Добірка наукової літератури з теми "Van der Waals magnets"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Van der Waals magnets".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Van der Waals magnets":

1

Xu, Hang, Shengjie Xu, Xun Xu, Jincheng Zhuang, Weichang Hao, and Yi Du. "Recent advances in two-dimensional van der Waals magnets." Microstructures 2, no. 2 (2022): 2022011. http://dx.doi.org/10.20517/microstructures.2022.02.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Two-dimensional (2D) magnets have evoked tremendous interest within the research community due to their fascinating features and novel mechanisms, as well as their potential applications in magnetic nanodevices. In this review, state-of-the-art research into the exploration of 2D magnets from the perspective of their magnetic interaction and order mechanisms is discussed. The properties of these magnets can be effectively modulated by varying the external parameters, such as the charge carrier doping, thickness effect, pressure and strain. The potential applications of heterostructures of these 2D magnets in terms of the interlayer coupling strength are reviewed, and the challenges and outlook for this field are proposed.
2

Verzhbitskiy, Ivan, and Goki Eda. "Electrostatic control of magnetism: Emergent opportunities with van der Waals materials." Applied Physics Letters 121, no. 6 (August 8, 2022): 060501. http://dx.doi.org/10.1063/5.0107329.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Since the first reports on the observation of magnetic order in atomically thin crystals of FePS3, CrI3, and CrGeTe3 in 2016 and 2017, there has been a greatly renewed interest in the magnetism of van der Waals (vdW) layered magnets. Due to their dimensionality and structure, ultrathin vdW magnets offer tantalizing prospects for electrostatic control of magnetism for energy-efficient spintronic logic and memory devices. Recent demonstrations revealed unusually high susceptibility of some vdW magnets to electrostatic fields and shed light on a path to room temperature devices, a long-standing goal in spintronics research. In this Perspective, we discuss the potential of different classes of vdW magnets for electrostatic control of magnetism by comparing their properties with those of non-vdW magnets such as dilute magnetic III–V semiconductors and perovskite manganites that have been intensively studied in the past two decades.
3

Bedoya-Pinto, Amilcar, Jing-Rong Ji, Avanindra K. Pandeya, Pierluigi Gargiani, Manuel Valvidares, Paolo Sessi, James M. Taylor, Florin Radu, Kai Chang, and Stuart S. P. Parkin. "Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer." Science 374, no. 6567 (October 29, 2021): 616–20. http://dx.doi.org/10.1126/science.abd5146.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Taking the measure of a magnet The recent discovery of magnetism in two-dimensional (2D) materials has inspired efforts to understand its nature. Whereas the magnetism of monolayers of chromium iodide (CrI 3 ) can be understood in terms of out-of-plane magnetic anisotropy, the related material chromium chloride (CrCl 3 ) has spins that lie in the plane. Bedoya-Pinto et al . used molecular beam epitaxy to grow monolayers of CrCl 3 on graphene and studied its magnetic properties. Using x-ray magnetic circular dichroism measurements, the authors found that monolayer CrCl 3 is a ferromagnet, unlike bulk CrCl 3 , which is antiferromagnetic. The scaling of the signal in the critical region indicated that the material belongs to the 2D-XY universality class, distinct from Ising magnetism, which some other 2D magnets exhibit. —JS
4

Wang, Xiao, Jian Tang, Xiuxin Xia, Congli He, Junwei Zhang, Yizhou Liu, Caihua Wan, et al. "Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2." Science Advances 5, no. 8 (August 2019): eaaw8904. http://dx.doi.org/10.1126/sciadv.aaw8904.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The recent discovery of ferromagnetism in two-dimensional (2D) van der Waals (vdW) materials holds promises for spintronic devices with exceptional properties. However, to use 2D vdW magnets for building spintronic nanodevices such as magnetic memories, key challenges remain in terms of effectively switching the magnetization from one state to the other electrically. Here, we devise a bilayer structure of Fe3GeTe2/Pt, in which the magnetization of few-layered Fe3GeTe2 can be effectively switched by the spin-orbit torques (SOTs) originated from the current flowing in the Pt layer. The effective magnetic fields corresponding to the SOTs are further quantitatively characterized using harmonic measurements. Our demonstration of the SOT-driven magnetization switching in a 2D vdW magnet could pave the way for implementing low-dimensional materials in the next-generation spintronic applications.
5

