakharikhina, L. V., and Yu S. Litvinenko. "Volcanism and geochemistry of soil and vegetation cover of Kamchatka. Communication 2. Specificity of forming the elemental composition of volcanic soil in cold and humid conditions." Вулканология и сейсмология, no. 3 (May 14, 2019): 25–33. http://dx.doi.org/10.31857/s0205-96142019325-33.

Повний текст джерела
Анотація:
Volcanic soils of Kamchatka have the low contents of most the chemical elements in relation to their overall prevalence in the soils of continents and volcanic soils of Europe. Relatively increased gross contents of elements typical for volcanic rocks of medium and basic composition: Na, Ca, Mg, Cd, Mn, Co, Cu, and steadily low contents of elements characteristic of acid volcanics: La, Ce, Pr, Nd, Nb, Hf, Tl, Rb and Th, is most characteristic of the soils of different areas of the peninsula. The existing in the past and currently observed different conditions of volcanism in the previously allocated soil areas of Kamchatka determine the diversity of the chemical composition of the soils in these territories.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ko, Kyoungtae, Sungwon Kim, and Yongsik Gihm. "U-Pb Age Dating and Geochemistry of Soft-Sediment Deformation Structure-Bearing Late Cretaceous Volcano-Sedimentary Basins in the SW Korean Peninsula and Their Tectonic Implications." Minerals 11, no. 5 (May 14, 2021): 520. http://dx.doi.org/10.3390/min11050520.

Повний текст джерела
Анотація:
Cretaceous volcano-sedimentary basins and successions in the Korean Peninsula are located along NE-SW- and NNE-SSW-trending sinistral strike–slip fault systems. Soft-sediment deformation structures (SSDS) of lacustrine sedimentary strata occur in the Wido, Buan, and Haenam areas of the southwestern Korean Peninsula. In this study, systematic geological, geochronological, and geochemical investigations of the volcanic-sedimentary successions were conducted to constrain the origin and timing of SSDS-bearing lacustrine strata. The SSDS-bearing strata is conformably underlain and overlain by volcanic rocks, and it contains much volcaniclastic sediment and is interbedded with tuffs. The studied SSDSs were interpreted to have formed by ground shaking during syndepositional earthquakes. U-Pb zircon ages of volcanic and volcaniclastic rocks within the studied volcano-sedimentary successions were ca. 87–84 Ma, indicating that active volcanism was concurrent with lacustrine sedimentation. Geochemical characteristics indicate that these mostly rhyolitic rocks are similar to subduction-related calc-alkaline volcanic rocks from an active continental margin. This suggests that the SSDSs in the study area were formed by earthquakes related to proximal volcanic activity due to the oblique subduction of the Paleo-Pacific Plate during the Late Cretaceous.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Amigo, Alvaro. "Volcano monitoring and hazard assessments in Chile." Volcanica 4, S1 (November 1, 2021): 1–20. http://dx.doi.org/10.30909/vol.04.s1.0120.

