Добірка наукової літератури з теми "Voie des MAP kinases"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Voie des MAP kinases".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Voie des MAP kinases"
Dereure, O. "La voie des MAP-kinases dans les génodermatoses : de nouveaux développements." Annales de Dermatologie et de Vénéréologie 133, no. 12 (December 2006): 1031. http://dx.doi.org/10.1016/s0151-9638(06)71096-1.
Повний текст джерелаMourah, S. "Étude la voie MAP kinases dans la pathogénie de l’histiocytose Langheransienne pulmonaire de l’adulte." Revue des Maladies Respiratoires 31 (January 2014): A203. http://dx.doi.org/10.1016/j.rmr.2013.10.151.
Повний текст джерелаFierrard, H., and M. L. Raffin-Sanson. "Un nouveau mécanisme d'activation de la voie des MAP kinases dans le cancer papillaire thyroïdien." EMC - Endocrinologie - Nutrition 2, no. 1 (January 2005): 1–2. http://dx.doi.org/10.1016/s1155-1941(05)44140-2.
Повний текст джерелаFierrard, H., and M. L. Raffin-Sanson. "Un nouveau mécanisme d'activation de la voie des MAP kinases dans le cancer papillaire thyroïdien." EMC - Endocrinologie 2, no. 4 (December 2005): 265–67. http://dx.doi.org/10.1016/j.emcend.2005.09.002.
Повний текст джерелаDereure, O. "Implication de la voie des MAP-kinases dans les nævus sébacés et le syndrome de Schimmelpenning." Annales de Dermatologie et de Vénéréologie 140, no. 4 (April 2013): 326–27. http://dx.doi.org/10.1016/j.annder.2013.02.009.
Повний текст джерелаDereure, O. "Anomalies de la voie des MAP Kinases dans le mélanome : B-RAF n’est pas seul en cause." Annales de Dermatologie et de Vénéréologie 139, no. 10 (October 2012): 691–92. http://dx.doi.org/10.1016/j.annder.2012.04.157.
Повний текст джерелаBouskine, A., M. Nebout, B. Mograbi, S. Lambard, G. Pointis, S. Carreau, and P. Fénichel. "CO17 - Contrôle estrogénique de la prolifération des cellules séminomateuses humaines par une voie non génomique impliquant les map-kinases." Annales d'Endocrinologie 65, no. 4 (September 2004): 261–62. http://dx.doi.org/10.1016/s0003-4266(04)95698-3.
Повний текст джерелаDereure, O. "Mutation du promoteur de Tert dans le mélanome : la voie des MAP-kinases n’est décidément pas seule en cause." Annales de Dermatologie et de Vénéréologie 140, no. 6-7 (June 2013): 487–88. http://dx.doi.org/10.1016/j.annder.2013.04.071.
Повний текст джерелаFrouin, E., B. Guillot, M. Larrieux, A. Tempier, N. Boulle, C. Girard, V. Costes, and J. Solassol. "Étude moléculaire de lésions épithéliales cutanées induites par vemurafenib chez des patients atteints de mélanome métastatique : une activation de la voie des MAP-Kinases." Annales de Dermatologie et de Vénéréologie 140, no. 12 (December 2013): S395. http://dx.doi.org/10.1016/j.annder.2013.09.075.
Повний текст джерелаHanauer, A., E. Trivier, D. De Cesare, S. Jacquot, S. Pannetier, P. Sassone-Corsi, and JL Mandel. "Le syndrome de Coffin-Lowry : une anomalie de la transduction du signal (voie Ras/MAP kinase)." médecine/sciences 13, no. 1 (1997): 107. http://dx.doi.org/10.4267/10608/317.
Повний текст джерелаДисертації з теми "Voie des MAP kinases"
Chetoui, Nizar. "Caractérisation du rôle de la protéine kinase MEK1 dans les voies de transduction des MAP kinases." Thesis, Université Laval, 2005. http://www.theses.ulaval.ca/2005/22589/22589.pdf.
Повний текст джерелаAoidi, Rifdat. "Étude du rôle de la voie ERK/MAPK dans le développement embryonnaire chez la souris." Doctoral thesis, Université Laval, 2017. http://hdl.handle.net/20.500.11794/27476.
Повний текст джерелаLes mammifères possèdent deux MAP kinases kinases (MEK1 et MEK2), impliquées dans l’activation de la voie ERK/MAPK essentielle pour la différenciation, la prolifération et la survie cellulaire. Le premier objectif de cette thèse était de déterminer si les fonctions des kinases MEK1 et MEK2 sont redondantes durant le développement embryonnaire. Les souris Mek1-/- meurent à mi-gestation d’une malformation du placenta. Les souris Mek2-/- ne présentent aucun phénotype majeur, suggérant que ces deux protéines ont des rôles différents. Cependant, la plupart des mutants Mek1+/-Mek2+/- meurent pendant la gestation d’un sous-développement du placenta, indiquant que Mek1 et Mek2 ont chacun un rôle dans le développement des tissus extraembryonnaires. À ce jour aucune évidence claire ne permet de statuer sur la redondance fonctionnelle de MEK1 et MEK2. Afin de vérifier la spécificité fonctionnelle de Mek1 et Mek2, nous avons généré au laboratoire un allèle « knockin », exprimant l’ADNc de Mek2 sous contrôle du locus Mek1 (Mek12). L’analyse de ces souris a révélé la redondance fonctionnelle entre MEK1 et MEK2. L’analyse de combinaisons alléliques de Mek a démontré qu’une expression minimale de protéines MEK est cruciale pour le développement embryonnaire et la survie. Le second objectif de cette thèse était de caractériser les mutants Mp1. Les protéines d’échafaudage permettent de moduler l’activité de la voie ERK/MAPK et facilitent la transmission rapide du signal. Parmi les protéines d’échafaudage connues, seule MP1 (Mek Partner 1) a été identifiée comme étant un partenaire spécifique de MEK1 et ERK1. Cette spécificité suggère que MP1 pourrait contribuer à la différence d’activation de MEK1 et MEK2 en spécifiant le signal qui passe par Mek1. Afin d’étudier le rôle de Mp1 au cours du développement chez la souris, nous avons généré des souris Mp1-/-. L’analyse de ces mutants indique que le gène Mp1 est essentiel pour la survie et que sa fonction est nécessaire suite à la post-implantation. La dérégulation de la voie ERK/MAPK dans le développement chez l’homme a aussi des conséquences phénotypiques. Au cours des dernières années, une classe de syndromes a été caractérisée : Les « Rasophaties ». Ces syndromes partagent des caractéristiques communes qui sont, une mutation dans des gènes de la voie ERK/MAPK, une dysmorphologie cranio-faciale, des malformations cardiaques et cutanées ainsi qu’un retard mental. Parmi les mutations de la voie ERK/MAPK qui ont été identifiées, une mutation ponctuelle dans le gène Mek1 (Mek1Y130C) cause le syndrome Cardio-Facio-Cutané (CFC). Le dernier objectif de cette thèse était de générer un modèle animal pour le CFC portant la mutation Mek1Y130C. Les souris portant l’allèle Mek1Y130C présentent les phénotypes associés au CFC (i.e sténose pulmonaire, dysmorphologie cranio-faciale et défauts neurologiques).
Mammals possess two MAP kinase kinase (MEK1 and MEK2), involved in ERK/MAPK pathway. This pathway is essential for proliferation, differentiation and cell survival. The first objective of my thesis was to determinate if MEK1 and MEK2 kinases are redundant during embryonic development. Mek1-/- mice die at embryonic day E10.5 due to placental defects, whereas Mek2-/- mice survive with a normal lifespan suggesting that MEK1 possesses functions not shared by MEK2. However, most Mek1+/-Mek2+/- embryos also die from placental defects, indicating that both Mek genes contribute to placental development. To date, no clear evidence on MEK1 and MEK2 redundancy has been provided. To assess the functional specificity of the Mek1 and Mek2 genes, we produced a Mek1-knockin allele in which the Mek2 coding sequences were placed under the control of Mek1 regulatory sequences. Analyzing these mice allowed us to demonstrate that MEK1 and MEK2 can substitute for each other and that a minimal amount of MEK is critical for placenta development and embryo survival. The second objective of my thesis was to characterize Mp1 mutants. Scaffold proteins modulate MAPK pathway by providing spatial and temporal specificity. Among known ERK/MAPK scaffold proteins, only MP1 (Mek Partner 1) is specific to MEK1 and ERK1, raising the question of the specificity of MP1 in the regulation of ERK/MAPK pathway via MEK1. In order to investigate Mp1 function in vivo, we generated Mp1 knock-out mice. Analyzing these mice enable us to suggest that Mp1 is required for embryonic development and is essential during post-implantation. Deregulation of Ras/MAPK pathway also causes developmental phenotypes in human. During the last decade, a new class of syndromes, which share common phenotypes such as mutations in Ras/MAPK pathway, cranio-facial dysmorphology, cardiac and cutaneous malformations and neurological delay has been described and named Rasophaties. Among the DNA mutations found in rasopathies, the Mek1 mutation, Mek1Y130C, causes cardio-facio-cutaneous syndrome (CFC). The last objective of my thesis was to generate a mouse model of CFC, with the Mek1Y130C mutation. I found that mice carrying the Mek1Y130C mutation partially recapitulate CFC syndrome (i.e pulmonary stenosis, crani-facial dysmophia and neurological defects).
Bouaouina, Mohamed. "Etude de la voie de signalisation activatrice des intégrines beta2 et beta3 dans les neutrophiles et les plaquettes." Paris 6, 2004. http://www.theses.fr/2004PA066013.
Повний текст джерелаPellegrino, Christophe. "Neurotoxicité et neuroprotection médiées par les récepteurs NMDA : organisation spacio-temporelle de la voie des MAP kinases." Aix-Marseille 2, 2009. http://theses.univ-amu.fr.lama.univ-amu.fr/2009AIX22032.pdf.
Повний текст джерелаMy thesis project, is centered on the dichotomous role of the NMDAR and on the activation of the MAPKs signaling pathways. Many deseases and physiologic processes of the central nervous system are under control of the same type of molecules. This molecule is the NMDAR. This ionotropic glutamate receptor can trigger different responses based upon different stimuli. This discrepancy in neuronal cells could lead i) to physiologic responses such as LTP, LTD, neurite outgrowth and synapse formation, ii) to physiopathologic respones and as a final consequence could trigger cell death. The mechanisms underlying these phenomenom are not well known. It becomes crucial to determine how the NMDAR can discriminate between these different situmuli. Previous publications (Ivanov et al. , 2006;Krapivinsky et al. , 2003;Krapivinsky et al. , 2004) have all in common to highlight a specific coupling between NMDAR and the signaling cascades (Ras, Rap). Our work suggests that NMDAR could modulate ERK and p38 MAPK pathways. My hypothesis is that the selectivity occurs at different level, i) depending on the localization of the receptor, ii) depending on the composition of the receptor, iii) and finally depending on the signaling pathway linked to the receptor. During these three years, i tried to understand how these stimuli could modulate the NMDAR. This work leads me i) to develop some technical tools (Ackman et al. , 2009;Buerli et al. , 2007), ii) to make some important discoveries on the NMDAR functionning. That exists a differential ERK regulation depending on the location of the NMDAR (Ivanov et al. , 2006). That specific isoforms of p38 have differential functions in neuronal cells (Pellegrino et al. , in preparation)
Devemy, Emmanuelle. "Transduction du signal de l'erythropoietine : voie des map kinases et systeme glycosylphosphatidylinositol/inositolphosphate-glycanne ; etude dans des cellules normales et cancereuses." Reims, 1995. http://www.theses.fr/1995REIMP203.
Повний текст джерелаJager, Jennifer. "Implication de la voie de signalisation des MAP kinases ERK dans l'inflammation du tissu adipeux et l'insulinorésistance lors de l'obésité." Nice, 2009. http://www.theses.fr/2009NICE4082.
Повний текст джерелаObesity and type 2 diabetes are characterized by a resistance of the peripheral tissue to insulin action. In obesity, proinflammatory cytokines (TNFα, IL-1β) produced by adipose tissue are involved in the development of insulin resistance. Identification of the mechanisms linking inflammation and insulin resistance would be helpful to design new therapeutic targets to prevent type 2 diabetes. We have shown in vitro that pharmacological inhibition of the MAP kinase ERK pathway prevents IL-1β-induced insulin resistance in adipocytes. To investigate the role of ERK pathway in obesity-induced insulin resistance in vivo, we have invalidated ERK1 in obese and insulin resistant mice. The ob/ob-Erk1-/- mice obtained are obese but show an improvement of the insulin sensitivity, a decrease in adipose tissue inflammation and these mice are partially protected from hepatic steatosis. In a second part we have shown that the kinase Tpl2 specifically mediates inflammatory cytokines effects on ERK activation, lipolysis activation and IRS-1 serine phosphorylation in adipocytes. Moreover, we have shown that IL-1β and TNFα up-regulate Tpl2 expression in an IKKβ/NF-κB-dependant maner, which could explain the deregulated expression of Tpl2 in adipose tissue of obese mice and patients. These results show the implication of ERK pathway in obesity-induced insulin resistance, and that the Tpl2 kinase could be a new pharmacological target to fight type 2 diabetes
Nicolini, Victoria. "Caractérisation de nouvelles voies cellulaires permettant la régulation des Processing-bodies dans le cancer." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ6007.
Повний текст джерелаProcessing-bodies (P-bodies) are cytoplasmic membraneless biocondensates that play an important role in various cellular processes by controlling RNA translation and decay. P-bodies are formed by the coalescence of untranslated mRNA and multiple RNA-binding proteins through liquid-liquid phase separation. Despite recent discoveries about their own key components, the cellular pathways that control the regulation of P-bodies are poorly understood. In this context, we have conducted a high content screening of FDA approved drugs to identify targets able to modulate P-body metabolism.For the first part of my PhD project, we decided to work on drugs that affect P-body dissolution with consequences on oncogene translation. In many human cancers, the MAPK (Mitogen Activated Protein Kinase) pathway is overactivated. Therefore, therapies targeting this pathway have been developed, such as MEK inhibitors, but these lead to resistance in cancer. One possible pathway of resistance has been linked to compensatory RAS oncogenes overexpression but the mechanisms underlying this response remained unclear. We found that upon treatment with MEK inhibitor treatment, P-bodies are dissolved leading to an increase of translation of KRAS and NRAS, two oncogenes upstream of the MAPK pathway. Overall, we have described a new feedback loop mechanism involving P-bodies in the translational regulation of RAS oncogenes and MAPK signaling.For the second part of my project, we worked on modulators that enhance P-body formation. We uncovered that glucocorticoids (GC) were able to reshape P-body number and size after 48 hours of treatment. By combining microscopy and biochemistry experiments, we found that this P-body regulation was associated with the dose-dependent activation of the glucocorticoid receptor (GR) in response to its ligand (such as dexamethasone, a GC). To better understand the link between GR activation and P-body formation, we studied the GR isoforms, of which the alpha and beta isoforms are the most abundant. The GR alpha isoform is known to bind to GC whereas the beta isoform has lost this ability. Therefore, we wanted to decipher what influence the different GR isoforms have on P-body regulation. To do this, we used CRISPR Cas9 cells in which GR was deleted and we compensated this deletion with either the alpha or beta isoform and different mutants. Our results show that the alpha isoform is responsible for GR signaling pathway activation. This activation leads to an increase in P-body number and a decrease in their size, implying that this isoform is important for P-body regulation. Overall, our results reveal a link between the activation of GR alpha and the P-body regulation. We now plan to perform transcriptomic and proteomic analysis on our cells to determine whether GC-induced GR leads to an alteration of mRNA/protein correlation and to find targets that directly regulate P-body formation through GR activation.To conclude, my PhD project focused on deciphering new cellular pathways that control the metabolism of the P-bodies. We demonstrated that drugs can have different effects on the formation of P-bodies, thereby modifying their content and consequently affecting mRNA translation. This phenomenon could be involved in the development of resistance and/or side effects to drugs
Placet, Morgane. "CDK8 : une cible de la voie KRAS/MAP Kinase dans la carcinogénèse colorectale." Mémoire, Université de Sherbrooke, 2014. http://savoirs.usherbrooke.ca/handle/11143/572.
Повний текст джерелаCagnol, Sébastien. "Contrôle de la mort cellulaire par la voie des MAPK 1/3 (ERK 2/1)." Nice, 2005. http://www.theses.fr/2005NICE4033.
Повний текст джерелаProgrammed cell death or"apoptosis"is an evolutionary conserved feature of multicellular organisms necessary for normal development and tissue homeostasis. In living cells, the activity of the proteases that execute the apoptotic cell death program, the caspases, is controlled by survival signals emanating from the cellular environment. The regulatory components of the caspase cascade, caspase 9 and caspase 8, are activated respectively by the apoptosome and by death receptors. Survival signals elicited by extracellular matrix or growth factors activate signaling pathways that control the cell death machinery. The MAPK1/3 signaling pathway is a kinase cascade comprising Raf, MEK1/2 and MAPK1/3 (ERK1/2 or p42/p44 MapKinases) regulated by the proto-oncogene Ras. The MAPK1/3 pathway is implicated in cell proliferation and differentiation and plays an essential role in cell survival. This thesis objective was to characterize the molecular mechanisms involved in the control of cell death by MAPK1/3 pathway. This study relies on the use of an inducible form of Raf-1 kinase (DRaf-1:ER) those strong and persistent activation leads to a pathological induction of MAPK1/3 activity. We have been able to show that, depending on the cell type, DRaf-1:ER activation favors cell survival or induces cell death. In the lung fibroblastic cell line CCL39, DRaf-1:ER activation prevents cell death induced by serum withdrawal from the tissue culture medium. Under this experimental setting, we could show that DRaf-1:ER stimulation inhibits caspase 9 activation but did not prevent cytochrome c release, APAF1 oligomerization and caspase 9 recruitment in the apoptosome. This novel mechanism of cell death inhibition at a post-mitochondrial level requires ongoing protein synthesis and continuous MEK kinase activity. In HEK293, an embryonic kidney cell line that bares properties of neuronal lineage cells, sustained activation of the MAPK1/3 pathway in response to DRaf-1:ER induces massive cell death. Cell death is characterized by caspases activation and DNA fragmentation. It is a slow process, detectable more than 24 hours after DRaf-1:ER stimulation and maximal at 48 hours. Cell death induction needs protein synthesis only during the early stage of activation but requires a continuous activity of the MEK/MAPK module. Cell death results from caspase 8 activation and does not require the mitochondrial pathway of apoptosis. It is characterized by the formation of vacuoles in the cytoplasm that evoke paraptosis, a particular form of apoptosis. Functional inactivation of the death receptor Fas or its adaptator FADD indicates that the activation process of caspase 8 is independent of the death receptor pathway. Altogether, these results extend our understanding on the role of the Raf/MAPk pathway in the control of cell death. We have shown that in different cellular context, this signaling pathway can either promote cell survival or induce cell death. In both cases, cell death control requires protein synthesis and post-traductionnal modifications. Molecular mechanisms that respond to prolonged MAPK1/3 activation could be involved in tumor resistance to proapoptotic treatments as well as in the development of neurodegenerative diseases
Ant, Cemile. "Rôle de la voie de signalisation MAP kinase Mps1 dans la pathogénie fongique et dans le contrôle de l'intégrité de la paroi." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00603704.
Повний текст джерелаКниги з теми "Voie des MAP kinases"
Komis, George, and Jozef Šamaj, eds. Plant MAP Kinases. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0922-3.
Повний текст джерелаHirt, Heribert, ed. MAP Kinases in Plant Signal Transduction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-540-49166-8.
Повний текст джерела1956-, Hirt Heribert, ed. MAP kinases in plant signal transduction. Berlin: Springer, 2000.
Знайти повний текст джерелаFrancesc, Posas, and Nebreda Angel R, eds. Stress-activated protein kinases. New York: Springer, 2008.
Знайти повний текст джерелаStevens, Ken. Characterization of two novel substrates of the mating pheromone map kinases in the budding yeast saccharomyces cervisiae. Ottawa: National Library of Canada, 1996.
Знайти повний текст джерелаHirt, Heribert. Map Kinases in Plant Signal Transduction. Springer, 2012.
Знайти повний текст джерелаMap Kinases in Plant Signal Transduction. Island Press, 1999.
Знайти повний текст джерелаPlant MAP kinases: Methods and protocols. New York: Humana Press, 2014.
Знайти повний текст джерелаHirt, Heribert. MAP Kinases in Plant Signal Transduction. Springer London, Limited, 2012.
Знайти повний текст джерелаAmaj, Jozef, and George Komis. Plant Map Kinases: Methods and Protocols. Springer New York, 2016.
Знайти повний текст джерелаЧастини книг з теми "Voie des MAP kinases"
Robert, Jacques. "La voie des MAP kinases." In Signalisation cellulaire et cancer, 45–58. Paris: Springer Paris, 2010. http://dx.doi.org/10.1007/978-2-8178-0028-8_3.
Повний текст джерелаGewies, Andreas, Jürgen Ruland, Alexey Kotlyarov, Matthias Gaestel, Shiri Procaccia, Rony Seger, Shin Yasuda, et al. "MAP Kinases." In Encyclopedia of Signaling Molecules, 1045. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_100746.
Повний текст джерелаWilson, Cathal, and Erwin Heberle-Bors. "MAP Kinases in Pollen." In Results and Problems in Cell Differentiation, 39–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-540-49166-8_4.
Повний текст джерелаHirt, Heribert. "MAP Kinases in Plant Signal Transduction." In Results and Problems in Cell Differentiation, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-540-49166-8_1.
Повний текст джерелаZhang, Shuqun, and Daniel F. Klessig. "Pathogen-Induced MAP Kinases in Tobacco." In Results and Problems in Cell Differentiation, 65–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-540-49166-8_6.
Повний текст джерелаSours, Kevin M., and Natalie G. Ahn. "Analysis of MAP Kinases by Hydrogen Exchange Mass Spectrometry." In MAP Kinase Signaling Protocols, 239–55. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-795-2_14.
Повний текст джерелаBurkhard, Kimberly, and Paul Shapiro. "Use of Inhibitors in the Study of MAP Kinases." In MAP Kinase Signaling Protocols, 107–22. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-795-2_6.
Повний текст джерелаPandey, Sanjay K., Jean-Louis Chiasson, and Ashok K. Srivastava. "Vanadium salts stimulate mitogen-activated protein (MAP) kinases and ribosomal S6 kinases." In Vanadium Compounds: Biochemical and Therapeutic Applications, 69–78. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4613-1251-2_8.
Повний текст джерелаTarcic, Gabi, and Yosef Yarden. "MAP Kinase Activation by Receptor Tyrosine Kinases: In Control of Cell Migration." In MAP Kinase Signaling Protocols, 125–35. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-795-2_7.
Повний текст джерелаIndrigo, Marzia, Alessandro Papale, Daniel Orellana, and Riccardo Brambilla. "Lentiviral Vectors to Study the Differential Function of ERK1 and ERK2 MAP Kinases." In MAP Kinase Signaling Protocols, 205–20. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-795-2_12.
Повний текст джерелаТези доповідей конференцій з теми "Voie des MAP kinases"
Lee, MM, V. Makarenko, J. Nanduri, P. Usatyuk, V. Natarajan, and NR Prabhakar. "Intermittent Hypoxia Alters Endothelial Cell Barrier Function: Role of ROS and MAP Kinases." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a1065.
Повний текст джерелаDyugovskaya, Larissa, Andrey Polyakov, Peretz Lavie, and Lena Lavie. "Intermittent Hypoxia-induced Neutrophil Survival Is Mediated Via Mitochondrial Pathways By MAP Kinases Activation." In American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a6635.
Повний текст джерелаHung, Clark T., Changbin B. Wang, Ross Henshaw, Wilmot B. Valhmu, and Mary B. Goldring. "Toward Defining the Role of Ca2+ and MAP Kinases in Fluid-Induced Shear Regulation of Aggrecan in Chondrocytes." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0030.
Повний текст джерелаPetin, Y. O., M. Y. Bibov, and A. B. Uzdensky. "The involvement of MAP kinases JNK and p38 in photodynamic injury of crayfish neurons and glial cells." In SPIE Proceedings, edited by Valery V. Tuchin. SPIE, 2007. http://dx.doi.org/10.1117/12.741008.
Повний текст джерелаVarfolomeev, Evgeny, Tatiana Goncharov, Heather Maecker, Kerry Zobel, Laszlo Komuves, Kurt Deshayes, and Domagoj Vucic. "Abstract 2151: Activation of NF-kB and MAP kinases by TNF Family Receptors is regulated by cellular IAPs." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-2151.
Повний текст джерелаNishino, Hoyoku. "Abstract 778: Implication of MAP kinases in the induction of G1 arrest and gadd45 expression by fucoxanthin, a natural carotenoid." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-778.
Повний текст джерелаPendyala, S., I. Gorshkova, PV Usatyuk, D. He, Y. Zhao, J. Moitra, S. Kalari, JG Garcia, and V. Natarajan. "Nrf2 Regulation of Hyperoxia-Mediated Nox4 Expression and ROS Production in Lung Endothelium: Role of Rac1, MAP Kinases and Redox Status." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a3861.
Повний текст джерелаGhio, Andrew J., Joleen M. Soukup, Lisa A. Dailey, Haiyan Tong, Wan-Yun Cheng, James M. Samet, Mathew Kesic, et al. "Particle Complexation Of Mitochondrial Iron Produces Superoxide Generation And Activates MAP Kinases, NF-kappa B, And Nrf-2 In Human Respiratory Epithelial Cells." In American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a3234.
Повний текст джерелаAli-Osman, Francis, Tatsunori Okamura, Ryan Turley, Andrew Barker, James G. Keck, Edgardo Laborde, Danying Cai, and Robert Mascata. "Abstract B229: Novel ezatiostat analogues disrupt binding of GSTP1 to all three major MAP kinases (JNK, ERK and p38) and exhibit context-dependent antitumor activity." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Nov 12-16, 2011; San Francisco, CA. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1535-7163.targ-11-b229.
Повний текст джерелаZayoud, Morad, Iris Barshack, Einav Vax, and Itamar Goldstein. "SAT0044 HIGH THERAPEUTIC EFFICACY OF ORAL RAS INHIBITORS IN COLLAGEN INDUCED ARTHRITIS: INHIBITION OF RELEVANT MAP-KINASES AND THE CONSEQUENT INDUCTION OF AUTOREACTIVE PATHOGENIC T CELLS AND AUTOANTIBODIES." In Annual European Congress of Rheumatology, EULAR 2019, Madrid, 12–15 June 2019. BMJ Publishing Group Ltd and European League Against Rheumatism, 2019. http://dx.doi.org/10.1136/annrheumdis-2019-eular.4548.
Повний текст джерелаЗвіти організацій з теми "Voie des MAP kinases"
Kyosseva, Svetlana V., Sudipta Seal, and James F. McGinnis. Cerium Oxide Nanoparticles Inhibit Map Kinases Activation in the Retina of VLDLR Mouse Model of Age-related Macular Degeneration. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, November 2018. http://dx.doi.org/10.7546/crabs.2018.11.07.
Повний текст джерелаSessa, Guido, та Gregory Martin. MAP kinase cascades activated by SlMAPKKKε and their involvement in tomato resistance to bacterial pathogens. United States Department of Agriculture, січень 2012. http://dx.doi.org/10.32747/2012.7699834.bard.
Повний текст джерела