Jin, Wencan, Zhipeng Ye, Xiangpeng Luo, Bowen Yang, Gaihua Ye, Fangzhou Yin, Hyun Ho Kim, et al. "Tunable layered-magnetism–assisted magneto-Raman effect in a two-dimensional magnet CrI3." Proceedings of the National Academy of Sciences 117, no. 40 (September 23, 2020): 24664–69. http://dx.doi.org/10.1073/pnas.2012980117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We used a combination of polarized Raman spectroscopy experiment and model magnetism–phonon coupling calculations to study the rich magneto-Raman effect in the two-dimensional (2D) magnet CrI3. We reveal a layered-magnetism–assisted phonon scattering mechanism below the magnetic onset temperature, whose Raman excitation breaks time-reversal symmetry, has an antisymmetric Raman tensor, and follows the magnetic phase transitions across critical magnetic fields, on top of the presence of the conventional phonon scattering with symmetric Raman tensors in N-layer CrI3. We resolve in data and by calculations that the first-order Ag phonon of the monolayer splits into an N-fold multiplet in N-layer CrI3 due to the interlayer coupling (N≥2) and that the phonons within the multiplet show distinct magnetic field dependence because of their different layered-magnetism–phonon coupling. We further find that such a layered-magnetism–phonon coupled Raman scattering mechanism extends beyond first-order to higher-order multiphonon scattering processes. Our results on the magneto-Raman effect of the first-order phonons in the multiplet and the higher-order multiphonons in N-layer CrI3 demonstrate the rich and strong behavior of emergent magneto-optical effects in 2D magnets and underline the unique opportunities of spin–phonon physics in van der Waals layered magnets.
6

Blei, M., J. L. Lado, Q. Song, D. Dey, O. Erten, V. Pardo, R. Comin, S. Tongay, and A. S. Botana. "Synthesis, engineering, and theory of 2D van der Waals magnets." Applied Physics Reviews 8, no. 2 (June 2021): 021301. http://dx.doi.org/10.1063/5.0025658.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sun, Yu-Yun, Liang-Qing Zhu, Zhongyao Li, WeiWei Ju, Shi-Jing Gong, Ji-Qing Wang, and Jun-Hao Chu. "Electric manipulation of magnetism in bilayer van der Waals magnets." Journal of Physics: Condensed Matter 31, no. 20 (March 14, 2019): 205501. http://dx.doi.org/10.1088/1361-648x/ab03ec.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jiang, Shengwei, Jie Shan, and Kin Fai Mak. "Electric-field switching of two-dimensional van der Waals magnets." Nature Materials 17, no. 5 (March 12, 2018): 406–10. http://dx.doi.org/10.1038/s41563-018-0040-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tong, Qingjun, Fei Liu, Jiang Xiao, and Wang Yao. "Skyrmions in the Moiré of van der Waals 2D Magnets." Nano Letters 18, no. 11 (October 4, 2018): 7194–99. http://dx.doi.org/10.1021/acs.nanolett.8b03315.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hu, Liang, Jian Zhou, Zhipeng Hou, Weitao Su, Bingzhang Yang, Lingwei Li, and Mi Yan. "Polymer-buried van der Waals magnets for promising wearable room-temperature spintronics." Materials Horizons 8, no. 12 (2021): 3306–14. http://dx.doi.org/10.1039/d1mh01439k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Van der Waals magnets":