Повний текст джерела
Анотація:
Volcanism in Chile occurs in a variety of tectonic settings but mostly in the context of oceanic-continental plate collision, including 92 potentially active volcanoes. There have been more than 30 documented eruptions in the last few centuries. The Servicio Nacional de Geología y Minería (SERNAGEOMIN) is a statutory agency of the Government of Chile responsible for volcano monitoring and hazard assessments across the country. After the impacts derived from volcanic activity at the end of the 20th century, SERNAGEOMIN created the Volcano Hazards Program and the Observatorio Volcanológico de Los Andes del Sur (OVDAS). Despite this effort, most volcanoes in Chile remained unmonitored. In 2008, the aftermath of the eruption of Chaitén led to a nationwide program in order to improve eruption forecasting, development of early warning capabilities and our state of readiness for volcanic impacts through hazard assessments. In the last decade responses to volcanic crises have been indubitably successful providing technical advice before and during volcanic eruptions. El volcanismo en Chile ocurre en una amplia variedad de regímenes tectónicos, aunque principalmente en el contexto de la colisión de placas. Alrededor de 92 volcanes son considerados potencialmente activos y más de 30 presentan actividad histórica documentada en los últimos siglos. El Servicio Nacional de Geología y Minería (SERNAGEOMIN) es la agencia gubernamental responsable de la evaluación de peligros y monitoreo de la actividad volcánica en el país. Como consecuencia de los impactos derivados de las erupciones volcánicas ocurridas hacia finales del siglo pasado, SERNAGEOMIN creó el Programa de Riesgo Volcánico y el Observatorio Volcanológico de los Andes del Sur (OVDAS). No obstante, a pesar de este esfuerzo la mayoría de los volcanes en Chile se mantenían sin monitoreo. Luego de los impactos derivados de la erupción del volcán Chaitén en 2008, un nuevo programa nacional fue creado con el fin de fortalecer la vigilancia y la evaluación de los peligros volcánicos en el país. En la última década, la respuesta a crisis volcánicas ha sido exitosa, proporcionando apoyo técnico en forma previa y durante erupciones.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ardian, D. N., H. Darmawan, Wahyudi, B. W. Mutaqin, Suratman, N. Haerani, and Wikanti. "Grain size, mineralogical, and geochemistry of the 1996-2018 Volcanic Products of Anak Krakatau Volcano, Indonesia." IOP Conference Series: Earth and Environmental Science 1071, no. 1 (August 1, 2022): 012017. http://dx.doi.org/10.1088/1755-1315/1071/1/012017.

Повний текст джерела
Анотація:
Abstract Anak Krakatau Volcano is the only active volcano on Krakatau Volcanic Complex. It is located in the Sunda Strait as part of the Quaternary volcanic arc as a result of the Indo-Australian plate subduction under the Eurasian plate. The volcanic activity of the Anak Krakatau volcano since 1927 is considered to be very active with a combination of explosive and effusive eruptions. Lava flow tends to be concentrated in the southwestern part, except for the 1996 lava flow (north) and 1993 lava flow (northeast). In 2018 there was an eruption accompanied by flank collapse on the southwestern side, caused by the accumulation of the instability volcanic body due to volcanic and tectonic activity. The volcanic activity will be reflected in the resulting deposits. This study was conducted to determine the characteristics of the deposits, especially on the northern part for post-1996. The analysis carried out included the stratigraphic columns, granulometric, petrography, and geochemistry analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ibrahim, Khalil M., Julia Shaw, Joel Baker, Hani Khoury, Ibrahim Rabba, and Khalid Tarawneh. "Pliocene-Pleistocene volcanism in northwestern Arabian plate (Jordan): I. Geology and geochemistry of the Asfar Volcanic Group." Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen 242, no. 2-3 (December 18, 2006): 145–70. http://dx.doi.org/10.1127/njgpa/242/2006/145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Volcanic geochemisty"

1

Maund, J. G. "The volcanic geology, petrology and geochemistry of Caldeira volcano, Graciosa, Azores, and its bearing on contemporaneous felsic-mafic oceanic island volcanism." Thesis, University of Reading, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370121.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Miskovic, Aleksandar. "The connection between volcanism and plutonism in the Sifton Range volcanic complex, Northern Canadian Cordillera /." Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=81363.

Повний текст джерела
Анотація:
The early Tertiary marked a period of intense magmatic activity in the Canadian Cordillera as a consequence of tectonic restructuring within the Kula-North American plate system from orthogonal to oblique convergence. Resultant calc-alkaline volcanism formed a discontinuous belt (Challis Arc) along the eastern margin of the Coast Plutonic Complex (CPC) from south-eastern Alaska through Yukon into west-central British Columbia and northern Washington State. The Sifton Range volcanic complex (SRVC) is the Yukon's largest Paleogene erosional remnant of volcanic rocks (240 km2), and represents the only coeval volcanic-plutonic suite within the Sloko-Skukum Group of southern Yukon Territory and northern British Columbia. It comprises a 900-m thick, shallow-dipping, volcanic succession dominated by intermediate to evolved lavas and abundant felsic pyroclastics deposited in a north-westerly trending half-graben. Three volcano-stratigraphic units are documented: (1) Lower Interbedded Unit, (2) Middle lavas, and (3) Upper Interbedded Unit. Locally, the volcanic sequence is intruded by biotite, hornblende, two-feldspar granites of the CPC's Nisling plutonic suite dated at 57.5 Ma. Felsite sills radiate from the main intrusive body, and together with numerous basaltic to dacitic dykes traverse the entire volcanic package. (Abstract shortened by UMI.)
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ilanko, Tehnuka. "Geochemistry of gas emissions from Erebus volcano, Antarctica : an adventure in time, space, and volcanic degassing." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709228.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ukstins, Peate Ingrid Anne. "Volcanostratigraphy, geochronology and geochemistry of silicic volcanism in the Afro-Arabian flood volcanic province (Yemen and Ethiopia)." Thesis, Royal Holloway, University of London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.411244.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ritchie, Alistair B. H. "Volcanic geology and geochemistry of Waiotapu Ignimbrite, Taupo Volcanic Zone, New Zealand." Thesis, University of Canterbury. Geological Sciences, 1996. http://hdl.handle.net/10092/6588.

