Добірка наукової літератури з теми "Ventilation – Mer"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Ventilation – Mer".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Ventilation – Mer"
ORJIME, Emmanuel Verem, Benjamin G. AHULE, Godwin A. AKPEHE, Solomon GBAKA, Victor Ushahemba IJIRSHAR, and Kafayat O. ZAKA. "Indigenous Preservation Practices and Shelf Life of Stored Yams in Benue State, Nigeria: Implication for Post-Harvest Management and Food Security." MANAGEMENT AND ECONOMICS REVIEW 9, no. 1 (February 10, 2024): 25–40. http://dx.doi.org/10.24818/mer/2024.01-02.
Повний текст джерелаRicard, Jean-Damien, Fadia Dib, Marina Esposito-Farese, Jonathan Messika, and Christophe Girault. "Comparison of high flow nasal cannula oxygen and conventional oxygen therapy on ventilatory support duration during acute-on-chronic respiratory failure: study protocol of a multicentre, randomised, controlled trial. The ‘HIGH-FLOW ACRF’ study." BMJ Open 8, no. 9 (September 2018): e022983. http://dx.doi.org/10.1136/bmjopen-2018-022983.
Повний текст джерелаHeglum, Margareth, Marita Flasnes, and Susan Saga. "Barrierer for å ta i bruk høy PEEP og lungerekruttering ved generell anestesi til pasienter med fedme." Inspira 15, no. 2 (April 30, 2020): 16–24. http://dx.doi.org/10.23865/inspira.v15.2764.
Повний текст джерелаNikolla, Dhimitri A., Brandon J. Kramer, and Jestin N. Carlson. "A Cross-Over Trial Comparing Conventional to Compression-Adjusted Ventilations with Metronome-Guided Compressions." Prehospital and Disaster Medicine 34, no. 02 (April 2019): 220–23. http://dx.doi.org/10.1017/s1049023x19000098.
Повний текст джерелаLacerda, Rodrigo Silva, Fernando Cesar Anastácio de Lima, Leonardo Pereira Bastos, Anderson Fardin Vinco, Felipe Britto Azevedo Schneider, Yves Luduvico Coelho, Heitor Gomes Costa Fernandes, et al. "Benefits of Manometer in Non-Invasive Ventilatory Support." Prehospital and Disaster Medicine 32, no. 6 (July 26, 2017): 615–20. http://dx.doi.org/10.1017/s1049023x17006719.
Повний текст джерелаGe, Wu, Wu Wei, Pan Shuang, Zheng Yan-Xia, and Lv Ling. "Nasointestinal tube in mechanical ventilation patients is more advantageous." Open Medicine 14, no. 1 (May 26, 2019): 426–30. http://dx.doi.org/10.1515/med-2019-0045.
Повний текст джерелаBe’eri, Eliezer, Simon Owen, Maurit Beeri, Scott R. Millis, and Arik Eisenkraft. "A Chemical-Biological-Radio-Nuclear (CBRN) Filter can be Added to the Air-Outflow Port of a Ventilator to Protect a Home Ventilated Patient From Inhalation of Toxic Industrial Compounds." Disaster Medicine and Public Health Preparedness 12, no. 6 (February 21, 2018): 739–43. http://dx.doi.org/10.1017/dmp.2018.3.
Повний текст джерелаFancev, Tomislav, Davor Grgić, and Siniša Šadek. "Verification of GOTHIC Multivolume Containment Model during NPP Krško DBA LOCA." Journal of Energy - Energija 65, no. 3-4 (June 24, 2022): 116–26. http://dx.doi.org/10.37798/2016653-4118.
Повний текст джерелаR. Sujatha, Anil Singh Yadav, Dilshad Khan Dilshad Arif, and Astha Gupta. "Microbial Profile and Antibiogram of Ventilator Associated Pneumonia at Tertiary Care Hospital U.P." International Journal of Current Microbiology and Applied Sciences 10, no. 11 (November 10, 2021): 10–18. http://dx.doi.org/10.20546/ijcmas.2021.1011.002.
Повний текст джерелаKristoffersen, Marte, and Anne-Marthe Rustad Indregard. "Intensivsykepleieres erfaringer med kollektiv mestring av arbeidsrelatert stress." Inspira 19, no. 2 (November 22, 2024): 41–55. http://dx.doi.org/10.23865/inspira.v19.6366.
Повний текст джерелаДисертації з теми "Ventilation – Mer"
Paillet, Jérôme. "Eau modale et ventilation océanique en Atlantique nord-est." Brest, 1996. http://www.theses.fr/1996BRES2004.
Повний текст джерелаBodell, Erik, and Simon Åhlander. "Energianalys av byggnad med installerat ångsystem för matlagningsprocesser : Kan ånga vara mer effektivt än el för matlagning?" Thesis, Högskolan i Gävle, Energisystem, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-24232.
Повний текст джерелаThere is a great need to reduce energy use in the world. By reducing energy demand, this reduces the negative environmental impact. In a constantly growing world, where it is built at an ever faster pace, the energy demand also increases. By increasing energy efficiency inexisting buildings, energy requirements may stagnate or even decrease despite expansion. By increasing energy efficiency, more of the energy demand can be used instead of standing for energy losses. Fortifikationsverket has a building they believe use too much energy. This building contains a restaurant that uses a steam system to heat its food, which makes the building's energy system unique. In order to reduce the energy consumption of the building, an energy audit is completed and analyzed in this report. This case study is conducted with a literature study to develop the knowledge in the field. Then measurements in the building are performed which are subsequently analyzed and presented to indicate any deviations and deficiencies. During the work it was discovered that a fuse was incorrectly installed to measure the electricity consumption of one of the boilers. By correcting this in order to be able to bill correctly, Fortifikationsverket saves almost 170,000 SEK per year as the boiler goes. In addition to this, the steam system was analyzed and estimates were made to respond if steam is more effective than electricity for cooking. It turns out that the steam system can be effective if a large amount of food is cooked. Considering nights, weekends and days when less food is cooked, electrical equipment is more effective because it completely turns off when not in use. Unlike the steam system that has to cover the energy losses to keep temperature and pressure, even when the system is not in use. By replacing the steam system with equivalent electrical equipment, it couldsave 205 MWh/year, according to estimates.The steam system accounts for 35% of the building's total electricity demandand is the largest item for energy use and is therefore the most focused area. In addition to the steam system, other energy usage was analyzed to provide energy savings. Many of the proposals are based on certain estimates and assumptions which must be considered. Some examples of savings that can be made is lowering the indoor temperature to save 50 MWh/year, install additional windows to save up to 140 MWh/year, install more efficient cooling units -200 MWh/year, install better ventilation control systems-50 MWh/year, install better controls for indoor lighting -40 MWh/year.
Millet, Bruno. "Tracer and model constraints on the ventilation of the deep Pacific Ocean." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASJ019.
Повний текст джерелаThe Pacific Ocean represents about 50% of the global ocean volume, making it an essential player in global biogeochemical cycles and their response to external perturbations. In particular, the deep Pacific Ocean hosts major reservoirs of carbon and nutrients, whose size and variations are largely controlled by physical tracer transports. In this thesis, we aim to better understand and constrain the transport of tracers in the deep Pacific Ocean across climate states. We use historical and new observations of conservative tracers, notably oxygen isotopes, combined with numerical models of ocean circulation. We show that isopycnal mixing is an essential control of the ventilation of Pacific mid-depths. A return of abyssal waters to the surface is identified in the modern subarctic Pacific. This upwelling pathway may have been weaker during the Last Glacial Maximum about 20,000 years ago, and the deep North Pacific may have been more strongly layered; however, evidence for the required end member changes in the south of the basin to explain this deep layering remains sparse. State-of-the-art prognostic models of global ocean circulation struggle to represent observationally inferred tracer pathways and turn-over times in the modern North Pacific. However, these tracer pathways remain insufficiently constrained and the underlying dynamics are poorly understood. Analysis of in-situ measurements of the oxygen-18 (18O) isotopic ratio of seawater provides an efficient means to better constrain the origins and routes of tracers in the deep ocean: insights on these routes are derived from existing 18O observations in the Southern, Indian, and Pacific Oceans. We suggest that additional measurements of 18O from modern ocean water samples, and from calcite shells in sediment cores, would provide valuable constraints on present-day and past tracer reservoirs and fluxes in the deep ocean
Couespel, Damien. "La désoxygénation de l'océan au cours du 21ème siècle : influence des processus de petite et moyenne échelle." Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS097.
Повний текст джерелаThe amount of oxygen in the ocean has decreased since the middle of the 20th century. According to climate projections, this will continue into the 21st century with effects on biogeochemical cycles, aquatic organisms and ecosystems. In the subsurface, deoxygenation is controlled by: 1) solubility, determining the amount of oxygen that can be dissolved, 2) respiration, using oxygen to remineralize organic matter and 3) surface/subsurface exchanges. These mechanisms are affected by climate change: 1) the solubility decreases as the temperature increases, 2) the production of organic matter at the surface decreases, thus decreasing the subsurface respiration and 3) the surface/subsurface exchanges are slowed down due to the increase in stratification. The relative contribution of each of these mechanisms to deoxygenation is still poorly understood. To estimate it, we calculated the transport of oxygen through the base of the mixed layer as well as the respiration under the mixed layer in a climate projection. Our results show that each mechanism contributes in equal proportion to deoxygenation. This result was obtained with a low resolution model. However, studies indicate that small-scale processes can influence the mechanisms controlling deoxygenation, but there is still no estimate of their effects. We have therefore developed an idealized configuration allowing us to perform climate change experiments that explicitly solve these processes. In this framework, our results show that small scale processes attenuate 1) deoxygenation and 2) the responses of the mechanisms involved
Andrié, Chantal. "Utilisation des traceurs helium-3 et tritium en oceanographie." Paris 6, 1987. http://www.theses.fr/1987PA066241.
Повний текст джерелаNöjd, Mathilda, and Emma Petersson. "Parallelltak med mekanisk ventilation : En jämförelse mellan mekanisk och naturlig ventilation." Thesis, Uppsala universitet, Institutionen för samhällsbyggnad och industriell teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-415713.
Повний текст джерелаAtt bygga och bibehålla fuktsäkra takkonstruktioner är ett centralt problem inom byggbranschen. Utomhusventilerade takkonstruktioner anses vara en riskkonstruktion som kan drabbas av fuktskador. Det är problematiskt att bygga parallelltak med låg energiförbrukning som är beständigt mot fukt. Nya krav på energieffektiviseringar har bidragit till ökade mängder isolering i takkonstruktioner. Välisolerade takkonstruktioner i kombination med fuktiga och kalla vintrar är den huvudsakliga orsaken till den rådande fuktproblematiken som finns i Sverige. Hög relativ fuktighet i luftspalten och hög fuktkvot i materialet ökar risken för mikrobiell påväxt. Vinterhalvåret är en kritisk period eftersom utomhusluften innehåller hög mängd fukt som kan vara skadlig för takkonstruktioner som utomhusventileras. Organiska material som trävirke löper risk för mikrobiell påväxt vid en relativ fuktighet på 75 %. Det krävs även varaktighet och en gynnsam temperatur för att mikrobiell påväxt ska kunna uppstå. Parallelltak består vanligtvis av trämaterial som kan angripas av mögel vid gynnsamma förutsättningar. Råspont och läkt har en position långt ut i parallelltaket som bidrar till att de löper stor risk för mögelpåväxt och bör särskilt beaktas. Det finns stort behov av tekniska lösningar för att kunna lösa den rådande fuktproblematiken i svenska bostäder. Mekanisk ventilation är en teknisk lösning som styr och reglerar ventilationen i takkonstruktionens luftspalt. Den mekaniska ventilationen styrs av sensorer och fläktar. Sensorerna jämför temperatur och ånghalt i utomhusklimatet med klimatet i luftspalten. Vid goda klimatförhållanden tillåts ventilation i luftspalten och vid sämre förhållanden begränsas ventilationen. Syftet med den mekaniska ventilationen är att parallelltaket endast ventileras när det leder till uttorkning. Rapporten har fokus på att jämföra utomhusventilerat parallelltak (naturlig ventilation) med mekanisk ventilation. Rapporten studerar en befintlig byggnad med parallelltak belägen utanför Norrtälje. Parallelltaket är utrustat med loggrar som mäter relativ fuktighet, temperatur och fuktkvot i råspont eller läkt i luftspalter med naturlig och mekanisk ventilation. Mätdata har analyserats i en riskanalys och en mögelanalys. Riskanalysen jämför mätdata från två eller flera mätpunkter för att kunna analysera skillnader i resultatet. Mögelanalysen består av simuleringar i programmet WUFI Bio och anger ett fiktivt mögelindex för beräknad påväxt i millimeter per år. Studien indikerar att luftspalter med naturlig ventilation löper stor risk för mögelpåväxt under vinterhalvåret. Den mekaniska ventilationen uppvisar en trend som reducerar risken för mögelpåväxt i samtliga väderstreck, inklusive taknock. Mätpunkter med mekaniska ventilation orienterad mot söder och väster uppvisar en trend som procentuellt reducerar mögelpåväxten i högre grad jämfört med resterande väderstreck. Trots den reducerande effekten med mekanisk ventilation indikerar resultatet att det finns risk för mögelpåväxt även på råspont och läkt i luftspalter med mekanisk ventilation. Däremot är risken inte lika omfattande.
Elvingson, Fredrik. "Vindar med begränsad ventilation - Fukttekniska undersökningar." Thesis, Uppsala universitet, Byggteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-298216.
Повний текст джерелаAkhoudas, Camille. "Un nouveau regard sur la dynamique de l’océan Austral et ses interactions avec la cryosphère révélé par une approche isotopique." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS464.
Повний текст джерелаThe Southern Ocean is a key component in global ocean circulation and the Earth's climate system. Despite the increase of in situ observations in this remote region since the 1990s (notably with the « satellite era » and major international observation programs such as WOCE, CLIVAR, GO-SHIP, or ARGO), this immense ocean remains largely unknown. However, it is essential to observe and understand the mechanisms of its dynamics as well as its variability with the aim to predict the future evolution of the climate system. In particular, one important characteristic of the Southern Ocean is that it is one of the main sites of deep ocean ventilation, which allows redistribution and sequestration of heat, freshwater, carbon, oxygen, and nutrients. This ventilation process is mainly associated with a vertical circulation connecting the ocean surface to the abyss, fueled by intense interactions and exchanges of energy and buoyancy fluxes between atmosphere, ocean and cryosphere. In this thesis, I apprehend some aspects of the Southern Ocean dynamics by providing a mechanistic view of large-scale circulation and its ongoing changes. The approach I use throughout this thesis is based on observations of stable water isotopes, a passive tracer commonly used in a large number of earth science disciplines, but until recently only sparsely used in physical oceanography. Stable water isotopes constitute a robust tool which, as a tracer of the origin of water, help to better characterize the different components of the hydrological cycle as well as its evolution. In particular, the isotopic composition of seawater represents an important imprint of water masses, containing information on the conditions of their formation and their evolution. In this thesis, beyond the important methodological work at sea and in the laboratory for the sampling, analysis and calibration of isotopic measurements, I use the stable water isotopes in combination with other more conventional tracers to apprehend, with a new perspective, the questions of the role of interactions between the Southern Ocean and the Antarctic Ice Sheet in large-scale circulation, the signature of surface waters in the abyss, or even the impact of changes in atmospheric or cryosphere regimes on the surface ocean. Beyond the only use of stable water isotopes, original approaches have allowed me to document melting and refreezing of one of the largest ice shelves in the world, which influences the characteristics of the dense waters, precursors of abyssal waters produced in the Weddell Sea. My results also reveal the proportion of these dense waters in bottom water formation in the Atlantic sector of the Southern Ocean. We detail the processes that lead to the formation of bottom waters and with this new insight, we demonstrate that past estimates of bottom water production, in apparent contradiction, were actually focusing on different processes. Finally, I propose to quantify the changes in freshwater inputs over the past three decades that influence the trends in surface properties in the Indian sector of the Southern Ocean. The results demonstrate that changes in the precipitation regime explain changes in the surface ocean characteristics impacting stratification with consequences for large-scale water mass formation and overturning circulation in the Southern Ocean
Jonsson, Reine. "Energieffektivisering i flerbostadshus : Undersökning av lönsamheten med energieffektivare ventilation." Thesis, Mälardalen University, School of Sustainable Development of Society and Technology, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-7441.
Повний текст джерелаThis thesis is based on a case study for the real estate manager Mimer in Västerås. Mimer provides a great deal of this city’s rental apartments. Many of their buildings have ventilation systems with a type of heat-recovery called “heatpipe”. This case study focuses on two buildings which have certain problems with these heatpipes. The recovery rates of the existing systems are low, and one building suffers from a warm indoor climate in the summertime. Problems with the indoor climate seem to stem from a faulty installation of the heatpipe. This building does also have considerably higher energy consumption than the other one, which leads suspicions to overloaded fan motors.
The main purpose of this study is to retrieve information about the present situation energy- and ecomonywise. A new type of heat recovery and new fans has been chosen by Mimer in order to calculate expected new energy consumption for these buildings. These values will lead to a few LCC calculations which show life cycle costs for the existing systems and the new systems. Based on the LCC calculations one or more options will be chosen as a recommended action for the ventilation systems. The recommendations will be analysed and discussed from different point of views that are relevant for a real estate manager.
Blomqvist, Sofia, and Dennis Sundby. "Energianalys av fastighet Brynäs 12:1 : Energikartläggning med effektiviseringsåtgärder inriktning mot ventilation." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-17140.
Повний текст джерелаEnergy use in Sweden and the world is expected to increase and the residential and services account for 40% of total world energy demand. It is important that the energy efficiency of existing buildings and optimizing its systems as a lower energy benefits both the environment and the economy. A building's ventilation system account for a large proportion of a property's energy use, and there is often great potential for the system to be optimized and streamlined. A property owner does not want properties that are vacant. Vacant premises mean less income in rent and in some cases there will be increased energy costs for the empty space in form of heating and ventilation, for the property owner to pay. Systems that can completely shut off or controlled depending on ventilation requirements needed for the latter cost will be reduced completely when the premises are vacant and that the total energy will decrease when a tenant moves out. Ventilating purpose is to divert moisture, heat, particulates and carbon dioxide so that a good indoor climate is created for the people staying in the building. The most common ventilation principle for public buildings is to vent air with a constant air flow through a CAV system. With demand-based ventilation in the form of a VAV system, huge savings can be made when one adjusts airflow to the actual ventilation requirement instead of ventilating the building with a constant maximum flow. An installation of a VAV system in the form of CO2 or presence control, reduces ventilation energy consumption, while the quality of the indoor environment is maintained. The work that has been carried out includes an energy survey of the property Brynäs 12:1 as an energy survey helps to understand a building's energy use, and identifies potential energy savings. The energy use for the building subsystems have been identified and analyzed in order to develop proposals for cost cutting measures. The results of the energy audit revealed that there was great potential for savings for ventilation units TA1, TA2 and TA3's electricity and heat use. If the measures for ventilation as presented in the work, such as flow and time reduction is taken, an energy saving of 333 MWh/year is achieved, which is 28% of the property's total annual energy consumption.
Книги з теми "Ventilation – Mer"
Aubin, Paul F. AutoCAD MEP 2011. [Clifton Park, NY]: Autodesk Press, 2011.
Знайти повний текст джерелаKreit, John W., and John A. Kellum. Mechanical Ventilation. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190670085.001.0001.
Повний текст джерелаLei, Yuan. Introduction. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198784975.003.0001.
Повний текст джерелаOliver, Charles M., and S. Ramani Moonesinghe. Setting rate, volume, and time in ventilatory support. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0093.
Повний текст джерелаFanelli, Vito, and V. Marco Ranieri. Failure to ventilate in critical illness. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0100.
Повний текст джерелаLei, Yuan. Medical Ventilator System Basics: A clinical guide. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198784975.001.0001.
Повний текст джерелаWaldmann, Carl, Neil Soni, and Andrew Rhodes. Respiratory therapy techniques. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780199229581.003.0001.
Повний текст джерелаKreit, John W. Ventilator Modes and Breath Types. Edited by John W. Kreit. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190670085.003.0005.
Повний текст джерелаMasip, Josep, Kenneth Planas, and Arantxa Mas. Non-invasive ventilation. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199687039.003.0025.
Повний текст джерелаMasip, Josep, Kenneth Planas, and Arantxa Mas. Non-invasive ventilation. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199687039.003.0025_update_001.
Повний текст джерелаЧастини книг з теми "Ventilation – Mer"
Samandouras, George. "The ventilated patient." In The Neurosurgeon's Handbook, 133–48. Oxford University Press, 2010. http://dx.doi.org/10.1093/med/9780198570677.003.0108.
Повний текст джерелаMahboobi, Sohail K., and Mahad Sohail. "Complications and Side Effects of Mechanical Ventilation." In Advanced Anesthesia Review, edited by Alaa Abd-Elsayed, 277—C109.S15. Oxford University PressNew York, 2023. http://dx.doi.org/10.1093/med/9780197584521.003.0108.
Повний текст джерелаFozard, Jessica, and Krystle Shafer. "Intubated and boarded in the ED: Ventilator 101." In Critical Care Emergencies, edited by Lillian Liang Emlet, 71–86. Oxford University PressNew York, 2023. http://dx.doi.org/10.1093/med/9780190082581.003.0008.
Повний текст джерелаBoesing, Christoph, Thomas Luecke, and Joerg Krebs. "Mechanical Ventilation: How to Set Up the Ventilator." In Oxford Textbook of Respiratory Critical Care, 93–106. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/med/9780198766438.003.0011.
Повний текст джерелаWaldmann, Carl, Andrew Rhodes, Neil Soni, and Jonathan Handy. "Respiratory therapy techniques." In Oxford Desk Reference: Critical Care, 1–54. Oxford University Press, 2019. http://dx.doi.org/10.1093/med/9780198723561.003.0001.
Повний текст джерелаFormenti, Paolo, and John J. Marini. "Monitoring Lung-protective Ventilation." In Oxford Textbook of Respiratory Critical Care, 133–42. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/med/9780198766438.003.0015.
Повний текст джерелаKritek, Patricia A. "Mechanical Ventilation." In The Brigham Intensive Review of Internal Medicine, 390–94. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199358274.003.0038.
Повний текст джерелаGregoretti, Cesare, Andrea Cortegiani, Vincenzo Russotto, and Lara Pisani. "Non-invasive Ventilation in Critical Care." In Oxford Textbook of Respiratory Critical Care, 63–74. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/med/9780198766438.003.0008.
Повний текст джерелаMurphy, Patrick B., Andrew Jones, and Luigi Camporota. "Liberation from Mechanical Ventilation." In Oxford Textbook of Respiratory Critical Care, 533–44. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/med/9780198766438.003.0064.
Повний текст джерелаEberhardt, Christiane S., and Peter C. Rimensberger. "Paediatric acute respiratory distress syndrome." In Challenging Concepts in Paediatric Critical Care, 67–78. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198794592.003.0006.
Повний текст джерелаТези доповідей конференцій з теми "Ventilation – Mer"
Walter, Marian, and Steffen Leonhardt. "Control applications in artificial ventilation." In 2007 Mediterranean Conference on Control & Automation. IEEE, 2007. http://dx.doi.org/10.1109/med.2007.4433762.
Повний текст джерелаChynkiamis, Nikolaos, Matthew Armstrong, James Manifield, Emily Hume, Caroline Reilly, Alasdair O’Doherty, Andrea Aliverti, and Ioannis Vogiatzis. "Hemodynamic effects of portable non-invasive ventilation in healthy men." In ERS International Congress 2019 abstracts. European Respiratory Society, 2019. http://dx.doi.org/10.1183/13993003.congress-2019.pa757.
Повний текст джерелаPomprapa, Anake, Philipp A. Pickerodt, Wolfgang Braun, Martin Russ, Moritz B. T. Hofferberth, Marian Walter, Berno Misgeld, Roland C. E. Francis, Burkhard Lachmann, and Steffen Leonhardt. "Automatic artificial ventilation therapy using the ARDSNet protocol enforcing dynamical constraints." In 2017 25th Mediterranean Conference on Control and Automation (MED). IEEE, 2017. http://dx.doi.org/10.1109/med.2017.7984124.
Повний текст джерелаJime´nez, M. J., J. D. Guzma´n, M. R. Heras, J. Arce, J. P. Xama´n, and G. Alvarez. "Thermal Performance of a Natural Ventilation System." In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90264.
Повний текст джерелаNa, Xue, Lin Hongtao, Liu Xinjian, Mao Yawei, and Qiu Lin. "Impact of Switching Time Interval for Dual Intakes on Workers in Main Control Room During Accidents." In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-67742.
Повний текст джерелаSobotka, Lukas, Roman Pechanek, Martin Skalicky, and Lukas Veg. "Thermal and Ventilation Analysis of PMSG with a Radial External Fan." In 2022 20th International Conference on Mechatronics - Mechatronika (ME). IEEE, 2022. http://dx.doi.org/10.1109/me54704.2022.9983184.
Повний текст джерелаYu, Xin, Yuqing Lin, and Yan Zhang. "Performance Analysis of Eductor Used for Main Control Room Ventilating in Nuclear Power Plant." In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-66220.
Повний текст джерелаJin, Sike, Jiali Jin, and Yanfeng Gong. "Natural ventilation without air breathing in the top openings of highway tunnels." In MATERIALS SCIENCE, ENERGY TECHNOLOGY, AND POWER ENGINEERING I: 1st International Conference on Materials Science, Energy Technology, Power Engineering (MEP 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.4982486.
Повний текст джерелаStefanov, Lachezar, Svilen Neykov, and Lubomir Mladenov. "CORRELATION BETWEEN CONTROL TEST TIMES RELATED TO THE ANAEROBIC THRESHOLD DETERMINED BY THE X-METHOD IN ROWERS." In INTERNATIONAL SCIENTIFIC CONGRESS “APPLIED SPORTS SCIENCES”. Scientific Publishing House NSA Press, 2022. http://dx.doi.org/10.37393/icass2022/47.
Повний текст джерелаGarza, Gladys, Peiwen Li, and Douglas Loy. "Micro-Fluidic Assisted Passive Direct Methanol Fuel Cells." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88540.
Повний текст джерелаЗвіти організацій з теми "Ventilation – Mer"
R.J. Garrett. CLASSIFICATION OF THE MGR SUBSURFACE VENTILATION SYSTEM. Office of Scientific and Technical Information (OSTI), August 1999. http://dx.doi.org/10.2172/860245.
Повний текст джерелаS.E. Salzman. CLASSIFICATION OF THE MGR WASTE TREATMENT BUILDING VENTILATION SYSTEM. Office of Scientific and Technical Information (OSTI), August 1999. http://dx.doi.org/10.2172/860260.
Повний текст джерелаJ.A. Ziegler. CLASSIFICATION OF THE MGR WASTE HANDLING BUILDING VENTILATION SYSTEM. Office of Scientific and Technical Information (OSTI), November 2000. http://dx.doi.org/10.2172/861101.
Повний текст джерелаVanthoor, B. H. E., and I. Tsafaras. Vergelijking tomatenteelten met een Ventilation Jet systeem : als onderdeel van het monitoringsproject. Bleiswijk: Wageningen University & Research, BU Glastuinbouw, 2018. http://dx.doi.org/10.18174/440767.
Повний текст джерелаD. A. Padula. RADIATION ACCESS ZONE AND VENTILATION CONFINEMENT ZONE CRITERIA FOR THE MGR SURFACE FACILITIES. Office of Scientific and Technical Information (OSTI), September 2000. http://dx.doi.org/10.2172/889301.
Повний текст джерелаVanthoor, B. H. E., and I. Tsafaras. Ervaringen met het Ventilation Jet systeem bij Dekker Chrysanten : als onderdeel van het monitoringsproject. Bleiswijk: Wageningen University & Research, BU Glastuinbouw, 2018. http://dx.doi.org/10.18174/440766.
Повний текст джерелаEllen, Hilko, Yvo Goselink, Jos Huis in ’t Veld, and Albert Winkel. Pilots naar de vermindering van fijnstofemissie uit pluimveestallen : Octafil met recirculatie van VEKO Ventilatie. Wageningen: Wageningen Livestock Research, 2020. http://dx.doi.org/10.18174/527162.
Повний текст джерелаJ, Ramos, Novillo F, Nava D, Ávila C, Rojas AM, Veloso V, Rada G, and Verdugo-Paiva F. In patients with acute COVID-19, should remdesivir be used compared to placebo? Epistemonikos Interactive Evidence Synthesis, September 2023. http://dx.doi.org/10.30846/ies.83ffa48119.
Повний текст джерелаJ, Ramos, Novillo F, Nava D, Ávila C, Rojas AM, Veloso V, Rada G, and Verdugo-Paiva F. In patients with acute COVID-19, should remdesivir be used compared to placebo? Epistemonikos Interactive Evidence Synthesis, September 2023. http://dx.doi.org/10.30846/ies.83ffa48119.v1.
Повний текст джерелаRamos-Rojas, José, Francisco Novillo, Daniel Nava, Camila Avila, Ana Rojas, Francisca Verdugo-Paiva, Gabriel Rada, and Valentina Veloso. In patients with acute COVID-19, should remdesivir be used compared to placebo? Epistemonikos Interactive Evidence Synthesis, July 2023. http://dx.doi.org/10.30846/ies.sr1000.
Повний текст джерела