1

Wang, Hangtian. "Interfacial Engineering of the Magnetism in 2D Magnets, Topological Insulators, and Their Heterostructures." Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0206.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Alors que le nœud critique des circuits intégrés (CI) entre dans la phase 1 nm, les matériaux tridimensionnels traditionnels ne peuvent pas conserver leurs propriétés physiques d'origine et ne peuvent donc pas répondre aux besoins des processus de fabrication des circuits intégrés. Parallèlement, la diminution de la largeur des lignes entraîne également une augmentation inévitable de la consommation d'énergie statique. Par conséquent, la recherche de nouveaux matériaux et de nouvelles technologies pour briser le « mur de taille » et le « mur de puissance » est devenue une direction cruciale dans l'industrie des circuits intégrés. En tant que nouveau membre de la famille des matériaux bidimensionnels (2D), les aimants 2D peuvent maintenir leur ordre magnétique à longue portée à l'échelle atomique avec leurs propriétés physiques facilement contrôlées par des stimuli externes, ce qui constitue une plate-forme idéale pour la haute densité et les dispositifs spintroniques de faible puissance. Cependant, en raison de l'effet dimensionnel, le magnétisme 2D ne peut pas exister à haute température. Bien que plusieurs méthodes puissent améliorer la température de Curie (Tc) des aimants 2D (comme le dopage, l'intercalation ionique ou le pompage laser), elles sont loin d'être faciles à contrôler et à haut rendement. Plus important encore, la méthode de préparation largement utilisée par exfoliation mécanique abandonne le mérite de l'effet interfacial 2D, qui s'est avéré être une approche importante pour une manipulation magnétique 2D efficace. Par conséquent, l'étude de l'effet interfacial dans les aimants 2D épitaxiaux est considérée comme un domaine clé pour obtenir un ordre ferromagnétique 2D stable, à grande échelle, à haute Tc, facile à contrôler. L'isolant topologique (TI) est un autre matériau 2D avec un fort couplage spin-orbital. Les états de surface protégés par la topologie ont fourni à TI de nombreux effets fascinants liés au spin, tels que le verrouillage de l'impulsion de spin, l'effet d'échange de spin, etc., ce qui fait de ce matériau un candidat potentiel pour fabriquer des dispositifs spintroniques efficaces. De plus, le TI peut être intégré à des aimants 2D pour former une hétérostructure 2D, dans laquelle non seulement le magnétisme peut être amélioré via l'effet d'interface, mais également les propriétés liées au spin de l'hétérostructure peuvent être manipulées grâce aux avantages de ces aimants
With the critical node of integrated circuits (IC) entering the 1 nm stage, traditional three-dimensional materials cannot maintain their original physical properties, and thus cannot meet the needs of IC manufacturing processes. Meanwhile, the shrinking line width also introduces an inevitable increase in static power consumption. Therefore, researching new materials and new technologies to break through the "Size Wall" and "Power Wall" has become a crucial direction in the IC industry. As a new member of the two-dimensional (2D) material family, the 2D magnets can maintain its long-range magnetic order at the atomic scale with its physical properties easily controlled by external stimuli, which provides an ideal platform for the high-density and low-power spintronic devices. However, due to the dimensional effect, 2D magnetism cannot exist at high temperatures. Although several methods can enhance the Curie temperature (Tc) of 2D magnets (such as doping, ion intercalation, or laser pumping), they are far from easy-controllability and high-efficiency. More importantly, the widely-used preparation method via mechanical exfoliation abandons the merit of 2D interfacial effect, which was proved to be an important approach to efficient 2D magnetic manipulation. Therefore, studying the interfacial effect in epitaxial 2D magnets is regarded as a key field to achieving large-scale, high-Tc, easy-controlling, and stable 2D ferromagnetic order. Topological insulator (TI) is another 2D material with strong spin-orbital coupling. The topology-protected surface states provided TI with numerous fascinates spin-related effects, such as spin-momentum locking, spin exchange effect, etc., which makes this material a potential candidate to fabricate effective spintronic devices. In addition, the TI can be integrated with 2D magnets to form a 2D heterostructure, in which not only the magnetism can be enhanced via the interfacial effect, but also the spin-related properties of the heterostructure can be manipulated due to the advantages of these two materials
2

Vergnaud, Céline. "Optimisation de la croissance de MoSe2 - WSe2 par épitaxie de Van der Waals pour la valleytronique." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALY038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse a pour objet l’optimisation de la croissance par épitaxie par jets moléculaires dans le régime de van der Waals de couches semi-conductrices bidimensionnelles (2D) de diséléniures de métaux de transition (MoSe2, WSe2) pour les études magnéto-optiques et électriques. Cette optimisation passe par l’amélioration de la qualité cristallographique des couches sur de grandes surfaces en ajustant les paramètres de croissances (température et flux). En particulier, la maîtrise de l’état de surface du substrat est déterminante sur les mécanismes de croissance de ces couches. L’élaboration de ces matériaux de basse dimensionnalité a nécessité l’utilisation de techniques de caractérisation avancées (Diffraction de rayons X en incidence rasante, Microscopie électronique en transmission en mode haute résolution, ect). Dans cette thèse, nous nous sommes concentrés sur deux substrats particuliers : l’oxyde de silicium et le mica. Ils présentent tous les deux la particularité d’être isolants et inertes d’un point de vue électronique, ce qui est indispensable pour sonder les propriétés optiques et électriques intrinsèques des couches 2D. Finalement, nous avons développé les dopages électrique (dopage p) pour la microélectronique et magnétique (dopage Mn) pour la valleytronique
The purpose of this thesis is to optimize growth by molecular beam epitaxy in the van der Waals regime of two-dimensional (2D) semiconductor layers of transition metal diselenides (MoSe2, WSe2) for magneto-optical and electric studies. This optimization involves improving the crystallographic quality of the layers over large areas by adjusting the growth parameters (temperature and flux). In particular, the control of the surface state of the substrate is decisive on the growth mechanisms of these layers. The development of these low-dimensional materials required the use of advanced characterization techniques (Grazing incidence X-ray diffraction, High Resolved Transmission Electronic Microscopy, ect). In this thesis, we focused on two specific substrates : silicon oxide and mica. They both have the particularity of being insulating and inert from an electronic point of view, which is essential to probe the optical and electrical intrinsic properties of 2D layers. Finally, we developed electrical doping (p doping) for microelectronics and magnetic (Mn doping) for valleytronics
3