Повний текст джерела
Анотація:
Waiotapu Ignimbrite (0.710 ± 0.06 Ma) is a predominantly densely welded, purple-grey coloured, pumice rich lenticulite, which is exposed on both eastern and western flanks of Taupo Volcanic Zone. The unit is uniform in terms of lithology and mineralogy over its entire extent and has been deposited as a single flow unit. The unit contains abundant pumice clasts which are often highly attenuated (aspect ratios of c.1 :30) and are evenly distributed throughout the deposit. Lithic fragments are rare, never exceeding 1% of total rock volume at an outcrop and no proximal facies, such as lithic lag breccias, have been identified. The deposit is densely welded to the base and only in more distal exposure does the ignimbrite become partially welded at the top of the deposit. Post-depositional devitrification is pervasive throughout the deposit, often destroying original vitroclastic texture in the matrix. Vapour phase alteration is extensive in welded and partially welded facies of the deposit. Pumices within Waiotapu Ignimbrite appear to have been derived from two distinct magma batches, with differing Rb concentrations, that originated along different fractionation trends. Type-A pumices have significantly lower Rb than the subordinate type-B pumices. The presence of the pumices may represent the simultaneous evisceration of two spatially discrete magma chambers or the type-B chamber may have been intruded into type-A body, the magmas subsequently mingling prior to, or during, the eruption. The source of Waiotapu Ignimbrite is poorly constrained, largely owing to the lack of meaningful maximum lithic data, and poor exposure of the unit. The distribution of the ignimbrite suggests that it was erupted from within Kapenga volcanic centre. If so the most proximal exposures of Waiotapu Ignimbrite are approximately 10km from the vent. Intensive and voluminous silicic volcanism, beginning with the eruption of the 0.33 Ma Whakamaru Group Ignimbrite eruptions, and extensive faulting within Kapenga volcanic centre will have obscured any intra-caldera Waiotapu Ignimbrite. The mechanism of eruption suggests that the source may not have been a caldera in the strictest sense, but instead a series of near linear fissures aligned with the trend of regional faulting. Waiotapu Ignimbrite was generated in one sustained eruption and produced an energetic and high temperature pyroclastic flow. The lack of any recognised preceding plinian deposit, coupled with the energetic nature and paucity of lithics suggests eruption by an unusual mechanism. The eruption most likely resulted from the large scale collapse of a caldera block into the underlying chamber resulting in high discharge rates, which were no conducive to the development of a convecting column, and minimal vent erosion, resulting in negligible entrainment of lithics. The density of welding and recrystallisation textures suggest that the flow retained heat to considerable distances which allowed the ignimbrite to weld densely to the base. The deposit was most likely progressively aggraded from the base, with material being supplied from an overriding particulate flow.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

James, Doreen Elizabeth. "The geochemistry of feldspar-free volcanic rocks." Thesis, Open University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295080.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nyland, Roseanne E. "Evidence for early-phase explosive basaltic volcanism at Mt. Morning from glass-rich sediments in the ANDRILL AND-2A core and possible response to glacial cyclicity." Bowling Green State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1308530267.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rice-Birchall, B. "Petrology and geochemistry of basic volcanics." Thesis, Keele University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314570.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Maussen, Katharine. "Carbon dioxide transport through Taal volcano’s hydrothermal system and Main Crater Lake (Philippines)." Doctoral thesis, Universite Libre de Bruxelles, 2018. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/271649.

