Добірка наукової літератури з теми "Van der Waals structures"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Van der Waals structures".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Van der Waals structures"
Ren, Ya-Ning, Yu Zhang, Yi-Wen Liu, and Lin He. "Twistronics in graphene-based van der Waals structures." Chinese Physics B 29, no. 11 (October 2020): 117303. http://dx.doi.org/10.1088/1674-1056/abbbe2.
Повний текст джерелаFife, Paul C., and Xiao-Ping Wang. "Periodic structures in a van der Waals fluid." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 128, no. 2 (1998): 235–50. http://dx.doi.org/10.1017/s0308210500012762.
Повний текст джерелаWang, Yanli, and Yi Ding. "The electronic structures of group-V–group-IV hetero-bilayer structures: a first-principles study." Physical Chemistry Chemical Physics 17, no. 41 (2015): 27769–76. http://dx.doi.org/10.1039/c5cp04815j.
Повний текст джерелаZhou, Kun, Liya Wang, Ruijie Wang, Chengyuan Wang, and Chun Tang. "One Dimensional Twisted Van der Waals Structures Constructed by Self-Assembling Graphene Nanoribbons on Carbon Nanotubes." Materials 15, no. 22 (November 18, 2022): 8220. http://dx.doi.org/10.3390/ma15228220.
Повний текст джерелаFINKELSTEIN, ALEXEI V., MICHAEL Y. LOBANOV, NIKITA V. DOVIDCHENKO, and NATALIA S. BOGATYREVA. "MANY-ATOM VAN DER WAALS INTERACTIONS LEAD TO DIRECTION-SENSITIVE INTERACTIONS OF COVALENT BONDS." Journal of Bioinformatics and Computational Biology 06, no. 04 (August 2008): 693–707. http://dx.doi.org/10.1142/s0219720008003606.
Повний текст джерелаAnnamalai, Meenakshi, Kalon Gopinadhan, Sang A. Han, Surajit Saha, Hye Jeong Park, Eun Bi Cho, Brijesh Kumar, Abhijeet Patra, Sang-Woo Kim, and T. Venkatesan. "Surface energy and wettability of van der Waals structures." Nanoscale 8, no. 10 (2016): 5764–70. http://dx.doi.org/10.1039/c5nr06705g.
Повний текст джерелаForest, Susan E., and Robert L. Kuczkowski. "The Structures of Cyclopropane−Amine van der Waals Complexes." Journal of the American Chemical Society 118, no. 1 (January 1996): 217–24. http://dx.doi.org/10.1021/ja952849z.
Повний текст джерелаDeilmann, Thorsten, Michael Rohlfing, and Ursula Wurstbauer. "Light–matter interaction in van der Waals hetero-structures." Journal of Physics: Condensed Matter 32, no. 33 (May 19, 2020): 333002. http://dx.doi.org/10.1088/1361-648x/ab8661.
Повний текст джерелаQuan, Silong, Linghui He, and Yong Ni. "Tunable mosaic structures in van der Waals layered materials." Physical Chemistry Chemical Physics 20, no. 39 (2018): 25428–36. http://dx.doi.org/10.1039/c8cp04360d.
Повний текст джерелаKing, Benjamin T., Bruce C. Noll та Josef Michl. "Cation-π Interactions in the Solid State: Crystal Structures of M+(benzene)2CB11Me12- (M = Tl, Cs, Rb, K, Na) and Li+(toluene)CB11Me12-". Collection of Czechoslovak Chemical Communications 64, № 6 (1999): 1001–12. http://dx.doi.org/10.1135/cccc19991001.
Повний текст джерелаДисертації з теми "Van der Waals structures"
Andrinopoulos, Lampros. "Including van der Waals interactions in first-principles electronic structure calculations." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/22152.
Повний текст джерелаLee, Hee-Seung. "The structure, spectroscopy and dynamics of Small Van Der Waals Complexes /." The Ohio State University, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486572165276376.
Повний текст джерелаSCHMIDT, PER MARTIN. "Structure et dynamique des complexes de van der waals benzene-argon." Paris 11, 1992. http://www.theses.fr/1992PA112315.
Повний текст джерелаWatkins, Jason Derrick. "X-ray structures of P22 c2 repressor-DNA complexes the mechansism of direct and indirect readout /." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26709.
Повний текст джерелаCommittee Chair: Loren D. Williams; Committee Member: Donald Doyle; Committee Member: Nicholas V. Hud; Committee Member: Roger Wartell; Committee Member: Stephen Harvey. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Economides, George. "Investigations of open-shell open-shell Van der Waals complexes." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:e27330e0-2eaa-4181-af30-70e8b7a3a692.
Повний текст джерелаConstantinescu, Gabriel Cristian. "Large-scale density functional theory study of van-der-Waals heterostructures." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274876.
Повний текст джерелаWalters, Alan. "Spectroscopy and structure of jet cooled aromatics and van der Waals complexes." Thesis, University of Nottingham, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280097.
Повний текст джерелаSkouteris, Dimitris. "Structure and dynamics of weakly bound complexes." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301422.
Повний текст джерелаDuval-Été, Marie-Christine. "Structure électronique et mouvements moléculaires dans les complexes de Van der Waals du mercure." Paris 11, 1988. http://www.theses.fr/1988PA112191.
Повний текст джерелаCe travail porte sur l'étude de la structure électronique et vibrationnelle de complexes de van der Waals du mercure. Il met en évidence l'influence de la nature électronique et vibrationnelle du niveau optiquement excité sur les voies de désactivation. L'étude spectroscopique des différents systèmes, mercure-atome : Hg-Ar et mercure-molécule : Hg-N₂ , Hg-CH₄ , Hg-NH₃ et Hg-H₂ 0, conduit à la détermination des potentiels d'interaction van der Waals. Dans le cas du complexe mercure-argon on a pu montrer, par un modèle simple, que pour les premiers états électroniques excités, états corrélés aux niveaux 6³P du mercure, le facteur essentiel décrivant l'interaction van der Waals est l'orientation moyenne de l'orbitale 6³p du mercure par rapport à l'axe internucléaire du complexe. L'étude des états excités supérieurs corrélés à l'état de Rydberg 7³s₁ du mercure a révélé une structure en double puits. L'argon peut occuper deux positions d'équilibre, situé à l'intérieur du nuage électronique de l'orbitale 7s du mercure, le complexe a les caractéristiques de l'ion Hg+-Ar, situé à l'extérieur de ce nuage il forme une molécule de van der Waals très peu liée. Les mouvements moléculaires du complexe : Allongement et torsion et leur influence sur les mécanismes de désactivation, sont plus spécialement étudiés avec le système Hg-N₂. La modélisation des spectres expérimentaux: Excitation de fluorescence, émission, excitation du fragment Hg (6 ³P0), conduit à une description des potentiels d'interaction de l'état fondamental et des états excités atteints. Les mouvements de torsion du complexe peuvent être décrits comme une rotation bloquée de l'azote. Observant une dépendance de la dissociation du complexe avec le niveau vibrationnel excité, on a pu mettre en évidence le rôle du moment angulaire de vibration sur la dissociation du complexe induisant la relaxation intra multiplet du mercure vers le niveau ³P0. Enfin, l'excitation optique des complexes de van der Waals mercure-ammoniac et mercure-eau permet l'observation directe et la caractérisation spectroscopique des complexes collisionnels dont les émissions ont été observées précédemment. Donnant une image précise de la structure électronique, des mouvements moléculaires et des processus de désactivation de ces complexes, cette étude contribue à la compréhension de leur formation et des émissions caractéristiques leur étant liées. Un mécanisme de double échange de charge entre le mercure et la molécule est proposé pour rendre compte des énergies de liaison des complexes les plus liés à l'état excité. Il est de même nature que ceux ayant lieu entre ligands et surfaces métalliques, aussi les complexes très liés peuvent-ils être considérés comme des systèmes catalytiques ou pré-catalytiques
Hay, Henri. "Étude de la structure et des propriétés des polymorphes de SiO2 et B2O3 par méthodes ab initio." Electronic Thesis or Diss., Paris 6, 2016. http://www.theses.fr/2016PA066318.
Повний текст джерелаDuring this PhD I use density functional theory and quantum Monte Carlo to evaluate the importance of van der Waals effects on the structures, the energies, and the properties of SiO2 and B2O3 polymorphs. I show that exchange-correlation functionals including dispersion effects lead to an error cancellation between an overestimation of the Si-O distances and an underestimation of the Si-O-Si angles in low densities SiO2 polymorphs. By using quantum Monte Carlo calculations, I have predicted with high accuracy the relative energy of a new B2O3 polymorph, which allowed me to evaluate the performances of different exchange-correlation functionals on this material. I then use the best functional possible to compute the mechanical and electronic properties of 25 predicted B2O3 polymorphs. Some of the predicted polymorphs exhibit intriguing mechanical properties, such as negative linear compressibility, auxeticity and anisotropy. These calculations allow me to make a hypothesis explaining the crystallization anomaly in B2O3. They underline a seemingly universal link between low energy polymorphism and ease of vitrification
Книги з теми "Van der Waals structures"
Yeh, Po-Chun. Van der Waals Layered Materials: Surface Morphology, Interlayer Interaction, and Electronic Structure. [New York, N.Y.?]: [publisher not identified], 2015.
Знайти повний текст джерелаSerrée, Raoul. Amsterdam ommuurd: Het raadsel van de middeleeuwse stadsmuur (1481-1601). Abcoude: Uniepers, 1999.
Знайти повний текст джерелаParsegian, V. Adrian. Van der Waals forces. New York: Cambridge University Press, 2005.
Знайти повний текст джерелаHolwill, Matthew. Nanomechanics in van der Waals Heterostructures. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18529-9.
Повний текст джерелаL, Neal Brian, Lenhoff Abraham M, and United States. National Aeronautics and Space Administration., eds. Van der Waals interactions involving proteins. New York: Biophysical Society, 1996.
Знайти повний текст джерелаKipnis, Aleksandr I͡Akovlevich. Van der Waals and molecular sciences. Oxford: Clarendon Press, 1996.
Знайти повний текст джерела1926-, Rowlinson J. S., and I︠A︡velov B. E, eds. Van der Waals and molecular science. Oxford: Clarendon Press, 1996.
Знайти повний текст джерелаHalberstadt, Nadine, and Kenneth C. Janda, eds. Dynamics of Polyatomic Van der Waals Complexes. New York, NY: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-8009-2.
Повний текст джерелаHalberstadt, Nadine. Dynamics of Polyatomic Van der Waals Complexes. Boston, MA: Springer US, 1991.
Знайти повний текст джерелаNATO Advanced Research Workshop on Dynamics of Polyatomic Van der Waals Complexes (1989 Castéra-Verduzan, France). Dynamics of polyatomic Van der Waals complexes. New York: Plenum Press, 1990.
Знайти повний текст джерелаЧастини книг з теми "Van der Waals structures"
Horing, Norman J. Morgenstern, Vassilios Fessatidis, and Jay D. Mancini. "Atom/Molecule van der Waals Interaction with Graphene." In Low Dimensional Semiconductor Structures, 93–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28424-3_5.
Повний текст джерелаSanchez, Oswaldo, Joung Min Kim, and Ganesh Balasubramanian. "Graphene Analogous Elemental van der Waals Structures." In Advances in Nanomaterials, 77–93. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64717-3_4.
Повний текст джерелаSernelius, Bo E. "Van der Waals Interaction in Spherical Structures." In Fundamentals of van der Waals and Casimir Interactions, 209–32. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_10.
Повний текст джерелаSernelius, Bo E. "Van der Waals Interaction in Cylindrical Structures." In Fundamentals of van der Waals and Casimir Interactions, 233–55. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_11.
Повний текст джерелаSernelius, Bo E. "Van der Waals Interaction in Planar Structures." In Fundamentals of van der Waals and Casimir Interactions, 153–207. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_9.
Повний текст джерелаSernelius, Bo E. "Dispersion Interaction in Planar Structures." In Fundamentals of van der Waals and Casimir Interactions, 273–337. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_13.
Повний текст джерелаSernelius, Bo E. "Dispersion Interaction in Spherical Structures." In Fundamentals of van der Waals and Casimir Interactions, 339–71. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_14.
Повний текст джерелаSernelius, Bo E. "Dispersion Interaction in Cylindrical Structures." In Fundamentals of van der Waals and Casimir Interactions, 373–92. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_15.
Повний текст джерелаHoward, Brian J. "The Structure and Dynamics of Van Der Waals Molecules." In Structures and Conformations of Non-Rigid Molecules, 137–61. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2074-6_7.
Повний текст джерелаSanchez, Oswaldo, Joung Min Kim, and Ganesh Balasubramanian. "Erratum to: Graphene Analogous Elemental van der Waals Structures." In Advances in Nanomaterials, E1. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64717-3_7.
Повний текст джерелаТези доповідей конференцій з теми "Van der Waals structures"
Li, Jie, Yirong Guo, and Pengying Chang. "Copper Ion Migration in van der Waals CuInP2S6 Devices with Vertical and Lateral Structures." In 2024 IEEE 17th International Conference on Solid-State & Integrated Circuit Technology (ICSICT), 1–3. IEEE, 2024. https://doi.org/10.1109/icsict62049.2024.10831410.
Повний текст джерелаNorden, Tenzin, Luis M. Martinez, Nehan Tarefder, Kevin W. C. Kwock, Luke M. McClintock, Nicholas Olsen, Xiaoyang Zhu, et al. "Two-dimensional nonlinear optics with a twist." In CLEO: Fundamental Science, FTh5B.8. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fth5b.8.
Повний текст джерелаZong, Zhen, Ryosuke Morisaki, Kanami Sugiyama, Masahiro Higashi, Takayuki Umakoshi, and Prabhat Verma. "Probing Forbidden Low-Frequency Raman Modes in MoS2 via Plasmonic Nanoparticle." In JSAP-Optica Joint Symposia, 17a_A34_9. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.17a_a34_9.
Повний текст джерелаRoy, Ajit K., Jonghoon Lee, Dhriti Nepal, and John Ferguson. "Electronic Conduction Mechanism in Van Der Waals Flake Thin Film." In ASME 2023 Aerospace Structures, Structural Dynamics, and Materials Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/ssdm2023-108595.
Повний текст джерелаZhu, Kaichen, Xianhu Liang, Bin Yuan, Marco A. Villena, Chao Wen, Tao Wang, Shaochuan Chen, Mario Lanza, Fei Hui, and Yuanyuan Shi. "Tristate Resistive Switching in Heterogenous Van Der Waals Dielectric Structures." In 2019 IEEE International Reliability Physics Symposium (IRPS). IEEE, 2019. http://dx.doi.org/10.1109/irps.2019.8720485.
Повний текст джерелаCaliskan, U. "New approach for modeling randomly distributed CNT reinforced polymer nanocomposite with van der Waals interactions." In Advanced Topics in Mechanics of Materials, Structures and Construction. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902592-7.
Повний текст джерелаLoreau, J. "Structure and dynamics of small van der Waals complexes." In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014). AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4897805.
Повний текст джерелаCho, Hyunhee, Dong-Jin Shin, Junghyun Sung, Young-Ho Ko, and Su-Hyun Gong. "Ultra-thin Photonic Structures for Integration of Quantum Emitters in van der Waals Materials." In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/fio.2023.jw4a.76.
Повний текст джерелаBunte, S. W., J. B. Miller, Z. S. Huang, J. E. Verdasco, C. Wittig, and R. A. Beaudet. "Structure determination of the CO−CI2 van der Waals complex." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.tul3.
Повний текст джерелаRosser, David. "High-precision local transfer of van der Waals materials on nanophotonic structures (Conference Presentation)." In 2D Photonic Materials and Devices III, edited by Arka Majumdar, Carlos M. Torres, and Hui Deng. SPIE, 2020. http://dx.doi.org/10.1117/12.2543902.
Повний текст джерелаЗвіти організацій з теми "Van der Waals structures"
Klots, C. E. (Physics and chemistry of van der Waals particles). Office of Scientific and Technical Information (OSTI), October 1990. http://dx.doi.org/10.2172/6608231.
Повний текст джерелаMak, Kin Fai. Understanding Topological Pseudospin Transport in Van Der Waals' Materials. Office of Scientific and Technical Information (OSTI), May 2021. http://dx.doi.org/10.2172/1782672.
Повний текст джерелаKim, Philip. Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures. Fort Belvoir, VA: Defense Technical Information Center, March 2015. http://dx.doi.org/10.21236/ada616377.
Повний текст джерелаSandler, S. I. The generalized van der Waals theory of pure fluids and mixtures. Office of Scientific and Technical Information (OSTI), June 1990. http://dx.doi.org/10.2172/6382645.
Повний текст джерелаSandler, S. I. (The generalized van der Waals theory of pure fluids and mixtures). Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5610422.
Повний текст джерелаO'Hara, D. J. Molecular Beam Epitaxy and High-Pressure Studies of van der Waals Magnets. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1562380.
Повний текст джерелаMenezes, W. J. C., and M. B. Knickelbein. Metal cluster-rare gas van der Waals complexes: Microscopic models of physisorption. Office of Scientific and Technical Information (OSTI), March 1994. http://dx.doi.org/10.2172/10132910.
Повний текст джерелаMartinez Milian, Luis. Manipulation of the magnetic properties of van der Waals materials through external stimuli. Office of Scientific and Technical Information (OSTI), May 2024. http://dx.doi.org/10.2172/2350595.
Повний текст джерелаGwo, Dz-Hung. Tunable far infrared laser spectroscopy of van der Waals bonds: Ar-NH sub 3. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/7188608.
Повний текст джерелаFrench, Roger H., Nicole F. Steinmetz, and Yingfang Ma. Long Range van der Waals - London Dispersion Interactions For Biomolecular and Inorganic Nanoscale Assembly. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1431216.
Повний текст джерела