Goodwin, William Brandon. "Controlled modulation of short- and long-range adhesion of microscale biogenic replicas." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54842.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The generation of nanostructured microscale assemblies with complex, three-dimensional (3-D) morphologies possessing multicomponent inorganic compositions tailored for adhesion is of considerable scientific and technological interest. This dissertation demonstrates that self-assembled 3-D organic templates of biogenic origin can be converted into replicas comprised of numerous other functional nanocrystalline inorganic materials and, further, how such replicas can tailored for adhesion. Nature provides a spectacular variety of biologically-assembled 3-D organic structures with intricate, hierarchical (macro-to-micro-to-nanoscale) morphologies designed for particle adhesion. The conformal coating of such structurally-complex biotemplates with synthetic materials provides a framework for chemical transformation of other, complex synthetic organic templates and the basis to study imparted adhesion properties. Three specific research thrusts are detailed in this document. First, freestanding magnetite (Fe3O4) replicas of bio-organic templates are synthesized via a layer-by-layer (LbL) wet chemical deposition process and subsequent morphology-preserving thermal treatments to allow for structures with tailorable long-range magnetic adhesion. Second, freestanding spinel ferrite replicas of bio-organic templates are synthesized (via LbL coating and thermal treatment) for grain size controlled long-range magnetic adhesion and short range van der Waals adhesion. The final research thrust focuses on the use of a low temperature (≤ 250°C) wet-chemical based process to convert bioorganic templates into magnetically-coated structures retaining both the size and morphology of the template. The rate-limiting kinetic mechanism(s) of the partial reduction of the inorganic coatings have been examined via quartz crystal microbalance analysis. The effects of the coating micro/nanostructure on magnetic behavior and on surface adhesion, have been investigated.
4

Avalos, Ovando Oscar Rodrigo. "Magnetic Interactions in Transition Metal Dichalcogenides." Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1540818398439166.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

DE, VITA ALESSANDRO. "PROBING BAND MAGNETISM IN DIFFERENT DIMENSIONS: ENERGY, SPIN AND TIME-RESOLVED STUDIES." Doctoral thesis, Università degli Studi di Milano, 2022. https://hdl.handle.net/2434/947210.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis completes my work as doctoral student of the Scuola di Dottorato in Fisica, Astrofisica e Fisica Applicata at the Università degli Studi di Milano, that has been carried out since November 2019 at the Istituto Officina dei Materiali of the Consiglio Nazionale delle Ricerche (IOM-CNR) in the premises of the Elettra - Sincrotrone Trieste and FERMI@Elettra infrastructures and in the framework of the NFFA facility. My experimental activity employed complementary spectroscopy and polarimetry techniques oriented to address the characterisation of electronic and spin properties of systems with decreasing dimensionality. This programme has been conducted by exploiting state-of-the-art infrastructures to generate visible, UV and EUV ultrashort pulses (tabletop lasers and HHG at NFFA-SPRINT laboratory) and soft X-ray synchrotron light (at Elettra, Diamond and ESRF synchrotron light sources). I used photoemission as the main tool in my investigation, supplementing my results with absorption spectroscopy. I focused on three materials, Fe(001)-p(1x1)O/MgO(001), EuSn2P2 and VI3, of high interest in modern and next-generation magnetic devices. In the three systems I studied the electronic band structure to identify key features hinting at the bound electrons behaviour. I investigated the properties of the magnetically ordered phases and found evidence of the reduced dimensionality in the emergence of atypical spin ordering and the increasingly manifest electron correlation phenomena. The information retained by band electrons is critical to access the spin polarisation of the bands and to give insight into the effects of spatial confinement on the spin degree of freedom.
6

Marcon, Paul. "Calcul ab-initio des propriétés physiques d'hétérostructures associant des matériaux ferromagnétiques à anisotropie magnétique perpendiculaire et des dichalcogénures de métaux de transition." Electronic Thesis or Diss., Toulouse 3, 2023. http://www.theses.fr/2023TOU30273.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La possibilité de synthétiser des hétérostructures formées de matériaux 2D offre des perspectives majeures pour l'amélioration des composants spintroniques actuels ou la réalisation de nouveaux dispositifs. Le contrôle et la bonne compréhension des propriétés physiques de ces systèmes constituent de fait un enjeu technologique majeur. Au cours de cette thèse, nous avons étudié, à l'aide de calculs ab initio basés sur la théorie de la fonctionnelle de la densité (DFT), des hétérostructures formées de monocouches de dichalcogénures de métaux de transition (TMDCs) et de cristaux ferromagnétiques présentant une anisotropie magnétique perpendiculaire. Trois objectifs principaux ont été définis : (i) comprendre comment utiliser la proximité magnétique pour lever la dégénérescence des vallées et quantifier l'effet Zeeman des vallées ; (ii) évaluer la possibilité d'injecter un gaz d'électrons polarisé en spin dans des vallées spécifiques du feuillet de TMDC ; (iii) examiner l'impact de la proximité sur le couplage spin-orbite dans le feuillet de TMDC et sur les phénomènes Rashba et Dresselhaus dans ces systèmes. Nous avons d'abord étudié des multicouches possédant une électrode constituée d'un métal et d'une barrière isolante non 2D. Dans le système Fe/MgO/MoS2, nous avons calculé qu'un transfert d'électrons spontané s'opère de la couche de Fe vers le monofeuillet de MoS2, donnant lieu à la formation d'un gaz d'électrons non polarisé en spin. Nous avons établi un modèle expliquant la compétition entre les effets spin-orbite de type Rashba et Dresselhaus et les effets de proximité magnétique sur les bandes de valence de MoS2 : Ce modèle nous a permis de montrer que les effets de proximité sont prédominants pour une faible épaisseur de MgO (<0.42 nm), et tendent à disparaître au profit des effets spin-orbite pour à plus forte épaisseur (> 1.06 nm). Nous avons prédit qu'il est possible d'obtenir des effets spin-orbites plus forts en remplaçant l'électrode de Fe par une électrode non-magnétique de V. Afin d'augmenter les effets de proximité magnétique, nous avons finalement décider d'étudier des hétérostructures [Co1Ni2]n/h-BN/WSe2, dans lesquelles [Co1Ni2]n est un super réseau à anisotropie magnétique perpendiculaire et h-BN un isolant bidimensionnel. Pour ce système, nous prédisons qu'il serait possible d'avoir une polarisation en spin des vallées aux points K et K'. Finalement, nous avons étudié les propriétés particulières de l'hétérostructure de van der Waals Graphène/CrI3/WSe2,dans laquelle l'électrode magnétique est également remplacée par des matériaux 2D
The ability to synthesize heterostructures made up of 2D materials provides significant opportunities for improving current spintronic components or developing new devices. Thus, the control and deep understanding of the physical properties of these systems become a critical technological challenge. During this thesis, we examined heterostructures composed of transition metal dichalcogenide (TMDC) monolayers and ferromagnetic crystals exhibiting perpendicular magnetic anisotropy, using ab initio calculations based on density functional theory (DFT). We focus on three main goals: (i) understanding how to use magnetic proximity to lift valley degeneracy and quantify the valley Zeeman effect; (ii) assessing the possibility of injecting spin-polarized electron gas into specific valleys of the TMDC sheet; (iii) investigating the impact of proximity on spin-orbit coupling in the TMDC sheet and on the Rashba and Dresselhaus phenomena in these systems. We first studied multilayers with an electrode made up of a metal and a non-2D insulating barrier. In the Fe/MgO/MoS2 system, we computed that a spontaneous electron transfer occurs from the Fe layer to the MoS2 monolayer, leading to the formation of a non-spin-polarized electron gas. We established a model explaining the competition between Rashba and Dresselhaus-type spin-orbit effects and magnetic proximity effect on the MoS2 valence bands: This model allowed us to show that proximity effect predominate for thin MgO (<0.42 nm) and tend to disappear in favor of spin-orbit effects for thicker layers (> 1.06 nm). We predicted that stronger spin-orbit effects can be achieved by replacing the Fe electrode with a non-magnetic V electrode. To boost the magnetic proximity effects, we finally decided to study [Co1Ni2]n/h-BN/WSe2 heterostructures, in which [Co1Ni2]n is a superlattice with perpendicular magnetic anisotropy, and h-BN is a two-dimensional insulator. For this system, we predict that it could be possible to have a spin polarization of the valleys at the K and K' points. Ultimately, we explored the unique properties of the van der Waals heterostructure Graphene/CrI3/WSe2, where the magnetic electrode is also replaced by 2D materials
7

