Добірка наукової літератури з теми "Very Large Floating Structures"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Very Large Floating Structures".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Very Large Floating Structures"
Cengiz Ertekin, R., Jang Whan Kim, Koichiro Yoshida, and Alaa E. Mansour. "Very large floating structures (VLFS) Part I." Marine Structures 13, no. 4-5 (July 2000): 215–16. http://dx.doi.org/10.1016/s0951-8339(00)00037-x.
Повний текст джерелаCengiz Ertekin, R., Jang Whan Kim, Koichiro Yoshida, and Alaa E. Mansour. "Very large floating structures (VLFS) Part II." Marine Structures 14, no. 1-2 (January 2001): 3–4. http://dx.doi.org/10.1016/s0951-8339(01)00004-1.
Повний текст джерелаNAKAHIRA, Tatsuya, Taro KAKINUMA, Ko YAMAMOTO, Kei YAMASHITA, and Takahiro MURAKAMI. "Can Very Large Floating Structures Reduce Tsunami Height?" Journal of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering) 70, no. 2 (2014): I_911—I_915. http://dx.doi.org/10.2208/kaigan.70.i_911.
Повний текст джерелаNewman, J. N. "Efficient hydrodynamic analysis of very large floating structures." Marine Structures 18, no. 2 (March 2005): 169–80. http://dx.doi.org/10.1016/j.marstruc.2005.07.003.
Повний текст джерелаWang, C. M., and Z. Y. Tay. "Very Large Floating Structures: Applications, Research and Development." Procedia Engineering 14 (2011): 62–72. http://dx.doi.org/10.1016/j.proeng.2011.07.007.
Повний текст джерелаKagemoto, Hiroshi, and Dick K. P. Yue. "Hydrodynamic interaction analyses of very large floating structures." Marine Structures 6, no. 2-3 (January 1993): 295–322. http://dx.doi.org/10.1016/0951-8339(93)90025-x.
Повний текст джерелаChe, Xiling, Dayun Wang, Minglun Wang, and Yingfan Xu. "Two-Dimensional Hydroelastic Analysis of Very Large Floating Structures." Marine Technology and SNAME News 29, no. 01 (January 1, 1992): 13–24. http://dx.doi.org/10.5957/mt1.1992.29.1.13.
Повний текст джерелаHadizadeh Asar, Tannaz, Keyvan Sadeghi, and Arefeh Emami. "Free Vibration Analysis of Very Large Rectangular Floating Structures." International Journal of coastal and offshore engineering 2, no. 1 (June 1, 2018): 59–66. http://dx.doi.org/10.29252/ijcoe.2.1.59.
Повний текст джерелаErtekin, R. C., H. R. Riggs, X. L. Che, and S. X. Du. "Efficient Methods for Hydroelastic Analysis of Very Large Floating Structures." Journal of Ship Research 37, no. 01 (March 1, 1993): 58–76. http://dx.doi.org/10.5957/jsr.1993.37.1.58.
Повний текст джерелаMaeda, Hisaaki, Koichi Masuda, Shogo Miyajima, and Tomoki Ikoma. "Hydroelasitic Responses of Pontoon Type Very Large Floating Offshore Structures." Journal of the Society of Naval Architects of Japan 1996, no. 180 (1996): 365–71. http://dx.doi.org/10.2534/jjasnaoe1968.1996.180_365.
Повний текст джерелаДисертації з теми "Very Large Floating Structures"
Carter, Benjamin. "Water-wave propagation through very large floating structures." Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/12031.
Повний текст джерелаCrema, Ilaria [Verfasser], and Hocine [Akademischer Betreuer] Oumeraci. "Oscillating water column wave energy converters integrated in very large floating structures / Ilaria Crema ; Betreuer: Hocine Oumeraci." Braunschweig : Technische Universität Braunschweig, 2018. http://d-nb.info/1175815357/34.
Повний текст джерелаJin, Jingzhe. "A mixed mode function : boundary element method for very large floating structure : water interaction systems excited by airplane landing impacts." Thesis, University of Southampton, 2008. https://eprints.soton.ac.uk/52018/.
Повний текст джерелаTalamini, Brandon Louis. "Simulation of deformation and fracture in very large shell structures." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/103420.
Повний текст джерелаThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 207-221).
Although advances in computing have increased the limits of three-dimensional computational solid mechanics, structural elements remain essential in the practical design of very large thin structures such as aircraft fuselages, ship hulls, automobiles, submarines, and pressure vessels. In many applications, fracture is a critical design concern, and thus the ability to numerically predict crack propagation in shells is a highly desirable goal. There are relatively few tools devoted to computational shell fracture, and of the existing approaches, there are two main defects: First, the existing methods are not scalable, in the sense of parallel computing, and consequently simulation of large structures remains out of reach. Second, while the existing approaches treat in-plane tensile failure, fracture due to transverse shearing has largely been ignored. In this thesis, a new computational framework for simulating deformation and fracture in large shell structures is presented that is well-suited to parallel computation. The scalability of the framework derives from the combination of a discontinuous Galerkin (DG) finite element method with an interface element-based cohesive zone representation of fracture. This representation of fracture permits arbitrary crack propagation, branching, and merging, without on-the-fly mesh topological changes. Furthermore, in parallel computing, this propagation algorithm is indifferent to processor boundaries. The adoption of a shear-flexible shell theory is identified as a necessary condition for modeling transverse shear failure, and the proposed method is formulated accordingly. Locking is always an issue that emerges in numerical analysis of shear-flexible shells; here, the inherent flexibility afforded by DG methods in the choice of approximation spaces is exploited to prevent locking naturally, without recourse to mixed methods or reduced integration. Hence, the DG discretization elegantly solves both the problems of scalability and locking simultaneously. A stress resultant-based cohesive zone theory is proposed that considers transverse shear, as well as bending and in-plane membrane forces. The theory is quite general, and the specification of particular constitutive relations, in the form of resultant traction-separation laws, is independent of the discretization scheme. Thus, the proposed framework should be extensible and useful for a variety of applications. A detailed description of the implementation strategy is provided, and numerical examples are presented which demonstrate the ability of the framework to capture all of the relevant modes of fracture in thin bodies. Finally, a numerical example of explosive decompression in a commercial airliner is shown as evidence that the proposed framework can successfully perform shell fracture simulations of unprecedented size.
by Brandon Louis Talamini.
Ph. D.
Gordon, Christal. "An adaptive floating-gate network using action-potential signaling." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/15683.
Повний текст джерелаKucic, Matthew R. "Analog programmable filters using floating-gate arrays." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/13755.
Повний текст джерелаTwigg, Christopher M. "Floating Gate Based Large-Scale Field-Programmable Analog Arrays for Analog Signal Processing." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/11601.
Повний текст джерелаPonchio, Federico [Verfasser]. "Multiresolution structures for interactive visualization of very large 3D datasets / submitted by Federico Ponchio." [Clausthal-Zellerfeld] : [Univ.-Bibliothek], 2009. http://d-nb.info/997062789/34.
Повний текст джерелаGray, Jordan D. "Application of Floating-Gate Transistors in Field Programmable Analog Arrays." Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7540.
Повний текст джерелаChe, Xiling. "Techniques for hydroelastic analysis of very large floating structures." Thesis, 1993. http://hdl.handle.net/10125/10007.
Повний текст джерелаКниги з теми "Very Large Floating Structures"
Wang, Chien-ming. Very large floating structures. New York, NY: Taylor & Francis, 2007.
Знайти повний текст джерелаJapan) International Workshop on Very Large Floating Structures (1996 Hayama-machi. Very large floating structures: [proceedings of International Workshop on Very Large Floating Structures], Hayama, Kanagawa, Japan, November 25-28, 1996. [Kanagawa, Japan]: Ship Research Institute, Ministry of Transport, 1996.
Знайти повний текст джерелаJapan) International Workshop on Very Large Floating Structures (4th 2003 Tokyo. 4th International Workshop on Very Large Floating Structures: VLF '03, January 28-29, 2003, Tokyo, Japan. [Tokyo]: National Maritime Research Institute, 2003.
Знайти повний текст джерелаWang, C. M., and B. T. Wang, eds. Large Floating Structures. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-137-4.
Повний текст джерелаIEEE Electron Devices Society. Standards Committee., Institute of Electrical and Electronics Engineers., and IEEE-SA Standards Board, eds. IEEE standard definitions and characterization of floating gate semiconductor arrays. New York, N.Y., USA: Institute of Electrical and Electronics Engineers, 1999.
Знайти повний текст джерелаA VLSI architecture for concurrent data structures. Boston: Kluwer Academic, 1987.
Знайти повний текст джерелаIndo-Soviet, Workshop on Experiences in Large Canals and Hydraulic Structures in Subsident Swelling and Floating Soils (1986 New Delhi India). Indo-Soviet Workshop on Experiences in Large Canals and Hydraulic Structures in Subsident, Swelling, and Floating Soils, 18-19 September 1986: Proceedings. New Delhi: The Board, 1986.
Знайти повний текст джерелаMeinel, Christoph. Algorithms and data structures in VLSI design: OBDD-foundations and applications. Berlin: Springer, 1998.
Знайти повний текст джерелаInternational Conference on Very Large Data Bases (17th 1991 Barcelona, Spain). Proceedings of the Seventeenth International Conference on Very Large Data Bases: September 3-6 1991 Barcelona (Catalonia, Spain). Edited by Lohman Guy M, Sernadas Amílcar, and Camps Rafael. Hove: Morgan Kaufman, 1991.
Знайти повний текст джерелаWang, C. M., E. Watanabe, and T. Utsunomiya. Very Large Floating Structures. Taylor & Francis Group, 2020.
Знайти повний текст джерелаЧастини книг з теми "Very Large Floating Structures"
Fu, Shixiao, Shuai Li, and Weicheng Cui. "Very Large Floating Structures (VLFS): Overview." In Encyclopedia of Ocean Engineering, 2095–103. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-10-6946-8_335.
Повний текст джерелаFu, Shixiao, Shuai Li, and Weicheng Cui. "Very Large Floating Structures (VLFS): Overview." In Encyclopedia of Ocean Engineering, 1–8. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-10-6963-5_335-1.
Повний текст джерелаNg, ChunWee, and Rongrong Jiang. "Classification Principles for Very Large Floating Structures." In Lecture Notes in Civil Engineering, 235–51. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8743-2_13.
Повний текст джерелаSankalp, Aditya, and Yves De Leeneer. "Mooring Systems for Very Large Floating Structures." In Lecture Notes in Civil Engineering, 253–73. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8743-2_14.
Повний текст джерелаPanduranga, Kottala, and Santanu Koley. "Water Wave Interaction with Very Large Floating Structures." In Lecture Notes in Mechanical Engineering, 531–40. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1769-0_48.
Повний текст джерелаLu, Ye, Bei Teng, Yikun Wang, Ye Zhou, Xiaoming Cheng, and Enrong Qi. "Structural Design of Hinge Connector for Very Large Floating Structures." In Lecture Notes in Civil Engineering, 197–208. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4672-3_12.
Повний текст джерелаWang, C. M., and Z. Y. Tay. "Hydroelastic Analysis and Response of Pontoon-Type Very Large Floating Structures." In Fluid Structure Interaction II, 103–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14206-2_5.
Повний текст джерелаKakinuma, Taro, and Naoto Ochi. "Tsunami-Height Reduction Using a Very Large Floating Structure." In Mathematics for Industry, 193–202. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6062-0_14.
Повний текст джерелаBispo, I. B. S., S. C. Mohapatra, and C. Guedes Soares. "A review on numerical approaches in the hydroelastic responses of very large floating elastic structures." In Developments in Maritime Technology and Engineering, 425–36. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003216582-48.
Повний текст джерелаWang, C. M., and B. T. Wang. "Great Ideas Float to the Top." In Large Floating Structures, 1–36. Singapore: Springer Singapore, 2014. http://dx.doi.org/10.1007/978-981-287-137-4_1.
Повний текст джерелаТези доповідей конференцій з теми "Very Large Floating Structures"
Suzuki, H., H. R. Riggs, M. Fujikubo, T. A. Shugar, H. Seto, Y. Yasuzawa, B. Bhattacharya, D. A. Hudson, and H. Shin. "Very Large Floating Structures." In ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2007. http://dx.doi.org/10.1115/omae2007-29758.
Повний текст джерелаWang, C. M., Z. J. Yao, A. M. Hee, and W. L. Tan. "Optimal Layout of Gill Cells for Very Large Floating Structures." In ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2007. http://dx.doi.org/10.1115/omae2007-29762.
Повний текст джерелаSrinivasan, Nagan, and R. Sundaravadivelu. "Ocean Space Utilization Using Very Large Floating Semi-Submersible." In ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-10458.
Повний текст джерелаUtsunomiya, T., and E. Watanabe. "ACCELERATED BEM FOR WAVE RESPONSE ANALYSIS OF VERY LARGE FLOATING STRUCTURES." In Proceedings of the Second International Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776228_0079.
Повний текст джерелаKakinuma, Taro, Kei Yamashit, and Keisuke Nakayama. "INTERACTION OF SURFACE AND INTERNAL WAVES WITH VERY LARGE FLOATING STRUCTURES." In Proceedings of the 6th International Conference. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814412216_0079.
Повний текст джерелаCappietti, Lorenzo, Irene Simonetti, and Ilaria Crema. "Concept Design of Very Large Floating Structures and Laboratory-Scale Physical Modelling." In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-96259.
Повний текст джерелаMuhamed Basheer Naseema, Sibin, and Nilanjan Saha. "Hydroelastic Response of Very Large Floating Structures (VLFS) Connected With Wind Turbines." In ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/omae2017-61099.
Повний текст джерелаShi, Qijia, Daolin Xu, and Haicheng Zhang. "Design of a Flexible-Base Hinged Connector for Very Large Floating Structures." In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-78478.
Повний текст джерелаWang, Chien Ming, Rui Ping Gao, Chan Ghee Koh, and Sritawat Kitipornchai. "Novel Hybrid System for Reducing Hydroelastic Response of Very Large Floating Structures." In ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/omae2012-83124.
Повний текст джерелаPapaioannou, Iason, Ruiping Gao, Ernst Rank, and Chien Ming Wang. "Hydroelastic Analysis of Pontoon-Type Very Large Floating Structures in Random Seas." In 5th Asian-Pacific Symposium on Structural Reliability and its Applications. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-2219-7_p319.
Повний текст джерелаЗвіти організацій з теми "Very Large Floating Structures"
Nash, J. G. VLSI (Very Large Scale Integration) Floating Point Chip Design Study. Fort Belvoir, VA: Defense Technical Information Center, November 1985. http://dx.doi.org/10.21236/ada164198.
Повний текст джерелаParlett, B. N., P. S. Jensen, and T. Erickson. Lanczos Algorithm Applied to Modal Analysis of Very Large Structures. Fort Belvoir, VA: Defense Technical Information Center, August 1985. http://dx.doi.org/10.21236/ada160210.
Повний текст джерелаVIGIL, MANUEL GILBERT. Design of Largest Shaped Charge: Generation of Very Large Diameter, Deep Holes in Rock and Concrete Structures. Office of Scientific and Technical Information (OSTI), April 2003. http://dx.doi.org/10.2172/810682.
Повний текст джерелаGunay, Selim, Fan Hu, Khalid Mosalam, Arpit Nema, Jose Restrepo, Adam Zsarnoczay, and Jack Baker. Blind Prediction of Shaking Table Tests of a New Bridge Bent Design. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/svks9397.
Повний текст джерелаLinker, Raphael, Murat Kacira, Avraham Arbel, Gene Giacomelli, and Chieri Kubota. Enhanced Climate Control of Semi-arid and Arid Greenhouses Equipped with Fogging Systems. United States Department of Agriculture, March 2012. http://dx.doi.org/10.32747/2012.7593383.bard.
Повний текст джерелаLazonick, William, Philip Moss, and Joshua Weitz. Equality Denied: Tech and African Americans. Institute for New Economic Thinking, February 2022. http://dx.doi.org/10.36687/inetwp177.
Повний текст джерелаRusso, Margherita, Fabrizio Alboni, Jorge Carreto Sanginés, Manlio De Domenico, Giuseppe Mangioni, Simone Righi, and Annamaria Simonazzi. The Changing Shape of the World Automobile Industry: A Multilayer Network Analysis of International Trade in Components and Parts. Institute for New Economic Thinking Working Paper Series, January 2022. http://dx.doi.org/10.36687/inetwp173.
Повний текст джерелаWu, Yingjie, Selim Gunay, and Khalid Mosalam. Hybrid Simulations for the Seismic Evaluation of Resilient Highway Bridge Systems. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/ytgv8834.
Повний текст джерела