Повний текст джерела
Анотація:
The presence of a hydrothermal system at Taal volcano is evident from the presence of a craterlake (Main Crater Lake, MCL), a caldera lake (Lake Taal) and several hot springs on the flanksof Taal volcano island and in the crater. Taal MCL, covering an area of 1.2 km², is acidic (pH= 3), warm (T = 30-33 °C) and its composition is dominated by Cl, Na and SO4. This thesisaims at understanding the geochemistry of Taal volcano’s hydrothermal system and the wayCO2 is transported through the hydrothermal system and MCL towards the atmosphere.The long-term geochemical evolution of MCL indicates that the hydrothermal system is madeof two reservoirs, one being volcanic and one geothermal in origin. The geothermal componentin Taal MCL has stayed rather constant since 1991, while the volcanic component hasdecreased.The low pH makes Taal volcano the perfect natural laboratory to study the behaviour of CO2,because there is no dissociation of CO2. A combined approach of total CO2 flux measurementsvia accumulation chamber and gaseous CO2 flux measurements via echo sounder shows thatmore than 90% of the total CO2 output of Taal volcano is due to the influx of dissolved CO2,migrating from the hydrothermal system to MCL via thermal springs under the lake surface.After verification of both horizontal and vertical homogeneity of dissolved CO2 concentrations,a continuous monitoring station was installed in 2013, measuring dissolved CO2 using aninfrared gas analyser protected by an ePTFE membrane, as well as several meteorological andenvironmental parameters. Several environmental and lacustrine processes influence CO2transport in MCL, including stratification, solar heating and rainfall.Taal volcano regularly goes through periods of unrest, characterised by seismic swarms,ground deformation and increased carbon dioxide flux. In 1991-1994, this was accompaniedby geochemical changes in MCL, including pH decrease and F, Si and Fe concentrationincrease. These changes can be attributed to an intrusion of magma to shallow levels less thanone kilometre deep. More recent unrests do not show these geochemical changes and are likelycaused by pressure changes in the hydrothermal system. The permanent monitoring stationrecorded hourly data on the 2015 unrest and showed that abnormally high CO2 concentrationswere recorded before the start of seismic or deformation activity, which makes continuous CO2monitoring a very valuable addition to current monitoring activities at Taal volcano.
La présence d’un système hydrothermal au volcan Taal se manifeste par la présence d’un lac de cratère (Main Crater Lake, MLC) ainsi qu’un lac de caldera (Lake Taal) et de multiples sources d’eau chaudes sur les flancs et dans le cratère. Le MCL, avec une surface de 1.2 km², est acide (pH = 3), chaud (T = 30-33 °C) et composé principalement de Cl, Na et SO4. Le but de cette thèse est de comprendre la géochimie du système hydrothermal du Taal et la manière dont le CO2 est transporté à travers de celui-ci ainsi qu’à travers le MCL vers l’atmosphère. L’évolution géochimique à long terme indique que le système hydrothermal est composé de deux réservoirs, un d’origine volcanique et un autre d’origine géothermale. Le composant géothermal est resté plutôt constant depuis 1991, tandis que le composant volcanique a diminué. Le pH plutôt bas fait que le volcan Taal est le laboratoire naturel parfait pour étudier le comportement du CO2, parce qu’il n’y a pas de dissociation de CO2. Une approche combinée du flux de CO2 total via chambre d’accumulation, et flux de CO2 gazeux via echo sondeur montre que plus que 90% du flux de CO2 total est dû au CO2 dissout, qui migre depuis le système hydrothermal au MCL via des sources thermales sous la surface du lac. Après vérification de l’homogénéité horizontale et verticale du CO2 dissout, une station de monitoring en continu a été installée en 2013. Cette station mesure le CO2 dissout à l’aide d’un analyseur de gaz infrarouge protégé par une membrane en ePTFE, ainsi que de multiples paramètres météorologiques et environnementaux. Le transport de CO2 dans le MCL est influencé par plusieurs processus environnementaux et lacustre, comprenant la stratification, l’échauffement solaire et la pluie. Le volcan Taal connait régulièrement des périodes de crises caractérisées par une activité sismique, par une déformation du sol et par un flux élevé du CO2. En 1991-1994, ceux-ci ont été accompagnés par des changements géochimiques du MCL, comprenant une diminution du pH et une augmentation de la concentration de F, Si et Fe. Ces changements peuvent être attribués à une intrusion superficielle de magma à moins d’un kilomètre de profondeur. Les crises plus récentes ne montrent pas ces changements en géochimie et sont probablement causés par des changements de pression dans le système hydrothermal. La station de monitoring en continu a enregistré des données toutes les heures pendant la crise en 2015 et a montré que des concentrations particulièrement élevées en CO2 dissout ont été enregistrées avant le début de l’activité sismique et de déformation. Ceci a montré que le monitoring en continu du CO2 est une addition très précieuse aux activités de monitoring du volcan Taal.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dempsey, Scott Robert. "Geochemistry of volcanic rocks from the Sunda Arc." Thesis, Durham University, 2013. http://etheses.dur.ac.uk/6948/.

Повний текст джерела
Анотація:
Geochemical analyses of igneous rocks can provide valuable information about processes, element fluxes, and rock lithologies not evident at the surface. This is particularly important in subduction zone settings where complex interactions between the subducting plate, mantle wedge and arc crust cannot yet be measured by alternative methods. The Sunda arc, in SE Asia, provides an ideal opportunity to study the effects of subduction in a complex tectonic setting where the basement is poorly exposed and understood. However, in order to do so, magma compositions modified during differentiation in the arc crust must be effectively distinguished from those modified at the source. This study includes a detailed major- and trace element and isotopic (Sr-Nd-Hf-Pb) examination of volcanoes from west Java (Papandayan, Patuha and Galunggung), Central Java (Sumbing), east Java (Kelut) and Bali (Agung), the result of which provides greater insights into petrogenesis both across and along the arc. Contamination in the arc crust is more extensive than previously recognised, particularly in west and central Java where few volcanoes can be used in order to identify subduction and source contributions. In west Java, volcanoes such as Papandayan and Patuha show significant enrichments in isotope ratios above mantle values (e.g. 87Sr/86Sr ~ 0.706, 143Nd/144Nd ~ 0.5125, 208Pb/204Pb ~ 18.91 and 176Hf/177Hf ~ 0.2827) which indicates a terrigneous crustal contaminant. At Sumbing volcano, most magma compositions are similar to those at Merapi and Merbabu, and show strong evidence for the assimilation of carbonate-rich lithologies with some magmas becoming enriched in CaO, Sr and 87Sr/86Sr. Differentiation in volcanoes from east Java and the western part of the Lesser Sunda Islands (Bali, Lombok and Sumbawa) is dominantly controlled by fractional crystallisation, which provides better controls on source compositions. At Kelut, one group of samples show the most ‘depleted’ magma compositions yet discovered on Java, which contain MORB-like values for 143Nd/144Nd and 176Hf/177Hf (0.5130 and 0.2831 respectively). These samples represent the depleted (asthenospheric) mantle and are situated towards the front of the arc in east Java. It is likely that the progressive enrichment further back on the arc (i.e. Leucititic compositions at Ringgit-Besar) include more of an enriched (lithospheric) mantle (SCLM) component derived from the NW margin of Australia during the breakup of Gondwana.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Volcanic geochemisty"

1

Bailey, Roy A. Eruptive history and chemical evolution of the precaldera and postcaldera basalt-dacite sequences, Long Valley, California: Implications for magma sources, current seismic unrest, and future volcanism. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bailey, Roy A. Eruptive history and chemical evolution of the precaldera and postcaldera basalt-dacite sequences, Long Valley, California: Implications for magma sources, current seismic unrest, and future volcanism. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Riehle, J. R. Petrography, chemistry, and geologic history of Yantarni Volcano, Aleutian volcanic arc, Alaska. Washington: U.S. G.P.O., 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Riehle, J. R. Petrography, chemistry, and geologic history of Yantarni Volcano, Aleutian volcanic arc, Alaska. Washington, DC: U.S. Geological Survey, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Graham, David W. Helium and lead isotope geochemistry of oceanic volcanic rocks from the East Pacific and South Atlantic. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nicholson, Suzanne W. Geochemistry, petrography, and volcanology of rhyolites of the Portage Lake volcanics, Keweenaw Peninsula, Michigan. [Washington: U.S. G.P.O., 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Syme, Eric C. Geochemistry of metavolcanic rocks in the Lynn Lake Belt. Manitoba: Energy and Mines Geological Services, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

W. Dan Hausel. Geology and geochemistry of the Leucite Hills volcanic field. [Laramie, Wyo.]: Wyoming State Geological Survey, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Keith, Terry E. C. Geochemical data of fumarolically altered rocks, Valley of Ten Thousand Smokes, Alaska. [Menlo Park, CA]: U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Keith, Terry E. C. Geochemical data of fumarolically altered rocks, Valley of Ten Thousand Smokes, Alaska. [Reston, Va.]: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Volcanic geochemisty"

1

Fournier, Robert O. "Hydrothermal systems and volcano geochemistry." In Volcano Deformation, 323–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-49302-0_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Condomines, Michel, Pierre-Jean Gauthier, and Olgeir Sigmarsson. "4. Timescales of Magma Chamber Processes and Dating of Young Volcanic Rocks." In Uranium-series Geochemistry, edited by Bernard Bourdon, Gideon M. Henderson, Craig C. Lundstrom, and Simon Turner, 125–74. Berlin, Boston: De Gruyter, 2003. http://dx.doi.org/10.1515/9781501509308-009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rothe, Peter. "Sediments on Volcanic Islands — On the Importance of the Exception." In Sediments and Environmental Geochemistry, 29–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75097-7_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hong, Hanlie, Wenpeng Gao, Ke Yin, Zhaohui Li, and Chaowen Wang. "Illite–Smectite Mixed-Layer Minerals in the Alteration Volcanic Ashes Under Submarine Environment." In Springer Geochemistry/Mineralogy, 137–49. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13948-7_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Grassa, Fausto, Salvatore Inguaggiato, and Marcello Liotta. "Fluid Geochemistry of Stromboli." In The Stromboli Volcano: An Integrated Study of the 2002-2003 Eruption, 49–63. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/182gm06.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Crowe, Bruce M., David L. Finnegan, William H. Zoller, and William V. Boynton. "Trace Element Geochemistry of volcanic Gases and Particles From 1983-1984 Eruptive Episodes of Kilauea Volcano." In Collected Reprint Series, 13708–14. Washington, DC: American Geophysical Union, 2014. http://dx.doi.org/10.1002/9781118782064.ch30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rouwet, Dmitri, Yuri Taran, and Salvatore Inguaggiato. "Fluid Geochemistry of Tacaná Volcano-Hydrothermal System." In Active Volcanoes of the World, 139–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-25890-9_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sanfilippo, Alessio, (Merry) Yue Cai, Ana Paula Gouveia Jácome, and Marco Ligi. "Geochemistry of the Lunayyir and Khaybar Volcanic Fields (Saudi Arabia): Insights into the Origin of Cenozoic Arabian Volcanism." In Geological Setting, Palaeoenvironment and Archaeology of the Red Sea, 389–415. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99408-6_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Peiffer, Loïc, Dmitri Rouwet, and Yuri Taran. "Fluid Geochemistry of El Chichón Volcano-Hydrothermal System." In Active Volcanoes of the World, 77–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-25890-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Baumgartner, Peter O. "Petrography and Geochemistry of Ophiolites, Ophiolite Clasts and Triassic Volcanics." In Jurassic Sedimentary Evolution and Nappe Emplacement in the Argolis Peninsula (Peloponnesus, Greece), 84–96. Basel: Birkhäuser Basel, 1985. http://dx.doi.org/10.1007/978-3-0348-9319-0_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Volcanic geochemisty"

1

Jatu, C. "The Grobogan Mud Volcano Complex: An Identification to Reveal the Opportunity of Hydrocarbon Exploration." In Digital Technical Conference. Indonesian Petroleum Association, 2020. http://dx.doi.org/10.29118/ipa20-sg-362.

Повний текст джерела
Анотація:
Mud volcanoes in Grobogan are referred as the Grobogan Mud Volcanoes Complex in Central Java where there is evidence of oil seepages. This comprehensive research is to determine the characteristics and hydrocarbon potential of the mud volcanoes in the Central Java region as a new opportunity for hydrocarbon exploration. The Grobogan Mud Volcano Complex consists of eight mud volcanoes that have its characteristics based on the study used the geological surface data and seismic literature as supporting data on eight mud volcanoes. The determination of geological surface characteristics is based on geomorphological analysis, laboratory analysis such as petrography, natural gas geochemistry, water analysis, mud geochemical analysis and biostratigraphy. Surface data and subsurface data are correlated, interpreted, and validated to make mud volcano system model. The purpose of making the mud volcanoes system model is to identify the hydrocarbon potential in Grobogan. This research proved that each of the Grobogan Mud Volcanoes has different morphological forms. Grobogan Mud Volcanoes materials are including muds, rock fragments, gas, and water content with different elemental values. Based on this research result, there are four mud volcano systems models in Central Java, they are Bledug Kuwu, Maesan, Cungkrik, and Crewek type. The source of the mud is from Ngimbang and Tawun Formation (Middle Eocene to Early Miocene) from biostratigraphy data and it been correlated with seismic data. Grobogan Mud Volcanoes have potential hydrocarbons with type III kerogen of organic matter (gas) and immature to early mature level based on TOC vs HI cross plot. The main product are thermogenic gas and some oil in relatively small quantities. Water analysis shows that it has mature sodium chloride water. This analysis also shows the location was formed within formations that are deposited in a marine environment with high salinity. Research of mud volcanos is rarely done in general. However, this comprehensive research shows the mud volcano has promising hydrocarbon potential and is a new perspective on hydrocarbon exploration.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gavryliv, L., L. Jaroslav, S. E. Shnyukov, and A. G. Aleksieienko. "Geochemistry of Jastraba Formation Rhyolites, Central Slovakia Volcanic Field." In 16th International Conference on Geoinformatics - Theoretical and Applied Aspects. Netherlands: EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201701841.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Teng, Fangzhen, Heng-Ci Tian, Xinyang Chen, Ilya Bindeman, and Jeff Ryan. "Potassium isotope geochemistry in island arc volcanism." In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.12411.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Choi, Sung Hi. "Geochemistry and Petrogenesis of Volcanic Rocks from Ulleung Island, South Korea." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.431.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Drop, Stephen, Brennan van Alderwerelt, David W. Peate, and Ingrid Ukstins. "PETROLOGY & GEOCHEMISTRY OF THE EL NEGRILLAR VOLCANIC FIELD, NORTHERN CHILE." In Joint 53rd Annual South-Central/53rd North-Central/71st Rocky Mtn GSA Section Meeting - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019sc-327370.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rodriguez, Angelica, Amy Robson, and Rachel Teasdale. "MUD POT GEOCHEMISTRY AT SULFUR WORKS IN THE LASSEN VOLCANIC CENTER." In Joint 70th Annual Rocky Mountain GSA Section / 114th Annual Cordilleran GSA Section Meeting - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018rm-313848.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ramos, Frank C., Matthew J. Zimmerer, Kate E. Zeigler, Sidney Pinkerton, and Nick Butterfield. "Geochemistry of Capulin-phase Flows in the Raton-Clayton Volcanic Field." In 70th Annual Fall Field Conference. New Mexico Geological Society, 2019. http://dx.doi.org/10.56577/ffc-70.139.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

McIntosh, William C., and Charles Bryan. "Chronology and geochemistry of the Boot Heel volcanic field, New Mexico." In 51st Annual Fall Field Conference. New Mexico Geological Society, 2000. http://dx.doi.org/10.56577/ffc-51.157.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Marie Louise Vohnyui, Chenyi, Wotchoko Pierre, and Nkouathio David. "Volcanological and Petrological study of volcanic rocks from the North West flank of Oku volcanic complex (Cameroon volcanic line): Constraints from Mineralogy and Geochemistry." In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.8764.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pushie, Olivia, and James A. Braid. "GEOCHEMISTRY OF THE NICARAGUAN VOLCANIC ARC: INSIGHTS INTO SLAB BREAK-OFF PROCESSES?" In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-358452.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Volcanic geochemisty"

1

Rogers, N. Geochemistry of volcanic rocks. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2007. http://dx.doi.org/10.4095/223356.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Skulski, T., W. R. A. Baragar, J. Bédard, R. E. Ernst, D. Francis, A. Hynes, S. Modeland, et al. Geochemistry of volcanic suites. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2007. http://dx.doi.org/10.4095/223371.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nye, C. J., S. E. Swanson, and J. W. Reeder. Petrology and geochemistry of Quaternary volcanic rocks from Makushin Volcano, central Aleutian arc. Alaska Division of Geological & Geophysical Surveys, 1986. http://dx.doi.org/10.14509/1270.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Perry, F. V., and K. T. Straub. Geochemistry of the Lathrop Wells volcanic center. Office of Scientific and Technical Information (OSTI), March 1996. http://dx.doi.org/10.2172/211326.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gordon, T. M., and D. R. Lemkow. Geochemistry of Missi Group Volcanic Rocks, Wekusko Lake, Manitoba. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1987. http://dx.doi.org/10.4095/130217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Edwards, B. R., and A. Bye. Preliminary results of field mapping, GIS spatial analysis, and major-element geochemistry, Ruby Mountain volcano, Atlin volcanic district, northwestern British Columbia. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2003. http://dx.doi.org/10.4095/214027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Manor, M. J., and S. J. Piercey. Whole-rock lithogeochemistry, Nd-Hf isotopes, and in situ zircon geochemistry of VMS-related felsic rocks, Finlayson Lake VMS district, Yukon. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328992.

Повний текст джерела
Анотація:
The Finlayson Lake district in southeastern Yukon is composed of a Late Paleozoic arc-backarc system that consists of metamorphosed volcanic, plutonic, and sedimentary rocks of the Yukon-Tanana and Slide Mountain terranes. These rocks host >40 Mt of polymetallic resources in numerous occurrences and styles of volcanogenic massive sulphide (VMS) mineralization. Geochemical and isotopic data from these rocks support previous interpretations that volcanism and plutonism occurred in arc-marginal arc (e.g., Fire Lake formation) and continental back-arc basin environments (e.g., Kudz Ze Kayah formation, Wind Lake formation, and Wolverine Lake group) where felsic magmatism formed from varying mixtures of crust- and mantle-derived material. The rocks have elevated high field strength element (HFSE) and rare earth element (REE) concentrations, and evolved to chondritic isotopic signatures, in VMS-proximal stratigraphy relative to VMS-barren assemblages. These geochemical features reflect the petrogenetic conditions that generated felsic rocks and likely played a role in the localization of VMS mineralization in the district. Preliminary in situ zircon chemistry supports these arguments with Th/U and Hf isotopic fingerprinting, where it is interpreted that the VMS-bearing lithofacies formed via crustal melting and mixing with increased juvenile, mafic magmatism; rocks that were less prospective have predominantly crustal signatures. These observations are consistent with the formation of VMS-related felsic rocks by basaltic underplating, crustal melting, and basalt-crustal melt mixing within an extensional setting. This work offers a unique perspective on magmatic petrogenesis that underscores the importance of integrating whole-rock with mineral-scale geochemistry in the characterization of VMS-related stratigraphy.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Whalen, J. B. Geochemistry of the Mafic and Volcanic Components of the Topsails Igneous Suite, western Newfoundland. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/120637.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kaszycki, C. A., E. Nielsen, and G. Gobert. Surficial geochemistry and response to volcanic-hosted massive sulphide mineralization in the Snow Lake region. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1996. http://dx.doi.org/10.4095/207584.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Coish, R. A., and J. M. Journeay. The Crevasse Crag Volcanic Complex, southwestern British Columbia: structural control on the geochemistry of arc magmas. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1992. http://dx.doi.org/10.4095/132792.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії