Добірка наукової літератури з теми "Volatiles Elements"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Volatiles Elements".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Volatiles Elements":

1

Tian, Zhen, Tomáš Magna, James M. D. Day, Klaus Mezger, Erik E. Scherer, Katharina Lodders, Remco C. Hin, Piers Koefoed, Hannah Bloom, and Kun Wang. "Potassium isotope composition of Mars reveals a mechanism of planetary volatile retention." Proceedings of the National Academy of Sciences 118, no. 39 (September 20, 2021): e2101155118. http://dx.doi.org/10.1073/pnas.2101155118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The abundances of water and highly to moderately volatile elements in planets are considered critical to mantle convection, surface evolution processes, and habitability. From the first flyby space probes to the more recent “Perseverance” and “Tianwen-1” missions, “follow the water,” and, more broadly, “volatiles,” has been one of the key themes of martian exploration. Ratios of volatiles relative to refractory elements (e.g., K/Th, Rb/Sr) are consistent with a higher volatile content for Mars than for Earth, despite the contrasting present-day surface conditions of those bodies. This study presents K isotope data from a spectrum of martian lithologies as an isotopic tracer for comparing the inventories of highly and moderately volatile elements and compounds of planetary bodies. Here, we show that meteorites from Mars have systematically heavier K isotopic compositions than the bulk silicate Earth, implying a greater loss of K from Mars than from Earth. The average “bulk silicate” δ41K values of Earth, Moon, Mars, and the asteroid 4-Vesta correlate with surface gravity, the Mn/Na “volatility” ratio, and most notably, bulk planet H2O abundance. These relationships indicate that planetary volatile abundances result from variable volatile loss during accretionary growth in which larger mass bodies preferentially retain volatile elements over lower mass objects. There is likely a threshold on the size requirements of rocky (exo)planets to retain enough H2O to enable habitability and plate tectonics, with mass exceeding that of Mars.
2

Day, James M. D., Frédéric Moynier, and Charles K. Shearer. "Late-stage magmatic outgassing from a volatile-depleted Moon." Proceedings of the National Academy of Sciences 114, no. 36 (August 21, 2017): 9547–51. http://dx.doi.org/10.1073/pnas.1708236114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The abundance of volatile elements and compounds, such as zinc, potassium, chlorine, and water, provide key evidence for how Earth and the Moon formed and evolved. Currently, evidence exists for a Moon depleted in volatile elements, as well as reservoirs within the Moon with volatile abundances like Earth’s depleted upper mantle. Volatile depletion is consistent with catastrophic formation, such as a giant impact, whereas a Moon with Earth-like volatile abundances suggests preservation of these volatiles, or addition through late accretion. We show, using the “Rusty Rock” impact melt breccia, 66095, that volatile enrichment on the lunar surface occurred through vapor condensation. Isotopically light Zn (δ66Zn = −13.7‰), heavy Cl (δ37Cl = +15‰), and high U/Pb supports the origin of condensates from a volatile-poor internal source formed during thermomagmatic evolution of the Moon, with long-term depletion in incompatible Cl and Pb, and lesser depletion of more-compatible Zn. Leaching experiments on mare basalt 14053 demonstrate that isotopically light Zn condensates also occur on some mare basalts after their crystallization, confirming a volatile-depleted lunar interior source with homogeneous δ66Zn ≈ +1.4‰. Our results show that much of the lunar interior must be significantly depleted in volatile elements and compounds and that volatile-rich rocks on the lunar surface formed through vapor condensation. Volatiles detected by remote sensing on the surface of the Moon likely have a partially condensate origin from its interior.
3

Zhang, Youxue. "Review of melt inclusions in lunar rocks: constraints on melt and mantle composition and magmatic processes." European Journal of Mineralogy 36, no. 1 (January 26, 2024): 123–38. http://dx.doi.org/10.5194/ejm-36-123-2024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. Mineral-hosted melt inclusions provide a window into magmatic processes and pre-eruptive liquid compositions. Because melt inclusions are small (typically < 100 µm), the study of lunar melt inclusions is enabled by advancements of microbeam instrumental techniques. In the 1970s immediately following the Apollo and Luna missions, major and minor oxide concentrations of lunar melt inclusions were measured using electron microprobes. The data were used to understand magma evolution, and they revealed the immiscibility of two silicate liquids in the late stage of lunar magma evolution. More recently, the development of secondary ion mass spectrometry as well as laser ablation–inductively coupled plasma–mass spectrometry has enabled the measurement of key volatile elements and other trace elements in lunar melt inclusions, down to about the 0.1 ppm level. The applications of these instruments have ushered in a new wave of lunar melt inclusion studies. Recent advances have gone hand in hand with improved understanding of post-entrapment loss of volatiles. These studies have provided deep insights into pre-eruptive volatiles in lunar basalts, the abundance of volatiles in the lunar mantle, the isotopic ratios of some volatile elements, and the partition of trace elements between host olivine and melt inclusions. The recent studies of lunar melt inclusions have played a critical role in establishing a new paradigm of a fairly wet Moon with about 100 ppm H2O in the bulk silicate Moon (rather than a “bone-dry” Moon) and have been instrumental in developing an improved understanding of the origin and evolution of the Moon.
4

Chen, Zuxing, Landry Soh Tamehe, Haiyan Qi, Yuxiang Zhang, Zhigang Zeng, and Mingjiang Cai. "Using Apatite to Track Volatile Evolution in the Shallow Magma Chamber below the Yonaguni Knoll IV Hydrothermal Field in the Southwestern Okinawa Trough." Journal of Marine Science and Engineering 11, no. 3 (March 9, 2023): 583. http://dx.doi.org/10.3390/jmse11030583.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Yonaguni Knoll IV is an active seafloor hydrothermal system associated with submarine silicic volcanism located in the “cross back-arc volcanic trail” (CBVT) in the southwestern Okinawa Trough. However, the behavior of volatiles during magmatic differentiation in the shallow silicic magma chamber is unclear. Here, the volatile contents of apatite inclusions trapped in different phenocrysts (orthopyroxene and amphibole) and microphenocrysts in the rhyolite from the Yonaguni Knoll IV hydrothermal field were analyzed by using electron microprobe analysis, which aims to track the behavior of volatiles in the shallow magma chamber. Notably, the ‘texturally constrained’ apatites showed a decreasing trend of XCl/XOH and XF/XCl ratios. Based on the geochemical analyses in combination with thermodynamic modeling, we found that the studied apatites were consistent with the mode of volatile-undersaturated crystallization. Therefore, volatiles were not saturated in the early stage of magmatic differentiation in the shallow rhyolitic magma chamber, and consequently, the metal elements were retained in the rhyolitic melt and partitioned into crystalline magmatic sulfides. Additionally, previous studies suggested that the shallow rhyolitic magma chamber was long-lived and periodically replenished by mafic magma. The injection of volatile-rich and oxidized subduction-related mafic magmas can supply abundant volatiles and dissolve magmatic sulfide in the shallow magma chamber. These processes are important for the later-stage of volatile exsolution, while the forming metal-rich magmatic fluids contribute to the overlying Yonaguni Knoll IV hydrothermal system.
5

Miller, Johanna L. "Krypton isotopes tell the early story of Earth’s life-giving elements." Physics Today 75, no. 3 (March 1, 2022): 16–18. http://dx.doi.org/10.1063/pt.3.4956.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Liu, Xuena, Jinghua Guo, Zijing Chen, Kun Xu, and Kang Xu. "Detection of Volatile Compounds and Their Contribution to the Nutritional Quality of Chinese and Japanese Welsh Onions (Allium fistulosum L.)." Horticulturae 10, no. 5 (April 26, 2024): 446. http://dx.doi.org/10.3390/horticulturae10050446.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Allium vegetables attract attention for their flavor and aroma in Asia, especially in China and Japan. The aim of this experiment was to uncover the differences in the unique flavor compounds of two Welsh onions that are typical cultivars in China and Japan (‘Zhangqiu’ and ‘Tenko’). Chemical methods and solid-phase microextraction–gas chromatography-mass spectrometry were performed to determine the nutritional quality and quantity of volatile compounds of various organs of Welsh onions. The results show that a total of 30, 37, and 28 compounds were detected in the roots, pseudostem, and leaves of ‘Zhangqiu’, respectively, while 21, 27, and 20 compounds were detected in the corresponding organs of ‘Tenko’. The distribution of sulfur compounds in the roots, pseudostem, and leaves of ‘Zhangqiu’ accounted for 72%, 83%, and 26% of the total content, while those of ‘Tenko’ accounted for 55%, 84%, and 57%, respectively. Aldehydes are the second largest class of volatiles in Welsh onions. The distribution of aldehydes in the leaves was notably different: 52% and 27% in ‘Zhangqiu’ and ‘Tenko’, respectively. The contribution of S to the volatile substances was outstanding, and through forward selection, it was found that P, Ca, and Mg contribute to the volatile substances of Welsh onions. The above results indicate that the different genotypes of Welsh onions have various flavors, and mineral elements contribute variously to these flavors. Calcium could be a new topic of interest for our subsequent research on elements and volatiles.
7

Degruyter, Wim, Andrea Parmigiani, Christian Huber, and Olivier Bachmann. "How do volatiles escape their shallow magmatic hearth?" Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, no. 2139 (January 7, 2019): 20180017. http://dx.doi.org/10.1098/rsta.2018.0017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Only a small fraction (approx. 1–20%) of magmas generated in the mantle erupt at the surface. While volcanic eruptions are typically considered as the main exhaust pipes for volatile elements to escape into the atmosphere, the contribution of magma reservoirs crystallizing in the crust is likely to dominate the volatile transfer from depth to the surface. Here, we use multiscale physical modelling to identify and quantify the main mechanisms of gas escape from crystallizing magma bodies. We show that most of the outgassing occurs at intermediate to high crystal fraction, when the system has reached a mature mush state. It is particularly true for shallow volatile-rich systems that tend to exsolve volatiles through second boiling, leading to efficient construction of gas channels as soon as the crystallinity reaches approximately 40–50 vol.%. We, therefore, argue that estimates of volatile budgets based on volcanic activity may be misleading because they tend to significantly underestimate the magmatic volatile flux and can provide biased volatile compositions. Recognition of the compositional signature and volumetric dominance of intrusive outgassing is, therefore, necessary to build robust models of volatile recycling between the mantle and the surface. This article is part of the Theo Murphy meeting issue ‘Magma reservoir architecture and dynamics’.
8

Day, James M. D., and Frederic Moynier. "Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, no. 2024 (September 13, 2014): 20130259. http://dx.doi.org/10.1098/rsta.2013.0259.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Moon is depleted in volatile elements relative to the Earth and Mars. Low abundances of volatile elements, fractionated stable isotope ratios of S, Cl, K and Zn, high μ ( 238 U/ 204 Pb) and long-term Rb/Sr depletion are distinguishing features of the Moon, relative to the Earth. These geochemical characteristics indicate both inheritance of volatile-depleted materials that formed the Moon and planets and subsequent evaporative loss of volatile elements that occurred during lunar formation and differentiation. Models of volatile loss through localized eruptive degassing are not consistent with the available S, Cl, Zn and K isotopes and abundance data for the Moon. The most probable cause of volatile depletion is global-scale evaporation resulting from a giant impact or a magma ocean phase where inefficient volatile loss during magmatic convection led to the present distribution of volatile elements within mantle and crustal reservoirs. Problems exist for models of planetary volatile depletion following giant impact. Most critically, in this model, the volatile loss requires preferential delivery and retention of late-accreted volatiles to the Earth compared with the Moon. Different proportions of late-accreted mass are computed to explain present-day distributions of volatile and moderately volatile elements (e.g. Pb, Zn; 5 to >10%) relative to highly siderophile elements (approx. 0.5%) for the Earth. Models of early magma ocean phases may be more effective in explaining the volatile loss. Basaltic materials (e.g. eucrites and angrites) from highly differentiated airless asteroids are volatile-depleted, like the Moon, whereas the Earth and Mars have proportionally greater volatile contents. Parent-body size and the existence of early atmospheres are therefore likely to represent fundamental controls on planetary volatile retention or loss.
9

Nunes, Ana R., Ana C. Gonçalves, Edgar Pinto, Filipa Amaro, José D. Flores-Félix, Agostinho Almeida, Paula Guedes de Pinho, Amílcar Falcão, Gilberto Alves, and Luís R. Silva. "Mineral Content and Volatile Profiling of Prunus avium L. (Sweet Cherry) By-Products from Fundão Region (Portugal)." Foods 11, no. 5 (March 4, 2022): 751. http://dx.doi.org/10.3390/foods11050751.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Large amounts of Prunus avium L. by-products result from sweet cherry production and processing. This work aimed to evaluate the mineral content and volatile profiling of the cherry stems, leaves, and flowers of the Saco cultivar collected from the Fundão region (Portugal). A total of 18 minerals were determined by ICP-MS, namely 8 essential and 10 non-essential elements. Phosphorus (P) was the most abundant mineral, while lithium (Li) was detected in trace amounts. Three different preparations were used in this work to determine volatiles: hydroethanolic extracts, crude extracts, and aqueous infusions. A total of 117 volatile compounds were identified using HS-SPME/GC-MS, distributed among different chemical classes: 31 aldehydes, 14 alcohols, 16 ketones, 30 esters, 4 acids, 4 monoterpenes, 3 norisoprenoids, 4 hydrocarbons, 7 heterocyclics, 1 lactone, 1 phenol, and 2 phenylpropenes. Benzaldehyde, 4-methyl-benzaldehyde, hexanal, lilac aldehyde, and 6-methyl-5-hepten-2-one were the major volatile compounds. Differences in the types of volatiles and their respective amounts in the different extracts were found. This is the first study that describes the mineral and volatile composition of Portuguese sweet cherry by-products, demonstrating that they could have great potential as nutraceutical ingredients and natural flavoring agents to be used in the pharmaceutical, cosmetic, and food industries.
10

Marty, Bernard. "Origins and Early Evolution of the Atmosphere and the Oceans." Geochemical Perspectives 9, no. 2 (October 2020): 135–313. http://dx.doi.org/10.7185/geochempersp.9.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
My journey in science began with the study of volcanic gases, sparking an interest in the origin, and ultimate fate, of the volatile elements in the interior of our planet. How did these elements, so crucial to life and our surface environment, come to be sequestered within the deepest regions of the Earth, and what can they tell us about the processes occurring there? My approach has been to establish geochemical links between the noble gases, physical tracers par excellence, with major volatile elements of environmental importance, such as water, carbon and nitrogen, in mantle-derived rocks and gases. From these analyses we have learned that the Earth is relatively depleted in volatile elements when compared to its potential cosmochemical ancestors (e.g., ~2 ppm nitrogen compared to several hundreds of ppm in primitive meteorites) and that natural fluxes of carbon are two orders of magnitude lower than those emitted by current anthropogenic activity. Further insights into the origin of terrestrial volatiles have come from space missions that documented the composition of the proto-solar nebula and the outer solar system. The consensus behind the origin of the atmosphere and the oceans is evolving constantly, although recently a general picture has started to emerge. At the dawn of the solar system, the volatile-forming elements (H, C, N, noble gases) that form the majority of our atmosphere and oceans were trapped in solid dusty phases (mostly in ice beyond the snowline and organics everywhere). These phases condensed from the proto-solar nebula gas, and/or were inherited from the interstellar medium. These accreted together within the next few million years to form the first planetesimals, some of which underwent differentiation very early on. The isotopic signatures of volatiles were also fixed very early and may even have preceded the first episodes of condensation and accretion. Throughout the accretion of the Earth, volatile elements were delivered by material from both the inner (dry, volatile-poor) and outer (volatile-rich) solar system. This delivery was concomitant with the metals and silicates that form the bulk of the planet. The contribution of bodies that formed in the far outer solar system, a region now populated by comets, is likely to have been very limited. In that sense, volatile elements were contributed continuously throughout Earth’s accretion from inner solar system reservoirs, which also provided the silicates and metal building blocks of the inner planets. Following accretion, it likely took a few hundred million years for the Earth’s atmosphere and oceans to stabilise. Luckily, we have been able to access a compositional record of the early atmosphere and oceans through the analysis of palaeo-atmospheric fluids trapped in Archean hydrothermal quartz. From these analyses, it appears that the surface reservoirs of the Earth evolved due to interactions between the early Sun and the top of the atmosphere, as well as the development of an early biosphere that progressively altered its chemistry.

Дисертації з теми "Volatiles Elements":

1

Collins, S. J. "Degassing of volatiles and semi-volatile trace elements at basaltic volcanoes." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.597860.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
At Mt. Etna, Italy, vigorous gas-rich eruptions in 2001, 2002 and 2003 were followed by gas-poor eruptions in 2004, 2006 and 2007. Contrary to expectation, melt inclusion compositions indicate that magmas erupted between 2004 to 2007 did not follow similar degassing paths as recorded in 2001 and 2002 and that are expected from the solubility laws of CO2 and H2O. Instead melts stored in the plumbing system since 2002 reequilibrated with CO2-rich gases from depth. Sustained gas percolation caused loss of water and enhancement of CO2 in the evolving melt. At Piton de la Fournaise melt inclusions trapped in olivines record degassing of various batches of magma and the fractionation of olivines at various depths within the plumbing system. The host melt which carries these olivines to the surface represents an infiltration of new magma which erupts rapidly incorporating olivines along the way. The host melt also records processes of diffusive fractionation during groundmass crystallisation. Semi-volatile trace metals and Li have been found to behave in a volatile fashion at both Mt. Etna and Piton de la Fournaise. At Mt. Etna, CO2 gas fluxing may have been important for causing the transfer of Cu from magmas at depth, to magmas stored in the shallow plumbing system. At Piton de la Fournaise trace metals are not simply behaving as incompatible elements but rather show the influence S and H2O loss during degassing. However, when investigating trace metal concentrations in volcanic products this thesis shows that the affect of sulphide immiscibility should not be neglected. Loss of chalcophile trace metals to sulphide melts prevents partitioning of the element into a gas phase. Destabilisation of these melts on the other hand, may release enriched concentrations of trace metals to a gas phase.
2

Gomez-Ulla, Rubira Alejandra. "Historical eruptions of Lanzarote, Canary Islands : Inference of magma source and melt generation from olivine and its melt inclusions." Thesis, Université Clermont Auvergne‎ (2017-2020), 2018. http://www.theses.fr/2018CLFAC023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L’étude des basaltes des îles océaniques (OIB) révèle la complexité du manteau terrestre, dont la composition chimique est hautement variable. Décrypter l’implication des lithologies des roches sources et des processus à l’origine des OIB est complexe car les magmas sont transformés lors de leur ascension jusqu’à la surface. Ceci est particulièrement critique dans le cas des îles Canaries, où la lithosphère est considérée comme particulièrement épaisse (>110 km Fullea et al., 2015). Afin de mieux contraindre la composition chimique des magmas primitifs et les lithologies mantelliques plausiblement impliquées, deux éruptions historiques de l’île de Lanzarote, les éruptions de Timanfaya (1730-1736) et celles de 1824, ont été étudiées. En effet, ces deux éruptions offrent une opportunité unique d’étudier les mécanismes de génération des magmas et leurs compositions dans un contexte où le manteau est hétérogène. L’éruption de historique de Timanfaya (1730-1736) a émis des magmas qui ont évolué de basanites à basaltes alcalins, pour atteindre des compositions tholeitiques à la fin de l’éruption. La dernière éruption de l’île, en 1824, a produit des basanites extrêmement riches en volatils. L’hétérogénéité du manteau est démontrée à l’extrême à Lanzarote où une seule éruption présente une variation de compositions chimiques équivalente à la diversité de celles des OIB dans le monde. L’extrême hétérogénéité est systématique pour les compositions des roches totales et des téphras à l’échelle d’une éruption, mais est encore amplifiée à l’échelle du minéral et des inclusions magmatiques contenus dans un même échantillon de téphra.Les concentrations des éléments traces et leurs rapports dans l’olivine (e.g. Ni, Mn et Ca) sont de précieux marqueurs des lithologies mantelliques à l’origine des magmas. En effet, les rapports Ni x (FeO/MgO), corrigé du fractionnement, et Fe/Mn sont des indicateurs de lithologies avec ou sans olivines. Il est considéré qu’ils peuvent montrer, dans la plupart des cas, l’ajout d’un liquide magmatique dérivé d’une pyroxénite dans les magmas primaires. La mesure des compositions des éléments traces des olivines des éruptions de 1730-1736 et de 1824 montrent les implications variables de plusieurs lithologies mantelliques au cours du temps. Lors de la fusion d’une lithologie ne contenant pas d’olivines, comme la pyroxénite, de hautes teneurs en Ni et de faibles teneurs en Mn et Ca sont attendues. Les basanites de Lanzarote présentent les plus grandes variations géochimiques, couvrant le champ compositionnel des olivines des MORB et des OIB du monde entier, tandis que les produits plus tardifs, c’est-à-dire les basaltes alcalins et les tholéites, ont des teneurs typiques de liquides magmatiques dérivés de pyroxénites. Les teneurs en forstérite (Fo) des olivines diminuent systématiquement avec le temps durant l’éruption de 1730-1736 et la proportion de liquide primaire saturé en silice augmente dans les mélanges de magmas primitifs avec le temps. A la fin de l’éruption, les magmas tholéitiques cristallisent des olivines dont la teneur en Fo est faible, alors que les concentrations en Mn et Ca augmentent simultanément avec le rapport Ca/Al pour des rapports Fe/Mn et Ni x (FeO/MgO) relativement constants. Ces observations sont expliquées par une augmentation de la fusion par décompression à température légèrement plus faible. D’autre part, les basanites de l’éruption de 1824 possèdent les olivines ayant les teneurs en Fo les plus élevées, et des teneurs en éléments traces dépassant la variabilité des basanites de l’éruption de Timanfaya. Le fait que les basanites de Lanzarote contiennent des olivines dont les compositions en éléments traces recouvrant le champ des MORB et des liquides pyroxènitiques est expliqué par la fusion d’une source contenant des lithologies hétérogènes, induite par un flux de CO2, générant ainsi des magmas aux compositions diverses. (...)
The study of oceanic island basalts (OIB) reveals the complexity of the mantle, which composition is highly variable. Deciphering the source lithologies and processes involved in the OIB formation is challenging since the magmas are transformed on their way to the surface. This is especially critical at Canary Islands where the lithosphere is thought to be remarkably thick (>110 km Fullea et al., 2015). In order to better constrain the composition of primitive magmas and the plausible mantle lithologies involved, two historical eruptions recorded at Lanzarote island, Timanfaya 1730-1736 and 1824 eruptions have been investigated. Indeed, these two eruptions offer a unique opportunity to investigate the mechanisms of magma generation and composition in the context of mantle heterogeneity. The Timanfaya, 1730-1736 historical eruption emitted magmas that evolved from basanites through alkali basalts, finally reaching tholeiitic compositions at the end of the eruption. In 1824 the last eruption on the island produced extremely volatile-rich basanite. The heterogeneity of the mantle is demonstrated to the extreme in Lanzarote where a single eruption exhibits compositional variations similar to the span of the OIB worldwide. The extreme heterogeneity is systematic from whole rock lava and tephra at eruption scale but amplified at mineral and melt inclusion scale within a single tephra sample of the eruption.The use of trace element concentrations and ratios of olivine (e.g. Ni, Mn, and Ca) are valuable indicators of the mantle source lithology, namely, the fractionation-corrected Ni x (FeO/MgO) and Fe/Mn as probes of olivine absent or present lithologies, often taken as pyroxenite-derived component in mixtures of primary melts. The measured trace element concentrations in olivine from the 1730-1736 and 1824 eruptions reveal variable mantle lithologies involved in the magma generation with time. Higher Ni and lower Mn and Ca contents are expected when melting Ol-free source, such as pyroxenite lithologies. The basanites exhibit the largest variation covering the range of olivine in MORB and OIB worldwide whereas later produced alkali-basalts and tholeites have values typically expected from pyroxenite derived melts. The Fo content decreases systematically with time during the 1730-36 eruption and the proportion of silica-saturated primary melt increased in the parental magma mixture with time. At the end of the eruption, tholeiite magmas crystallized olivine with lower Fo content, whereas those concentrations of Mn and Ca increased together with Ca/Al at relatively uniform Ni x (FeO/MgO) and Fe/Mn, all of which is readily explained by increased decompression melting at slightly lower temperature. The basanite from the eruption that took place in 1824 has olivine with the highest Fo content and trace element variability expanding the range of the Timanfaya basanite. The fact that Lanzarote basanites contain olivine with trace element systematic spanning that of MORB and pyroxenite melt is explained by CO2-flux melting of a lithologically heterogeneous source, generating the diverse compositions. In addition, early reactive porous flow through the depleted oceanic lithosphere and equilibration with harzburgite restite caused Ni depletion of the earliest percolating pyroxenite melt from which olivine crystallized and probably leaving dunite channels. After the channel formation mantle nodules could be brought to the surface. The fact that olivine compositions and basanite magma were reproduced approximately a century later may reflect episodic carbonatic fluxing in the slowly uprising Canarian mantle plume. (...)
3

Severs, Matthew Jeremiah. "Applications of Melt Inclusions to Problems in Igneous Petrogenesis." Diss., Virginia Tech, 2007. http://hdl.handle.net/10919/28310.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Understanding the different igneous processes that magmas undergo is important for a variety of reasons including potential hazards associated with volcanoes in populated regions, magmatic hydrothermal ore deposition, and tectonic processes. One method of obtaining geochemical data that can help constrain petrogenetic processes is through the study of melt and fluid inclusions. The research presented here examines melt inclusions through experimental, analytical and field studies to better understand igneous petrogenesis. One potential problem associated with melt inclusions is water-loss during laboratory heating. A Raman spectroscopic technique was developed to determine water contents of silicate glasses, and this technique was applied to monitor water loss from natural melt inclusions that were heated for varying lengths of time. The results suggest that water loss is insignificant when heated for less than 12 hours but significant water loss can occur with longer duration heating. The distribution of trace elements between silicate melts and phenocrysts growing from that melt can constrain igneous processes such as fractional crystallization, assimilation, and partial melting. Partition coefficients were determined for syngenetic clinopyroxene, orthopyroxene, and plagioclase in equilibrium with a dacitic melt using the Melt Inclusion-Mineral (MIM) technique. Melt inclusion chemistry is the same regardless of mineral host phase, suggesting that the melt inclusions have not been subjected to re-equilibration processes or boundary layer development. Partition coefficients from this study are similar but typically lower than published values. Three closely-spaced monogenetic eruptive units from the active Campi Flegrei volcanic system (Italy) with similar eruptive styles were examined to better understand the evolution of the magmatic system. Results suggest fractional crystallization as the dominant process taking place over time but that magma mixing was significant for one of the eruptions. Trace element geochemical data suggest a mixed magma source of within-plate and volcanic arc components, and still retain a T-MORB signature from the subducting slab.
Ph. D.
4

Debret, Baptiste. "Serpentinites, vecteurs des circulations fluides et des transferts chimiques de l'océanisation à la subduction : exemple dans les Alpes occidentales." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2013. http://tel.archives-ouvertes.fr/tel-01037950.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les serpentinites sont un composant important de la lithosphère océanique formée niveau de rides lentes à ultra-lentes. Ces roches représentant un vaste réservoir de l'eau, d'éléments mobiles dans les fluides (FME), halogènes et volatils, il a été proposé qu'elles jouent un rôle important pendant l'échange chimique se produisant entre la lithosphère subduite et le coin mantellique dans des zones de subduction. L'objectif de mon doctorat a été de caractériser la nature et la composition des fluides transférés depuis la plaque plongeante jusqu'au coin mantellique en étudiant des ophiolites alpines métamorphiques. Celles-ci se composent en grande partie de serpentinites et ont enregistré différentes conditions métamorphiques modélisant un gradient de subduction. Les études pétrologiques des ophiolites alpines montrent que celles-ci ont enregistré différentes étapes de serpentinisation et de déserpentinisation : (1) serpentinisation océanique et la formation d'assemblages à lizardite et à chrysotile ; (2) déstabilisation prograde de la serpentine océanique en antigorite, à la transition des faciès schistes verts - schistes bleus ; (3)déshydratation de l'antigorite en olivine secondaire dans les conditions du facies d'éclogite. Les analyses chimiques des éléments en trace par LA-ICPMS et constituants volatils et halogènes par SIMS prouvent que, pendant la subduction, les processus de serpentinisation se sont réalisés sans contamination significative par des fluides externes provenant de la déshydratation des sédiments. Dans la partie la superficielle de la lithosphère océanique, la déformation augmente la mobilité des éléments en trace et permet leur redistribution et l'homogénéisation de la composition d'antigorite à l'échelle kilométrique. Au contraire, dans la partie la plus profonde de la lithosphère serpentinisée, la mobilité des éléments en trace est réduite et localisée dans des veines métamorphiques qui constituent des chenaux de circulation des fluides. Les cristallisations successives de l'antigorite et de l'olivine secondaire sont accompagnés d'une diminution des concentrations en FME (B, Li, As, Sb, Ba, Rb, Cs...), halogènes (F, Cl) et volatils (S). La quantification de Fe3+/FeTotal, par chimie humide et spectroscopie XANES, des serpentinites et serpentines montrent que, dans les premières phases de subduction, la transition de lizardite en antigorite est accompagnée d'une réduction forte du fer. Cette réduction est non linéaire avec le degré métamorphique, mais dépend également de la chimie initiale du protolithe péridotitique. À un degré métamorphique plus élevée, le début du processus de déserpentinisation se produit dans un environnement ferreux, menant à une nouvelle oxydation de l'antigorite résiduelle. En conclusion, les serpentinites sont un vecteur de transfert d'éléments depuis la ride jusqu'aux zones de subduction. Pendant la subduction et pendant les changements de phases de la serpentine, les teneurs en FME, en éléments volatils et halogènes de la serpentine diminuent, suggérant que ces éléments sont soustraits dans une phase fluide qui peut potentiellement contaminer le coin mantellique. La nature de ce fluide varie au cours de la subduction. Dans les premiers kilomètres de la subduction, lors de la transition lizardite vers antigorite, les fluides relâchés sont riches en FME, volatils et halogènes. Ils pourraient oxyder le coin mantellique (e.g. SOX, H2O ou CO2) où ils initieraient la cristallisation d'une serpentine riche en ces éléments. A l'inverse, à plus grande profondeur, la déshydratation de l'antigorite libère une quantité moindre de FME, volatils et halogènes. De plus, l'observation d'antigorite riche en Fe3+ associée à l'olivine de déserpentinisation pourrait suggérer la production d'hydrogène lors de la déshydratation de la plaque plongeante.
5

Deligny, Cécile. "Origine des éléments volatils et chronologie de leur accrétion au sein du Système Solaire interne : Apport de l'analyse in-situ des achondrites." Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0329.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les éléments volatils comme l’hydrogène et l’azote contrôlent l'évolution des corps planétaires et de leurs atmosphères, et sont des éléments essentiels au développement de la vie sur Terre. Néanmoins, l'origine des éléments volatils et la chronologie de leur accrétion par les planètes telluriques formées au sein du système solaire interne restent un sujet de débat et de controverse en sciences planétaires. Pour répondre à ces questions, les rapports isotopiques de l'hydrogène (D/H) et de l'azote (15N/14N) sont des outils puissants pour tracer l'origine (solaire, chondritique ou cométaire) des éléments volatils piégés par les planètes telluriques. Pour contraindre l’origine(s) des éléments volatils piégés par les planètes rocheuses, nous avons donc mesuré les teneurs et les compositions isotopiques de l’hydrogène et de l’azote par microsonde ionique (LGSIMS) dans des achondrites (angrites, météorites maritennes et aubrites) qui proviennent d’astéroïdes différenciés ou de planètes qui sont considérés s’être formés dans le système solaire interne. Ces météorites conservent un enregistrement des étapes initiales de la formation de leurs corps parents et peuvent imposer des contraintes quant à l’évolution précoce des éléments volatils planétaires. L'analyse in-situ par SIMS est une technique quasi-non-destructive, qui permet de mesurer la teneur et la composition isotopique des éléments volatils de différentes phases dans des échantillons terrestres, extraterrestres et synthétiques. Le développement récent du protocole d'analyse de l'azote dans les échantillons silicatés par sonde ionique nous permet de caractériser des objets de la taille d’une dizaine de microns, tels que des inclusions vitreuses. Au cours de cette thèse, les éléments volatils ont été mesurés dans des inclusions magmatiques piégées dans des minéraux et dans les verres interstitiels. Bien que l’analyse de l’azote dans des aubrites n’a pas pu aboutir, les analyses réalisées sur des météorites martiennes et des angrites ont permis de mettre en évidence la présence de quantité importante d’eau et d’azote au sein de ces météorites et de leurs corps parent. En particulier, l’étude des angrites et plus précisément de la météorite D’Orbigny nous a permis de mettre en évidence la présence d’eau et d’azote ayant des compositions isotopiques similaires à celles des météorites primitives formées dans le système solaire externe (i.e., chondrites carbonées de type CM). Ces résultats impliquent que ces éléments volatils étaient présents ~4 millions d’années après la formation des CAIs (i.e., premiers solides à se former dans le système solaire) dans le système solaire interne et ont pu être piégés par les planètes telluriques lors de leur formation. De plus, l’analyses des météorites martiennes et plus particulièrement de Chassigny a révélé la présence d’azote ayant une composition isotopique enrichie en 15N comparée aux chondrites à enstatite et aux diamants terr estres qui sont supposés représenter la valeur la plus primitive de l’azote sur Terre
Volatile elements such as hydrogen and nitrogen control the evolution of planetary bodies and their atmospheres, and are essential elements for the development of life on Earth. Nevertheless, the origin of volatile elements and the timing of their accretion by terrestrial planets formed in the inner solar system remains a subject of debate and controversy in planetary science. To answer these questions, the isotopic ratios of hydrogen (D/H) and nitrogen (15N/14N) are powerful tools to trace the origin (solar, chondritic or cometary) of volatile elements trapped in planetary bodies. Therefore, to constrain the source(s) of volatile elements trapped in rocky planets, we analyzed hydrogen and nitrogen contents and isotopic compositions by ion microprobe (LGSIMS) in achondrites that originate from asteroids or from planets that are assumed to have formed in the inner solar system. These meteorites preserve a record of the initial stages of the formation of their parent bodies and can constrain the early evolution of planetary volatile elements. In-situ analysis by SIMS is a quasi-non-destructive technique, which permits to measure the abundance and the isotopic composition of volatile elements of different phases in terrestrial, extraterrestrial and synthetic samples. The recent development of the protocol of nitrogen analysis in silicate samples by ion probe allows us to target tens of micron- sized objects (i.e., glassy melt inclusions). Volatile elements were measured in melt inclusions trapped in minerals and in interstitial glasses. Although the analysis of nitrogen in aubrites was unsuccessful, the analysis performed on Martian meteorites and angrites revealed the presence of a large amount of water and nitrogen within these meteorites. In particular, the study of angrites and more precisely the meteorite D'Orbigny allowed us to highlight the presence of water and nitrogen having isotopic composition similar to those of the primitive meteorites formed in the outer solar system (i.e., CM-like carbonaceous chondrites). These results imply that these volatile elements must have been present in the inner solar system within the first ~4 Ma after CAI formation (i.e., the first solids to form in the solar system) and may have been trapped by the terrestrial planets during their formation. Furthermore, the analysis of Martian meteorites and more particularly of Chassigny revealed the presence of nitrogen with an isotopic composition enriched in 15N compared to enstatite chondrites and terrestrial diamonds which are believed to record the most primitive value of nitrogen on Earth
6

Leroy, Clémence. "L'iode et le xénon dans les magmas : deux comportements différents." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066094/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La présence de magmas en profondeur permet de contraindre des processus géologiques passés et actuels. Ces magmas (i.e. liquides silicatés) participent aux cycles géochimiques des éléments volatils comme vecteur de matière.Nous étudions deux éléments volatils complémentaires : l'iode (I), un halogène, et le xénon (Xe), un gaz rare. Leur système radioactif éteint 129I/129Xe (T1/2 = 15.7Ma) est utilisé pour dater les processus hadéens et la formation de l'atmosphère, issu de l'évolution d'un océan magmatique. Or on connait peu le comportement de l'iode et du xénon dans les magmas en profondeur à haute pression et température.Notre protocole expérimental vise l'étude de l'incorporation de l'iode et du xénon et de leur solubilité dans les magmas. Pour étudier l'incorporation, la structure des silicates liquides a été caractérisée par diffraction de rayons X avec des expériences in situ réalisées dans des cellules à enclumes de diamant et dans des presses Paris-Édimbourg. Les teneurs de solubilité de l'iode et du xénon ainsi que l'eau ont été mesurés par les méthodes PIXE et ERDA.À hautes pressions, l'iode possède une forte solubilité (quelques %pds) dans les magmas. Les résultats préliminaires sur son incorporation dans du basalte montrent que l'iode ne formerait pas des liaisons covalentes. À haute pression et température (T>300°C - P>1GPa), le xénon forme une liaison covalente Xe-O avec les oxygènes des anneaux de 6 tétraèdres SiO44-. Le xénon a une solubilité élevée dans les magmas (4pds% - 1600°C - 3.5GPa).Les modèles de datation et des cycles géochimiques de l'iode et du xénon doivent être revus en tenant compte de leur comportement différentiel dans les magmas
The presence of magmas at depth helps to constrain past and actual geological processes. Magmas (i.e. silicate melts) participate in geochemical cycles of volatile elements, as vectors of chemical transfers. We study two complementary volatile elements: iodine (I), a halogen, and xenon (Xe), a noble gas. Their extinct 129I/129Xe isotopic system (half-life of 15.7Ma) is used to date Hadean processes and Earth’s atmosphere formation since the atmosphere originated from the Magma Ocean’s evolution. However, little is known about the behavior of both iodine and xenon in silicate melts at depth, under HT and HP conditions. Our experimental protocol aims at elucidating the incorporation process of xenon and iodine in silicate melts, and their solubility. To understand the incorporation of iodine and xenon in magmas, the structure of silicate melts was investigated by in situ diamond anvil cells and Paris-Edinburgh press experiments coupled with X-ray diffraction characterization. Iodine and xenon’s solubility, along with water content are obtained by PIXE and ERDA methods using a nuclear microprobe. At high pressure, iodine has a high solubility (about few wt.%) in magmas. Preliminary results on iodine incorporation in basaltic melt show an absence of covalent bond. At high pressure and temperature conditions (T>300°C – P>1GPa), xenon forms a Xe-O covalent bond with the oxygens of the 6-membered-rings of the melt network. Its solubility in silicate melts is also high (about 4wt.% in haplogranite melts at 1600°C and 3.5GPa). Considering the xenon and iodine differential behavior in melts at depth, a revision of dating models in xenon and iodine cycles must be considered
7

Rutter, P. "A new non-volatile MNOS memory element." Thesis, University of Southampton, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377953.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Aldridge, Simon. "Studies of some volatile compounds of main group elements." Thesis, University of Oxford, 1996. http://ora.ox.ac.uk/objects/uuid:832a8ba8-4b6f-45f3-8a23-403efa9cd6e1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Methylzinc tetrahydroborate, [MeZnBH4], has been prepared by two routes and the structure of the solid determined by X-ray crystallography to reveal helical polymers in which MeZn and BH4 units alternate. The latter functions as a bidentate ligand with respect to each of the adjacent metal atoms. Investigation by mass spectrometry and matrix isolation shows that the vapour consists of an equilibrium mixture of monomeric and dimeric species. The pattern of infrared bands for the monomer is characteristic of a bidentate BH4 group, a finding consistent with the results of DFT calculations. Disproportionation into [Me2Zn] and [Zn(BH4)2] is a common feature of the chemistry of methylzinc tetrahydroborate, although it has been possible to isolate and characterize the adduct [MeZnBH4.SMe2]. The reaction between [B4H10 and [Me2Zn] in the gas phase affords colourless acicular crystals of [(MeZn)2B3H7] in yields of ca. 10%. This compound has been characterized by chemical analysis and by NMR and vibrational spectroscopy. X-ray crystallography reveals that the product is a dimer, [(MeZn)2B3H7]2, featuring two distinct zinc environments. Two B3H7ZnNe ligands, formally derived from B3H8 by replacement of a µ2-H by a µ2-ZnMe unit, each function in a bis(bidentate) manner linking together two other MeZn centres through pairs of Zn-H-B bridges. The structures of several aluminium tetrahydroborates in the solid phase have been investigated by X-ray diffraction. The structure of dimethylaluminum tetrahydroborate has been shown to consist of helical polymeric chains in which Me2-Al and BH4 units alternate. Here, too, the BH4 groups exhibit bidentate ligation with respect to each of the adjacent metal atoms, although the degree of interaction between the metal centre and the BH4 group is somewhat less than in [MeZnBH4 ]. Solid aluminium tris(tetrahydroborate) exhibits two phases with a transition temperature in the range 180-195 K. Each phase is made up of discrete Al(BH 4 )3 units, the principal differences relating to the packing of the individual molecules. In the a phase the Al(BH 4 )3 molecules display an angle of 78.2° between the AlB3 and Al(µ-H)2 planes and are disposed about a 21 crystallographic screw axis; in the ß phase the molecular units conform to D3h symmetry. Dimethylindium octahydrotriborate, [Me2 lnB3 H8 ], has been synthesized by the reaction between trimethylindium and tetraborane(10) and characterized by chemical analysis and by NMR and vibrational spectroscopy. X-ray diffraction of a single crystal reveals that the solid consists of [Me2 lnB3 H8] units, although there is evidence of charge separation in the sense [Me2ln]+[B3 H8 ]- and of secondary interaction between terminal hydrogen atoms and adjacent indium centres. The infrared spectrum of the matrix-isolated vapour is consistent with a monomeric structure similar to that of [Me2 AlB3 H8].
9

Leroy, Clémence. "L'iode et le xénon dans les magmas : deux comportements différents." Electronic Thesis or Diss., Paris 6, 2016. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2016PA066094.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La présence de magmas en profondeur permet de contraindre des processus géologiques passés et actuels. Ces magmas (i.e. liquides silicatés) participent aux cycles géochimiques des éléments volatils comme vecteur de matière.Nous étudions deux éléments volatils complémentaires : l'iode (I), un halogène, et le xénon (Xe), un gaz rare. Leur système radioactif éteint 129I/129Xe (T1/2 = 15.7Ma) est utilisé pour dater les processus hadéens et la formation de l'atmosphère, issu de l'évolution d'un océan magmatique. Or on connait peu le comportement de l'iode et du xénon dans les magmas en profondeur à haute pression et température.Notre protocole expérimental vise l'étude de l'incorporation de l'iode et du xénon et de leur solubilité dans les magmas. Pour étudier l'incorporation, la structure des silicates liquides a été caractérisée par diffraction de rayons X avec des expériences in situ réalisées dans des cellules à enclumes de diamant et dans des presses Paris-Édimbourg. Les teneurs de solubilité de l'iode et du xénon ainsi que l'eau ont été mesurés par les méthodes PIXE et ERDA.À hautes pressions, l'iode possède une forte solubilité (quelques %pds) dans les magmas. Les résultats préliminaires sur son incorporation dans du basalte montrent que l'iode ne formerait pas des liaisons covalentes. À haute pression et température (T>300°C - P>1GPa), le xénon forme une liaison covalente Xe-O avec les oxygènes des anneaux de 6 tétraèdres SiO44-. Le xénon a une solubilité élevée dans les magmas (4pds% - 1600°C - 3.5GPa).Les modèles de datation et des cycles géochimiques de l'iode et du xénon doivent être revus en tenant compte de leur comportement différentiel dans les magmas
The presence of magmas at depth helps to constrain past and actual geological processes. Magmas (i.e. silicate melts) participate in geochemical cycles of volatile elements, as vectors of chemical transfers. We study two complementary volatile elements: iodine (I), a halogen, and xenon (Xe), a noble gas. Their extinct 129I/129Xe isotopic system (half-life of 15.7Ma) is used to date Hadean processes and Earth’s atmosphere formation since the atmosphere originated from the Magma Ocean’s evolution. However, little is known about the behavior of both iodine and xenon in silicate melts at depth, under HT and HP conditions. Our experimental protocol aims at elucidating the incorporation process of xenon and iodine in silicate melts, and their solubility. To understand the incorporation of iodine and xenon in magmas, the structure of silicate melts was investigated by in situ diamond anvil cells and Paris-Edinburgh press experiments coupled with X-ray diffraction characterization. Iodine and xenon’s solubility, along with water content are obtained by PIXE and ERDA methods using a nuclear microprobe. At high pressure, iodine has a high solubility (about few wt.%) in magmas. Preliminary results on iodine incorporation in basaltic melt show an absence of covalent bond. At high pressure and temperature conditions (T>300°C – P>1GPa), xenon forms a Xe-O covalent bond with the oxygens of the 6-membered-rings of the melt network. Its solubility in silicate melts is also high (about 4wt.% in haplogranite melts at 1600°C and 3.5GPa). Considering the xenon and iodine differential behavior in melts at depth, a revision of dating models in xenon and iodine cycles must be considered
10

Sarafian, Adam Robert 1986. "Water and volatile element accretion to the inner planets." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/115785.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2018.
Cataloged from PDF version of thesis.
Includes bibliographical references.
This thesis investigates the timing and source(s) of water and volatile elements to the inner solar system by studying the basaltic meteorites angrites and eucrites. In chapters 2 and 3, I present the results from angrite meteorites. Chapter 2 examines the water and volatile element content of the angrite parent body and I suggest that some water and other volatile elements accreted to inner solar system bodies by ~2 Myr after the start of the solar system. Chapter 3 examines the D/H of this water and I suggest it is derived from carbonaceous chondrites. Chapter 4, 5, 6, and 7 addresses eucrite meteorites. Chapter 4 expands on existing models to explain geochemical trends observed in eucrites. In Chapter 5, I examine the water and F content of the eucrite parent body, 4 Vesta. In chapter 6, I determine the source of water for 4 Vesta and determine that carbonaceous chondrites delivered water to this body. Chapter 7 discusses degassing on 4 Vesta while it was forming.
by Adam Robert Sarafian.
Ph. D.

Книги з теми "Volatiles Elements":

1

Kallenbach, R., T. Encrenaz, J. Geiss, K. Mauersberger, T. C. Owen, and F. Robert, eds. Solar System History from Isotopic Signatures of Volatile Elements. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0145-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

B, McConnell James, United States. Dept. of the Army., US Army Signal Center and Fort Gordon. Environmental and Natural Resources Management Office., and Geological Survey (U.S.), eds. Trace elements and semi-volatile organic compounds in bed sediments from streams and impoundments at Fort Gordon, Georgia. Atlanta, Ga: U.S. Dept. of the Interior, U.S. Geological Survey, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

B, Lowenstern Jacob, and Geological Survey (U.S.), eds. Major-element, trace-element, and volatile concentrations in silicate melt inclusions from the tuff of Pine Grove, Wah Wah Mountains, Utah. [Menlo Park, Calif.?]: U.S. Dept. of the Interior, U.S. Geological Survey, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

B, Lowenstern Jacob, and Geological Survey (U.S.), eds. Major-element, trace-element, and volatile concentrations in silicate melt inclusions from the tuff of Pine Grove, Wah Wah Mountains, Utah. [Menlo Park, Calif.?]: U.S. Dept. of the Interior, U.S. Geological Survey, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

B, Lowenstern Jacob, and Geological Survey (U.S.), eds. Major-element, trace-element, and volatile concentrations in silicate melt inclusions from the tuff of Pine Grove, Wah Wah Mountains, Utah. [Menlo Park, Calif.?]: U.S. Dept. of the Interior, U.S. Geological Survey, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

B, Lowenstern Jacob, and Geological Survey (U.S.), eds. Major-element, trace-element, and volatile concentrations in silicate melt inclusions from the tuff of Pine Grove, Wah Wah Mountains, Utah. [Menlo Park, Calif.?]: U.S. Dept. of the Interior, U.S. Geological Survey, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

B, Lowenstern Jacob, and Geological Survey (U.S.), eds. Major-element, trace-element, and volatile concentrations in silicate melt inclusions from the tuff of Pine Grove, Wah Wah Mountains, Utah. [Menlo Park, Calif.?]: U.S. Dept. of the Interior, U.S. Geological Survey, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Houghton, Robert L. Volatile trace-element concentrations in snowmelt contributions to streams monitored by hydrologic bench-mark network stations in the conterminous United States where average annual snowfall exceeds 12 inches. Bismarck, N.D: U.S. Dept. of the Interior, Geological Survey, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

B, McConnell James, United States. Dept. of the Army, US Army Signal Center and Fort Gordon. Environmental and Natural Resources Management Office, and Geological Survey (U.S.), eds. Trace elements and semi-volatile organic compounds in bed sediments from streams and impoundments at Fort Gordon, Georgia. Atlanta, Ga: U.S. Dept. of the Interior, U.S. Geological Survey, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

B, McConnell James, United States. Dept. of the Army, US Army Signal Center and Fort Gordon. Environmental and Natural Resources Management Office, and Geological Survey (U.S.), eds. Trace elements and semi-volatile organic compounds in bed sediments from streams and impoundments at Fort Gordon, Georgia. Atlanta, Ga: U.S. Dept. of the Interior, U.S. Geological Survey, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Volatiles Elements":

1

Jambon, Albert. "Chapter 12. EARTH DEGASSING AND LARGE-SCALE GEOCHEMICAL CYCLING OF VOLATILE ELEMENTS." In Volatiles in Magmas, edited by Michael R. Carroll and John R. Holloway, 479–518. Berlin, Boston: De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Becker, R. H., R. N. Clayton, E. M. Galimov, H. Lammer, B. Marty, R. O. Pepin, and R. Wieler. "Isotopic Signatures of Volatiles in Terrestrial Planets." In Solar System History from Isotopic Signatures of Volatile Elements, 377–410. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0145-8_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ott, Ulrich. "Isotopes of Volatiles in Pre-Solar Grains." In Solar System History from Isotopic Signatures of Volatile Elements, 33–48. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0145-8_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Geiss, Johannes, and George Gloeckler. "Isotopic Composition of H, He and Ne in the Protosolar Cloud." In Solar System History from Isotopic Signatures of Volatile Elements, 3–18. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0145-8_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Altwegg, Kathrin, and Dominique Bockelée-Morvan. "Isotopic Abundances in Comets." In Solar System History from Isotopic Signatures of Volatile Elements, 139–54. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0145-8_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Messenger, S., F. J. Stadermann, C. Floss, L. R. Nittler, and S. Mukhopadhyay. "Isotopic Signatures of Presolar Materials in Interplanetary Dust." In Solar System History from Isotopic Signatures of Volatile Elements, 155–72. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0145-8_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Marty, B., K. Hashizume, M. Chaussidon, and R. Wieler. "Nitrogen Isotopes on the Moon: Archives of the Solar and Planetary Contributions to the Inner Solar System." In Solar System History from Isotopic Signatures of Volatile Elements, 175–96. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0145-8_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wieler, R., and V. S. Heber. "Noble Gas Isotopes on the Moon." In Solar System History from Isotopic Signatures of Volatile Elements, 197–210. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0145-8_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pepin, R. O. "On Noble Gas Processing in the Solar Accretion Disk." In Solar System History from Isotopic Signatures of Volatile Elements, 211–30. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0145-8_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Grady, Monica M., and Ian P. Wright. "Elemental and Isotopic Abundances of Carbon and Nitrogen in Meteorites." In Solar System History from Isotopic Signatures of Volatile Elements, 231–48. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0145-8_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Volatiles Elements":

1

Liu, Zhong, Wei-Ping Yan, Li Zhao, and Xiao-Min Wang. "Volatiles and Elements Release Characters of Micronized Coal at High Temperature." In ASME 2005 Power Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pwr2005-50338.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Volatiles and elements release characters are key factors that affect NO reduction efficiency and coal burnout at high temperature. The tested coal was directly taken from the bunkers in a power plant where combusts Shenhua bituminous and Zhunge’er lignite blends (mass ratio is 1:1), the coal blends were re-sieved mechanically and four sizes of them were taken as experimental coals. We designed and constructed char-preparation systems ourselves. The coal and char quality analysis were conducted by Vario el III coal element analyzer, and volatiles release characters under high temperature were analyzed. More volatiles can be released from finer coal under the same conditions. Ash was taken as tracer, volatiles yield in the case of high heating rate in entrained flow reactor is much more that gotten from conventional proximate analysis. Various elements yield increase with the decrease of coal size. Therefore, when finer micronized coal is used as reburning fuel, not only more hydrocarbon roots are produced, but also the combustion characters are improved so that the burnout is improved.
2

Crosby, James, Sally A. Gibson, Fin Stuart, Teal Riley, and Luigia Di Nicola. "Illuminating the long-term storage of fluid-hosted volatiles in the SCLM from 3He/4He, major- and trace elements in global mantle xenolith suites." In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.7412.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hasan, Mahmudul, and Yousef Haseli. "Modeling Woody Biomass Torrefaction Process." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87974.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Torrefaction is a thermal pretreatment process which usually takes place at temperatures between 200–300°C. Torrefied biomass has been proven in numerous studies to have superior combustion properties compared to raw biomass. The objective of this study is to develop a model to estimate solid energy yield, elemental compositions and enthalpy of solid and volatile yield. Formation enthalpy of raw and torrefied biomass is calculated using the correlations developed for elemental compositions and HHV of torrefied biomass. Solid yield is determined by anhydrous weight loss model for torrefied wood. Specific heat correlations for raw biomass and char are used to calculate the sensible heat required for torrefaction process. Sensible heat and formation enthalpy give the total enthalpy for raw and torrefied biomass. During torrefaction, a mixture of volatile compositions is released. Experimental mass fractions of the volatiles components are taken from published literature, which allowed us to determine the enthalpy of formation and specific heat of the volatiles. Finally, the model results associated with the torrefaction process are compared with experimental data.
4

Braukmüller, Ninja, Claudia Funk, Carsten Münker, and Frank Wombacher. "Volatile Elements in Chondrites." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.256.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lodders, K., and B. Fegley. "The origin and evolution of the terrestrial alkali element budget." In Volatiles in the Earth and solar system. AIP, 1995. http://dx.doi.org/10.1063/1.48754.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Russell, Michael J. "On Irish bacteriometallogenesis and its wider connotations." In Irish-type Zn-Pb deposits around the world. Irish Association for Economic Geology, 2023. http://dx.doi.org/10.61153/pbic1076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Rapid and widespread access of surface waters to jostling segments of the upper crust marks the first step to metallogenesis in the Irish early Carboniferous. Overall, siting of these ore-forming systems involves two types of fluid-charged autocatalytic cracking engines. The more obvious is a province-wide diffuse type, excavating downward from the generally submarine surface to where waters are heated, dissolve metals and become buoyant enough to exploit channel ways back to the surface. Another, rather more obscure engine, starts near the mantle-crust boundary and either produces a through-going crustal structure to vectorially guide pressurized mantle volatiles and perhaps accompanying magma toward the surface, or it autonomously drills its way through the entire crust by penetrative convection, as in a diatreme. Either way ore-forming solutions are perhaps best incubated where both engines interact within the crust. But precipitation of minable metal requires structural down warp basins and associated saline, sulphate-reducing microbiome traps. So, whilst there is no unique ex-planation for the distribution of the orebodies, the Navan orebody, its southwest extension (SWEX) and its neigh-bour to the south, Tara Deep, do fall on a putative N-S Geofracture (Gf 3) first proposed in 1968/1969. But the N-S Geofracture hypothesis runs strongly against the “academic” grain! Moreover, no further discoveries can be unequivocally assigned to the hypothesis. So why persist with the notion at all? Well, there have been some other indications of such structures in adjacent countries and, most notably and farthest afield, on Mars which acts as a time machine for our planet! There the seismically active Cerberus Fossae structures have similar crustal joint aspect ratios of 40 to 55km, as with the putative Irish (and Scottish) examples. And five cold springs, sequentially younger to the east, happen to lie well-spaced along a 250km stretch of the northernmost Fossa. Yet there are no signs of mineral sulphide accumulations on Mars. Perhaps lacking there were sulphate-reducing bacteria required for the deposition of economic ores as in Ireland. Indeed, it was the discovery of light sulphate sulphur in the Irish ores, along with lithochemical and geological evidence for an exhalative aspect to them, that inspired the submarine alkaline vent theory (AVT) for the emergence of life. In this theory exothermic serpentinization drives hydrothermal convection cells to produce the exhalations into the Hadean Ocean. Here the free-energy convert-ing iron minerals (oxyhydroxides and sulphides) act as nano-engines in spontaneously precipitated membranes to generate the appropriate organic molecules required for life’s onset from volatile and hydrothermal delivery of CO2, H2, CH4 and the trace elements. These prebiotic nanoengines are powered by the electrical and pH disequilibria focused across the mineral membranes amounting to ~1 volt.
7

Loewen, Matt, Adam Kent, and Pavel Izbekov. "Tracking magmatic volatile and non-volatile trace elements with amphibole in arc magmas." In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.10654.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Roland, Jérôme, Vinciane Debaille, and Steven Goderis. "Moderately volatile elements in CB and CH chondrites." In Goldschmidt2023. France: European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.15337.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fumarola, Alessandro, Y. Leblebici, P. Narayanan, R. M. Shelby, L. L. Sanchez, G. W. Burr, K. Moon, J. Jang, H. Hwang, and S. Sidler. "Non-filamentary non-volatile memory elements as synapses in neuromorphic systems." In 2019 19th Non-Volatile Memory Technology Symposium (NVMTS). IEEE, 2019. http://dx.doi.org/10.1109/nvmts47818.2019.8986194.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nie, Nicole, Xinyang Chen, Timo Hopp, Justin Hu, Zhe Zhang, Fang-Zhen Teng, Anat Shahar, and Nicolas Dauphas. "Incomplete condensation of volatile elements as the cause for volatile depletion in carbonaceous chondrites." In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.10750.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Volatiles Elements":

1

Wimpenny, J. Assessing the Behavior of Moderately Volatile Elements on the Moon in order to Constrain Processes of Magmatic Evolution and Planetary Accretion. Office of Scientific and Technical Information (OSTI), November 2023. http://dx.doi.org/10.2172/2229028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Soltani Dehnavi, A., D. R. Lentz, and C. R. M. McFarlane. LA-ICP-MS analysis of volatile trace elements in massive sulphides and host rocks of selected VMS deposits of the Bathurst Mining Camp, New Brunswick: methodology and application to exploration. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2015. http://dx.doi.org/10.4095/296545.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jung, Carina, Karl Indest, Matthew Carr, Richard Lance, Lyndsay Carrigee, and Kayla Clark. Properties and detectability of rogue synthetic biology (SynBio) products in complex matrices. Engineer Research and Development Center (U.S.), September 2022. http://dx.doi.org/10.21079/11681/45345.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Synthetic biology (SynBio) aims to rationally engineer or modify traits of an organism or integrate the behaviors of multiple organisms into a singular functional organism through advanced genetic engineering techniques. One objective of this research was to determine the environmental persistence of engineered DNA in the environment. To accomplish this goal, the environmental persistence of legacy engineered DNA building blocks were targeted that laid the foundation for SynBio product development and application giving rise to “post-use products.” These building blocks include genetic constructs such as cloning and expression vectors, promoter/terminator elements, selectable markers, reporter genes, and multi-cloning sites. Shotgun sequencing of total DNA from water samples of pristine sites was performed and resultant sequence data mined for frequency of legacy recombinant DNA signatures. Another objective was to understand the fate of a standardized contemporary synthetic genetic construct (SC) in the context of various chassis systems/genetic configurations representing different degrees of “genetic bioavailability” to the environmental landscape. These studies were carried out using microcosms representing different environmental matrices (soils, waters, wastewater treatment plant (WWTP) liquor) and employed a novel genetic reporter system based on volatile organic compounds (VOC) detection to assess proliferation and persistence of the SC in the matrix over time.
4

Bourdeau, J. E., and R. D. Dyer. Regional-scale lake-sediment sampling and analytical protocols with examples from the Geological Survey of Canada. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331911.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Regional-scale lake sediment surveys have been successfully used since the 1970s as a means for reconnaissance geochemical exploration. Lake sediment sampling is typically performed in areas with a lack of streams and an overabundance of small-sized (=5 km across) lakes. Lake sediments are known to have major, minor and trace element concentrations that reflect the local geology. Overall, lake sediment surveys are planned and conducted following four distinct stages: 1) background research, 2) orientation survey, 3) regional survey, and 4) detailed survey. At the Geological Survey of Canada, samples are usually collected from a helicopter with floats. Sample density ranges from 1 sample per 6 - 13 km2. Samples are collected from the centre of the lake using a gravity torpedo sampler which corresponds to a hollow-pipe, butterfly bottom-valved sampler attached by a rope to the helicopter. Collected sediment samples are then placed in labelled bags and left to air dry. Detailed field notes and additional samples (field duplicates), for the purpose of an adequate quality assurance and quality control program, are also taken. Samples are then milled and sent to analytical laboratories for element determination. Commonly used analytical methods include: X-ray fluorescence (XRF), atomic absorption spectroscopy (AAS), inductively coupled plasma-atomic emission spectrometry (ICP-AES) and -mass spectrometry (ICP-MS), instrumental neutron activation analysis (INAA), and/or determination of volatile compounds and organic carbon using Loss on Ignition (LOI). Analytical data is first evaluated for quality (contamination, accuracy and precision). Numerous options for the analysis of lake sediment data exist, ranging from simple basic element concentration maps and statistical graphical displays together with summary statistics, to employing multivariate methodologies, and, more recently, using machine learning algorithms. By adopting the set of guidelines and examples presented in this manual, scientific researchers, exploration geologists, geochemists and citizen scientists will be able to directly compare lake sediment datasets from anywhere in Canada.
5

Dehnavi, A. S., C. R. M. McFarlane, S. H. McClenaghan, and D. R. Lentz. In situ LA-ICP-MS of sulfide minerals in VMS deposits throughout the Bathurst Mining Camp, New Brunswick, Canada: volatile trace-element contents and distribution with implications for their syngenetic to polyphase metamorphic history. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2014. http://dx.doi.org/10.4095/293681.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kyllönen, Katriina, Karri Saarnio, Ulla Makkonen, and Heidi Hellén. Verification of the validity of air quality measurements related to the Directive 2004/107/EC in 2019-2020 (DIRME2019). Finnish Meteorological Institute, 2020. http://dx.doi.org/10.35614/isbn.9789523361256.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This project summarizes the results from 2000–2020and evaluates the trueness andthequality control (QC) procedures of the ongoing polycyclic aromatic hydrocarbon (PAH)and trace element measurements in Finlandrelating to Air Quality (AQ) Directive 2004/107/EC. The evaluation was focused on benzo(a)pyrene and other PAH compounds as well as arsenic, cadmium and nickel in PM10and deposition. Additionally, it included lead and other metals in PM10and deposition, gaseous mercury and mercury deposition, andbriefly other specificAQ measurements such as volatile organic compounds (VOC)and PM2.5chemical composition. This project was conducted by the National Reference Laboratory on air quality and thiswas the first time these measurements were assessed. A major part of the project was field and laboratory audits of the ongoing PAH and metal measurements. Other measurements were briefly evaluated through interviews and available literature. In addition, the national AQ database, the expertise of local measurement networks and related publications were utilised. In total, all theseven measurement networks performing PAH and metal measurements in 2019–2020took part in the audits. Eleven stations were audited while these measurements are performed at 22 AQ stations in Finland. For the large networks, one station was chosen to represent the performance of the network. The audits included also six laboratories performing the analysis of the collected samples. The audits revealed the compliance of the measurements with the AQ Decree 113/2017, Directive 2004/107/EC and Standards of the European Committee for Standardization(CEN). In addition, general information of the measurements, instruments and quality control procedures were gained. The results of the laboratory audits were confidential,but this report includes general findings, and the measurement networks were informed on the audit results with the permission of the participating laboratories. As a conclusion, the measurementmethodsusedwere mainly reference methods. Currently, all sampling methods were reference methods; however, before 2018 three networks used other methods that may have underestimated concentrations. Regarding these measurements, it should be noted the results are notcomparable with the reference method. Laboratory methods were reference methods excluding two cases, where the first was considered an acceptable equivalent method. For the other, a change to a reference method was strongly recommended and this realized in 2020. For some new measurements, the ongoing QC procedures were not yet fully established, and advice were given. Some networks used consultant for calibration and maintenance, and thus theywere not fully aware of the QC procedures. EN Standards were mostly followed. Main concerns were related to the checks of flow and calculation of measurement uncertainty, and suggestions for improvement were given. When the measurement networks implement the recommendations given inthe audits, it can be concluded that the EN Standards are adequately followed in the networks. In the ongoing sampling, clear factors risking the trueness of the result were not found. This applies also for the laboratory analyses in 2020. One network had concentrations above the target value, and theindicative measurementsshould be updated to fixed measurements.

До бібліографії