Bezzi, Luca. "Materiali 2D van der Waals." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dalla scoperta del grafene, molte ricerche sono state condotte sui cosiddetti “materiali 2D”. Questo elaborato si focalizza sulle proprietà strutturali, elettroniche, ottiche ed eccitoniche di due materiali bidimensionali, ossia il grafene il disolfuro di molibdeno (MoS2-1H), quest’ultimo un importante semiconduttore. Le proprietà di questi materiali sono diverse rispetto alla loro controparte massiva (bulk) grafite e MoS2-2H, e un loro confronto è stato preso in considerazione. Come metodo di indagine sono state scelte simulazioni quanto- meccaniche ab initio dei sistemi in esame, un approccio che, negli ultimi decenni, sta avendo un impatto sempre più importante sulla fisica, sulla chimica dello stato solido e sulla scienza dei materiali, promuovendo non solo una comprensione più profonda, ma anche la possibilità di contribuire in modo significativo alla progettazione di materiali per nuove tecnologie. Questo importante passo avanti è stato possibile grazie a: (i) una descrizione migliorata ed efficiente degli effetti elettronici a molti corpi (many-body) nella teoria del funzionale della densità (DFT), nonché lo sviluppo di metodi post-DFT per lo studio di proprietà specifiche; (ii) un’accurata implementazione di questi metodi in software altamente efficienti, stabili e versatili, capaci di sfruttare il potenziale delle architetture informatiche moderne. Tra i possibili software ab initio basati su DFT, abbiamo scelto il pacchetto di simulazione di Vienna ab initio VASP, considerato un gold standard per questo tipo di indagini. I risultati ottenuti per le varie proprietà di bulk e di superficie (bidimensionale) dei materiali scelti sono in ottimo accordo con dati ottenuti in precedenza, sia a livello teorico, sia sperimentale. Questo elaborato getta quindi le basi per futuri studi nel campo dei materiali 2D per comprendere, analizzare, ingegnerizzare nuovi materiali con proprietà desiderabili e per sviluppare nuove applicazioni degli stessi.
8

Boddison-Chouinard, Justin. "Fabricating van der Waals Heterostructures." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38511.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The isolation of single layer graphene in 2004 by Geim and Novoselov introduced a method that researchers could extend to other van der Waals materials. Interesting and new properties arise when we reduce a crystal to two dimensions where they are often different from their bulk counterpart. Due to the van der Waals bonding between layers, these single sheets of crystal can be combined and stacked with diferent sheets to create novel materials. With the goal to study the interesting physics associated to these stacks, the focus of this work is on the fabrication and characterization of van der Waals heterostructures. In this work, we first present a brief history of 2D materials, the fabrication of heterostructures, and the various tools used to characterize these materials. We then give a description of the custom-built instrument that was used to assemble various 2D heterostructures followed by the findings associated with the optimization of the cleanliness of the stack's interface and surface. Finally, we discuss the results related to the twisting of adjacent layers of stacked MoS2 and its relation to the interlayer coupling between said layers.
9

Vexiau, Romain. "Dynamique et contrôle optique des molécules froides." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00783399.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le travail théorique présenté dans cette thèse concerne la formation de molécules ultra-froides bialcalines et le contrôle de leurs degrés de liberté externes et internes. Cette étude est motivée par les nombreuses expériences en cours visant à l'obtention d'un gaz quantique dégénéré de molécules dans leur état fondamental absolu. Le schéma de formation étudié repose sur le processus de transfert adiabatique stimulé (STIRAP) réalisé en présence d'un potentiel optique de piégeage (réseau optique) des atomes et des molécules.Nous avons déterminé les paramètres du réseau optique (intensité et fréquence du champ laser) qui permettent de piéger efficacement des dimères d'alcalins en évaluant la polarisabilité dynamique acquise par les molécules soumises à un champ externe. Ces calculs reposent en particulier sur la connaissance détaillée de la structure électronique des molécules. Nous avons identifié des plages de longueur d'ondes dites " magiques " où la polarisabilité est la même pour chaque niveau peuplé au cours du transfert adiabatique, permettant ainsi un transfert optimal. Ce formalisme nous a également permis d'obtenir les coefficients Van der Waals de l'interaction à longue portée nécessaires pour étudier les taux de collisions entre molécules.Nous avons réalisé une étude plus détaillée de la molécule RbCs. En étudiant précisément la probabilité de transition de la molécule vers un niveau excité, nous avons proposé un schéma STIRAP pour transférer des molécules de RbCs, initialement dans un niveau vibrationnel excité, vers leur état rovibrationnel fondamental.Ces travaux ont montré l'importance de la connaissance précise de la structure hyperfine de l'état électronique moléculaire excité pour réaliser un gaz dégénéré de molécules dans un état quantique bien défini. Un modèle asymptotique nous a permis d'obtenir une première estimation de la structure hyperfine des courbes d'énergies potentielles des premiers états moléculaires excités des molécules Cs2 et RbCs.
10

Tiller, Andrew R. "Spectra of Van der Waals complexes." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333415.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Van der Waals magnets":

1

Parsegian, V. Adrian. Van der Waals forces. New York: Cambridge University Press, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Holwill, Matthew. Nanomechanics in van der Waals Heterostructures. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18529-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

L, Neal Brian, Lenhoff Abraham M, and United States. National Aeronautics and Space Administration., eds. Van der Waals interactions involving proteins. New York: Biophysical Society, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kipnis, Aleksandr I͡Akovlevich. Van der Waals and molecular sciences. Oxford: Clarendon Press, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kipnis, Aleksandr I︠A︡kovlevich. Van der Waals and molecular science. Oxford: Clarendon Press, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Barash, I͡U S. Sily Van-der-Vaalʹsa. Moskva: "Nauka," Glav. red. fiziko-matematicheskoĭ lit-ry, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Halberstadt, Nadine, and Kenneth C. Janda, eds. Dynamics of Polyatomic Van der Waals Complexes. New York, NY: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-8009-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Halberstadt, Nadine. Dynamics of Polyatomic Van der Waals Complexes. Boston, MA: Springer US, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

NATO Advanced Research Workshop on Dynamics of Polyatomic Van der Waals Complexes (1989 Castéra-Verduzan, France). Dynamics of polyatomic Van der Waals complexes. New York: Plenum Press, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

M, Smirnov B. Cluster ions and Van der Waals molecules. Philadelphia: Gordon and Breach Science Publishers, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Van der Waals magnets":

1

Tsuchiya, Taku. "Van der Waals Force." In Encyclopedia of Earth Sciences Series, 1–2. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39193-9_329-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tsuchiya, Taku. "Van der Waals Force." In Encyclopedia of Earth Sciences Series, 1473–74. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_329.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bruylants, Gilles. "Van Der Waals Forces." In Encyclopedia of Astrobiology, 1728–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1647.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhang, Xiang-Jun. "Van der Waals Forces." In Encyclopedia of Tribology, 3945–47. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_457.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Arndt, T. "Van-der-Waals-Kräfte." In Springer Reference Medizin, 2429–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_3207.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gooch, Jan W. "Van der Waals Forces." In Encyclopedic Dictionary of Polymers, 788. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12442.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bruylants, Gilles. "Van der Waals Forces." In Encyclopedia of Astrobiology, 2583–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1647.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tadros, Tharwat. "Van der Waals Attraction." In Encyclopedia of Colloid and Interface Science, 1395–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-20665-8_159.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Arndt, T. "Van-der-Waals-Kräfte." In Lexikon der Medizinischen Laboratoriumsdiagnostik, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49054-9_3207-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Thompson, M. L. "Van Der Waals Complexes." In Inorganic Reactions and Methods, 196. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145227.ch142.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Van der Waals magnets":

1

Menon, Vinod M. "Light matter interaction in van der Waals magnets." In Metamaterials, Metadevices, and Metasystems 2023, edited by Nader Engheta, Mikhail A. Noginov, and Nikolay I. Zheludev. SPIE, 2023. http://dx.doi.org/10.1117/12.2679381.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wolff, Joanna, Loïc Moczko, Jérémy Thoraval, Michelangelo Romeo, Stéphane Berciaud, and Arnaud Gloppe. "Optomechanics of Suspended Magnetic Van Der Waals Materials." In 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2023. http://dx.doi.org/10.1109/cleo/europe-eqec57999.2023.10232215.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dirnberger, Florian, Rezlind Bushati, Biswajit Datta, Ajesh Kumar, Allan H. MacDonald, Edoardo Baldini, and Vinod M. Menon. "Strong exciton-photon-spin coupling in a van der Waals antiferromagnet." In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.jth6c.8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A hitherto unobserved three-body coupled composite of excitons, photons and spins is created by strong light-matter coupling in a van der Waals magnetic insulator hosting spin-correlated excitonic excitations [1]. (c) 2022 The Authors(s)
4

Campana, Ana Lucia, Nadeem Joudeh, Henrik Hoyer, Anja Royne, Dirk Linke, and Pavlo Mikheenko. "Probing Van Der Waals and Magnetic Forces in Bacteria with Magnetic Nanoparticles." In 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2020. http://dx.doi.org/10.1109/nap51477.2020.9309722.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Harchol, Adi, Esty Ritov, and Efrat Lifshitz. "Probing Magnetism in Antiferromagnetic van der Waals Semiconductors by Optical Spectroscopy." In nanoGe Spring Meeting 2022. València: Fundació Scito, 2022. http://dx.doi.org/10.29363/nanoge.nsm.2022.361.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhu, Meng, Xinlu Li, Yaoyuan Wang, Fanxing Zheng, Jianting Dong, Ye Zhou, Long You, and Jia Zhang. "Tunneling magnetoresistance effects based on van der Waals room-temperature ferromagnet Fe3GaTe2." In 2023 IEEE International Magnetic Conference - Short Papers (INTERMAG Short Papers). IEEE, 2023. http://dx.doi.org/10.1109/intermagshortpapers58606.2023.10305024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Eremeev, S. V., M. M. Otrokov, A. Ernst, and E. V. Chulkov. "MAGNETIC ORDERING AND TOPOLOGY IN Mn2Bi2Te5 AND Mn2Sb2Te5 VAN DER WAALS MATERIALS." In Physical Mesomechanics of Materials. Physical Principles of Multi-Layer Structure Forming and Mechanisms of Non-Linear Behavior. Novosibirsk State University, 2022. http://dx.doi.org/10.25205/978-5-4437-1353-3-320.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Geraffy, Ellenor, and Efrat Lifshitz*. "Intrinsic magnetism in van der Waals semiconductors in their 2-D limit." In nanoGe Spring Meeting 2022. València: Fundació Scito, 2022. http://dx.doi.org/10.29363/nanoge.nsm.2022.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Saykally, Richard J. "Intracavity far-infrared laser spectroscopy of ions and Van der Waals molecules." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.wn2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Far-infrared laser magnetic resonance is used to measure rotational spectra of simple cations generated in intracavity discharges.1,2 Hyperfine energy levels are resolved, revealing the electron spin density distribution in the molecules. A similar technique, employing an intracavity supersonic free jet and an electric field for tuning, is used to measure vibration-rotation spectra of Van der Waals bonds. The bend and stretch motions of the Van der Waals bonds3 in ArHCl and KrHCl have been studied with hyperfine resolution. A detailed description of the potential energy surface is obtained from analysis of these spectra.
10

Lan, Shoufeng, and Xiang Zhang. "The interplay of magnetism and chirality in van der Waals crystals (Conference Presentation)." In Photonic and Phononic Properties of Engineered Nanostructures IX, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2019. http://dx.doi.org/10.1117/12.2510148.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Van der Waals magnets":

1

O'Hara, D. J. Molecular Beam Epitaxy and High-Pressure Studies of van der Waals Magnets. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1562380.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Martinez Milian, Luis. Manipulation of the magnetic properties of van der Waals materials through external stimuli. Office of Scientific and Technical Information (OSTI), May 2024. http://dx.doi.org/10.2172/2350595.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Klots, C. E. (Physics and chemistry of van der Waals particles). Office of Scientific and Technical Information (OSTI), October 1990. http://dx.doi.org/10.2172/6608231.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mak, Kin Fai. Understanding Topological Pseudospin Transport in Van Der Waals' Materials. Office of Scientific and Technical Information (OSTI), May 2021. http://dx.doi.org/10.2172/1782672.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kim, Philip. Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures. Fort Belvoir, VA: Defense Technical Information Center, March 2015. http://dx.doi.org/10.21236/ada616377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sandler, S. I. The generalized van der Waals theory of pure fluids and mixtures. Office of Scientific and Technical Information (OSTI), June 1990. http://dx.doi.org/10.2172/6382645.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sandler, S. I. (The generalized van der Waals theory of pure fluids and mixtures). Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5610422.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Menezes, W. J. C., and M. B. Knickelbein. Metal cluster-rare gas van der Waals complexes: Microscopic models of physisorption. Office of Scientific and Technical Information (OSTI), March 1994. http://dx.doi.org/10.2172/10132910.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gwo, Dz-Hung. Tunable far infrared laser spectroscopy of van der Waals bonds: Ar-NH sub 3. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/7188608.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

French, Roger H., Nicole F. Steinmetz, and Yingfang Ma. Long Range van der Waals - London Dispersion Interactions For Biomolecular and Inorganic Nanoscale Assembly. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1431216.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії