Добірка наукової літератури з теми "Van der Waals Hybrid"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Van der Waals Hybrid".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Van der Waals Hybrid"

1

Wang, Haizhen, Jiaqi Ma, and Dehui Li. "Two-Dimensional Hybrid Perovskite-Based van der Waals Heterostructures." Journal of Physical Chemistry Letters 12, no. 34 (August 20, 2021): 8178–87. http://dx.doi.org/10.1021/acs.jpclett.1c02290.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Idrees, M., H. U. Din, R. Ali, G. Rehman, T. Hussain, C. V. Nguyen, Iftikhar Ahmad, and B. Amin. "Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures." Physical Chemistry Chemical Physics 21, no. 34 (2019): 18612–21. http://dx.doi.org/10.1039/c9cp02648g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mondal, Chiranjit, Sourabh Kumar, and Biswarup Pathak. "Topologically protected hybrid states in graphene–stanene–graphene heterojunctions." Journal of Materials Chemistry C 6, no. 8 (2018): 1920–25. http://dx.doi.org/10.1039/c7tc05212j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Shukla, Vivekanand, Yang Jiao, Carl M. Frostenson, and Per Hyldgaard. "vdW-DF-ahcx: a range-separated van der Waals density functional hybrid." Journal of Physics: Condensed Matter 34, no. 2 (November 1, 2021): 025902. http://dx.doi.org/10.1088/1361-648x/ac2ad2.

Повний текст джерела
Анотація:
Abstract Hybrid density functionals replace a fraction of an underlying generalized-gradient approximation (GGA) exchange description with a Fock-exchange component. Range-separated hybrids (RSHs) also effectively screen the Fock-exchange component and thus open the door for characterizations of metals and adsorption at metal surfaces. The RSHs are traditionally based on a robust GGA, such as PBE (Perdew J P et al 1996 Phys. Rev. Lett. 77 3865), for example, as implemented in the HSE design (Heyd J et al 2003 J. Chem. Phys. 118 8207). Here we define an analytical-hole (Henderson T M et al 2008 J. Chem. Phys. 128 194105) consistent-exchange RSH extension to the van der Waals density functional (vdW-DF) method (Berland K et al 2015 Rep. Prog. Phys. 78 066501), launching vdW-DF-ahcx. We characterize the GGA-type exchange in the vdW-DF-cx version (Berland K and Hyldgaard P 2014 Phys. Rev. B 89 035412), isolate the short-ranged exchange component, and define the new vdW-DF hybrid. We find that the performance vdW-DF-ahcx compares favorably to (dispersion-corrected) HSE for descriptions of bulk (broad molecular) properties. We also find that it provides accurate descriptions of noble-metal surface properties, including CO adsorption.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zheng, Zhikun, Xianghui Zhang, Christof Neumann, Daniel Emmrich, Andreas Winter, Henning Vieker, Wei Liu, Marga Lensen, Armin Gölzhäuser, and Andrey Turchanin. "Hybrid van der Waals heterostructures of zero-dimensional and two-dimensional materials." Nanoscale 7, no. 32 (2015): 13393–97. http://dx.doi.org/10.1039/c5nr03475b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Alam, Qaisar, S. Muhammad, M. Idrees, Nguyen V. Hieu, Nguyen T. T. Binh, C. Nguyen, and Bin Amin. "First-principles study of the electronic structures and optical and photocatalytic performances of van der Waals heterostructures of SiS, P and SiC monolayers." RSC Advances 11, no. 24 (2021): 14263–68. http://dx.doi.org/10.1039/d0ra10808a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pierucci, Debora, Aymen Mahmoudi, Mathieu Silly, Federico Bisti, Fabrice Oehler, Gilles Patriarche, Frédéric Bonell, et al. "Evidence for highly p-type doping and type II band alignment in large scale monolayer WSe2/Se-terminated GaAs heterojunction grown by molecular beam epitaxy." Nanoscale 14, no. 15 (2022): 5859–68. http://dx.doi.org/10.1039/d2nr00458e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhang, Wei, and Lifa Zhang. "Electric field tunable band-gap crossover in black(blue) phosphorus/g-ZnO van der Waals heterostructures." RSC Advances 7, no. 55 (2017): 34584–90. http://dx.doi.org/10.1039/c7ra06097a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sun, Cuicui, and Meili Qi. "Hybrid van der Waals heterojunction based on two-dimensional materials." Journal of Physics: Conference Series 2109, no. 1 (November 1, 2021): 012012. http://dx.doi.org/10.1088/1742-6596/2109/1/012012.

Повний текст джерела
Анотація:
Abstract Since the discovery of graphene, two-dimensional (2D) layered materials have always been the focus of material research. The layers of 2D materials are covalent bonds, and the layers are weakly bonded to adjacent layers through van der Waals (vdW) interactions. Since any dangling-bond-free surface could be combined with another material through vdW forces, the concept can be extended. This can refer to the integration of 2D materials with any other non-2D materials through non-covalent interactions. The emerging mixed-dimensional (2D+nD, where n is 0, 1 or 3) heterostructure devices has been studied and represents a wider range of vdW heterostructures. New electronic devices and optoelectronic devices based on such heterojunctions have unique functions. Therefore, this article depicts the research progress of (2D+nD, where n is 0, 1 or 3) vdW heterojunctions based on 2D materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Orgiu, Emanuele. "(Invited) Hybrid Van Der Waals Heterostructures: From Fundamentals to Applications." ECS Meeting Abstracts MA2021-01, no. 12 (May 30, 2021): 592. http://dx.doi.org/10.1149/ma2021-0112592mtgabs.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Van der Waals Hybrid"

1

Zheng, Zhikun, Xianghui Zhang, Christof Neumann, Daniel Emmrich, Andreas Winter, Henning Vieker, Wei Liu, Marga Lensen, Armin Gölzhäuser, and Andrey Turchanin. "Hybrid van der Waals heterostructures of zero-dimensional and two-dimensional materials." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-188567.

Повний текст джерела
Анотація:
van der Waals heterostructures meet other low-dimensional materials. Stacking of about 1 nm thick nanosheets with out-of-plane anchor groups functionalized with fullerenes integrates this zero-dimensional material into layered heterostructures with a well-defined chemical composition and without degrading the mechanical properties. The developed modular and highly applicable approach enables the incorporation of other low-dimensional materials, e.g. nanoparticles or nanotubes, into heterostructures significantly extending the possible building blocks.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gerber, Iann. "Description des forces de van der Waals dans le cadre de la théorie de la fonctionnelle de la densité par un traitement explicite des interactions de longueportée." Phd thesis, Université Henri Poincaré - Nancy I, 2005. http://tel.archives-ouvertes.fr/tel-00011397.

Повний текст джерела
Анотація:
L'idée qui consiste à traiter séparément les parties courte- et longue portée de l'interaction électronique dans la théorie de la fonctionnelle de la densité, par une fonctionnelle de la densité d'une part, et par une description par fonction d'onde d'autre part s'est largement développée récemment. Ce schéma conduit naturellement à la construction d'une fonctionnelle hybride d'un nouveau type, avec la combinaison d'une énergie d'échange de longue portée explicite et d'une fonctionnelle d'échange-corrélation de courte portée appropriée. L'ajout, dans une approche perturbative, d'un terme rendant compte des corrélations dynamiques de longue portée, se présente comme une solution alternative au problème fondamental de l'incorporation des forces de dispersion dans la méthode de la fonctionnelle de la densité, applicable aussi bien au niveau moléculaire qu'en conditions périodiques.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Richard, Sébastien. "Silices hybrides organisées par auto-assemblage de précurseurs polyfonctionnels." Montpellier 2, 2007. http://www.theses.fr/2007MON20175.

Повний текст джерела
Анотація:
Les travaux décrits dans ce mémoire portent sur la synthèse de précurseurs silylés dotés de propriétés d'auto-association afin d'obtenir par des réactions hydrolyse-condensation des silices hybrides structurées de type silsesquioxane. Le premier modèle employé est un triphénylène trisilylé. Deux précurseurs de type ester sont décrits, l'un comportant trois chaînes propyles, l'autre comportant trois chaînes undécyles. La synthèse des matériaux correspondants est décrite ainsi que les analyses qui ont été effectués. La catalyse acide dans un mélange eau/DMSO ou eau/THF est la plus favorable à l'organisation. Le second modèle employé est une tétraphénylporphyrine tétrasilylée. Ce précurseur comporte des fonctions urées créant des liaisons hydrogène intermoléculaires, ainsi que des chaînes propyles. L'hydrolyse-condensation en milieu basique a conduit à un matériau structuré mis en évidence par diffraction des rayons X, et qui se traduit par des nanostructures tubulaires visibles en microscopie électronique en transmission. Le dernier modèle décrit est un précurseur à longue chaîne alkyle polysilylé à l'une des extrémités de la chaîne. Deux molécules, l'une comportant une chaîne décyle et l'autre une chaîne octadécyle, ont été synthétisées. Ces précurseurs s'organisent en milieu biphasique octane/eau pour donner des feuillets formant des plaques. Cette structuration est dépendante du catalyseur et du précurseur et est plus particulièrement prononcée dans le cas de la chaîne longue en catalyse acide
The synthesis of silylated precursors with self-assembly properties in order to create structured, silsesquioxane hybrid silicas by hydrolysis-polycondensation, is described in this report. First, a tri-silylated triphenylene model is shown. Two ester precursors have been synthesized, one bearing three propyl chains, the other bearing three undecyl chains. Synthesis and analysis of resultant materials is described. Acid catalysis in water/DMSO or water/THF gave the best results. Secondly, a tetra-silylated tetraphenylporphyrin was synthesized. This precursor bears ureas that creates intermolecular hydrogen bonds and propyl chains. The hydrolysis-condensation under basic conditions gave a structured material which was proved by X-rays diffraction. Nanostructures could be seen by transmission electron microscopy. The last model is a long alkyl chain bearing a polysilylated head at one side. Two molecules were synthesized, one with a decyl chain, the other with an octadecyl chain. These precursors assembled in biphasic, octane/water conditions, to give sheets and plates. The process depends on the catalyst and the precursor. The longest alkyl chain in acid catalysis gave the best results
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bezzi, Luca. "Materiali 2D van der Waals." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.

Знайти повний текст джерела
Анотація:
Dalla scoperta del grafene, molte ricerche sono state condotte sui cosiddetti “materiali 2D”. Questo elaborato si focalizza sulle proprietà strutturali, elettroniche, ottiche ed eccitoniche di due materiali bidimensionali, ossia il grafene il disolfuro di molibdeno (MoS2-1H), quest’ultimo un importante semiconduttore. Le proprietà di questi materiali sono diverse rispetto alla loro controparte massiva (bulk) grafite e MoS2-2H, e un loro confronto è stato preso in considerazione. Come metodo di indagine sono state scelte simulazioni quanto- meccaniche ab initio dei sistemi in esame, un approccio che, negli ultimi decenni, sta avendo un impatto sempre più importante sulla fisica, sulla chimica dello stato solido e sulla scienza dei materiali, promuovendo non solo una comprensione più profonda, ma anche la possibilità di contribuire in modo significativo alla progettazione di materiali per nuove tecnologie. Questo importante passo avanti è stato possibile grazie a: (i) una descrizione migliorata ed efficiente degli effetti elettronici a molti corpi (many-body) nella teoria del funzionale della densità (DFT), nonché lo sviluppo di metodi post-DFT per lo studio di proprietà specifiche; (ii) un’accurata implementazione di questi metodi in software altamente efficienti, stabili e versatili, capaci di sfruttare il potenziale delle architetture informatiche moderne. Tra i possibili software ab initio basati su DFT, abbiamo scelto il pacchetto di simulazione di Vienna ab initio VASP, considerato un gold standard per questo tipo di indagini. I risultati ottenuti per le varie proprietà di bulk e di superficie (bidimensionale) dei materiali scelti sono in ottimo accordo con dati ottenuti in precedenza, sia a livello teorico, sia sperimentale. Questo elaborato getta quindi le basi per futuri studi nel campo dei materiali 2D per comprendere, analizzare, ingegnerizzare nuovi materiali con proprietà desiderabili e per sviluppare nuove applicazioni degli stessi.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Boddison-Chouinard, Justin. "Fabricating van der Waals Heterostructures." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38511.

Повний текст джерела
Анотація:
The isolation of single layer graphene in 2004 by Geim and Novoselov introduced a method that researchers could extend to other van der Waals materials. Interesting and new properties arise when we reduce a crystal to two dimensions where they are often different from their bulk counterpart. Due to the van der Waals bonding between layers, these single sheets of crystal can be combined and stacked with diferent sheets to create novel materials. With the goal to study the interesting physics associated to these stacks, the focus of this work is on the fabrication and characterization of van der Waals heterostructures. In this work, we first present a brief history of 2D materials, the fabrication of heterostructures, and the various tools used to characterize these materials. We then give a description of the custom-built instrument that was used to assemble various 2D heterostructures followed by the findings associated with the optimization of the cleanliness of the stack's interface and surface. Finally, we discuss the results related to the twisting of adjacent layers of stacked MoS2 and its relation to the interlayer coupling between said layers.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tiller, Andrew R. "Spectra of Van der Waals complexes." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333415.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mauro, Diego. "Electronic properties of Van der Waals heterostructures." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10565/.

Повний текст джерела
Анотація:
L’interazione spin-orbita (SOI) nel grafene è attualmente oggetto di intensa ricerca grazie alla recente scoperta di una nuova classe di materiali chiamati isolanti topologici. Questi materiali, la cui esistenza è strettamente legata alla presenza di una forte SOI, sono caratterizzati dall’interessante proprietà di avere un bulk isolante ed allo stesso tempo superfici conduttrici. La scoperta teorica degli isolanti topologici la si deve ad un lavoro nato con l’intento di studiare l’influenza dell’interazione spin-orbita sulle proprietà del grafene. Poichè questa interazione nel grafene è però intrinsecamente troppo piccola, non è mai stato possibile effettuare verifiche sperimentali. Per questa ragione, vari lavori di ricerca hanno recentemente proposto tecniche volte ad aumentare questa interazione. Sebbene alcuni di questi studi abbiano mostrato un effettivo aumento dell’interazione spin-orbita rispetto al piccolo valore intrinseco, sfortunatamente hanno anche evidenziato una consistente riduzione della qualità del grafene. L’obbiettivo che ci si pone in questa tesi è di determinare se sia possibile aumentare l’interazione spin-orbita nel grafene preservandone allo stesso tempo le qualità. La soluzione proposta in questo lavoro si basa sull’utilizzo di due materiali semiconduttori, diselenio di tungsteno WSe2 e solfuro di molibdeno MoS2, utilizzati da substrato su cui sopra verrà posizionato il grafene formando così un’eterostruttura -nota anche di “van der Waal” (vdW)-. Il motivo di questa scelta è dovuto al fatto che questi materiali, appartenenti alla famiglia dei metalli di transizione dicalcogenuri (TMDS), mostrano una struttura reticolare simile a quella del grafene, rendendoli ideali per formare eterostrutture e ancora più importante, presentano una SOI estremamente grande. Sostanzialmente l’idea è quindi di sfruttare questa grande interazione spin-orbita del substrato per indurla nel grafene aumentandone così il suo piccolo valore intrinseco.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Klein, Andreas. "Energietransferprozesse in matrixisolierten van-der-Waals-Komplexen." [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=962344761.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Odeyemi, Tinuade A. "Numerical Modelling of van der Waals Fluids." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22661.

Повний текст джерела
Анотація:
Many problems in fluid mechanics and material sciences deal with liquid-vapour flows. In these flows, the ideal gas assumption is not accurate and the van der Waals equation of state is usually used. This equation of state is non-convex and causes the solution domain to have two hyperbolic regions separated by an elliptic region. Therefore, the governing equations of these flows have a mixed elliptic-hyperbolic nature. Numerical oscillations usually appear with standard finite-difference space discretization schemes, and they persist when the order of accuracy of the semi-discrete scheme is increased. In this study, we propose to use a Chebyshev pseudospectral method for solving the governing equations. A comparison of the results of this method with very high-order (up to tenth-order accurate) finite difference schemes is presented, which shows that the proposed method leads to a lower level of numerical oscillations than other high-order finite difference schemes, and also does not exhibit fast-traveling packages of short waves which are usually observed in high-order finite difference methods. The proposed method can thus successfully capture various complex regimes of waves and phase transitions in both elliptic and hyperbolic regimes
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Marsden, Alexander J. "Van der Waals epitaxy in graphene heterostructures." Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/77193/.

Повний текст джерела
Анотація:
Graphene — a two-dimensional sheet of carbon atoms — has surged into recent interest with its host of remarkable properties and its ultimate thinness. However, graphene combined with other materials is starting to attract more attention. These heterostructures can be important for production routes, incorporating graphene into existing technologies, or for modifying its intrinsic properties. This thesis aims to examine the role of van der Waals epitaxy within these heterostructures. First, the graphene-copper interaction during chemical vapour deposition of graphene is investigated. Graphene is found to grow with a mismatch epitaxy of 8 relative to the [001] direction of the Cu(100) surface, despite a mismatch in symmetry and lattice parameter between two. Further, the electronic structure of both graphene and copper is unchanged by the interaction. This highlights the weak interaction between the two, owing to its van der Waals nature. Functionalised graphene is another important heterostructure, and is intensively studied for both graphene production routes and for altering graphene’s properties. Here, it is the change to the homogeneous graphene surface that makes it interesting for van der Waals epitaxy. The effect of functionalisation of graphene with atomic oxygen and nitrogen is presented next. In both cases, only small amounts of functionalisation ( 5 at%) is sufficient to significantly deteriorate the -band structure of the graphene through localisation. For small amounts of nitrogen functionalisation, and greater amounts of oxygen functionalisation, extended topological defects are formed in the graphene lattice. Unlike epoxide oxygen groups, these disruptions to the pristine graphene are found to be irreversible by annealing. Next, the interaction between graphene and the organic semiconducting molecule vanadyl-phthalocyanine (VOPc) is presented. As a result of the van der Waals nature of the graphene surface, VOPc molecules can form crystals microns in size when deposited onto a substrate with an elevated temperature of 155 C; at ambient temperatures, the crystals are only tens of nanometres across. In contrast, the functionalised graphene oxide surface prevents large crystal growth, even at elevated temperatures, because surface functionalities inhibit molecule diffusion. This highlights the importance of graphene as a substrate for molecular crystal growth, even when the growth is not epitaxial. Finally, the supramolecular assembly of trimesic acid (TMA) and terephthalic acid (TPA) is presented. Despite their chemical similarity they display different behaviour as they transition from monolayers to three-dimensional structures: for TMA, the epitaxial chicken wire structure seen at a monolayer templates up through the layers as molecules stack, until a thickness of 20 nm, when random in-plane orientations appear; on the other hand, TPA forms a brickwork structure at the monolayer, which quickly transitions to fibre-like crystals with a bulk structure for the thin films. However, the TPA orientation is still determined by the epitaxy with the graphene substrate, although this is significantly weaker than for TMA.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Van der Waals Hybrid"

1

Roy, Kallol. Optoelectronic Properties of Graphene-Based van der Waals Hybrids. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59627-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Parsegian, V. Adrian. Van der Waals forces. New York: Cambridge University Press, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Holwill, Matthew. Nanomechanics in van der Waals Heterostructures. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18529-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

1926-, Rowlinson J. S., and I︠A︡velov B. E, eds. Van der Waals and molecular science. Oxford: Clarendon Press, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

L, Neal Brian, Lenhoff Abraham M, and United States. National Aeronautics and Space Administration., eds. Van der Waals interactions involving proteins. New York: Biophysical Society, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kipnis, Aleksandr I͡Akovlevich. Van der Waals and molecular sciences. Oxford: Clarendon Press, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sily Van-der-Vaalʹsa. Moskva: "Nauka," Glav. red. fiziko-matematicheskoĭ lit-ry, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Halberstadt, Nadine, and Kenneth C. Janda, eds. Dynamics of Polyatomic Van der Waals Complexes. New York, NY: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-8009-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

NATO Advanced Research Workshop on Dynamics of Polyatomic Van der Waals Complexes (1989 Castéra-Verduzan, France). Dynamics of polyatomic Van der Waals complexes. New York: Plenum Press, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

M, Smirnov B. Cluster ions and Van der Waals molecules. Philadelphia: Gordon and Breach Science Publishers, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Van der Waals Hybrid"

1

Roy, Kallol. "Review: Optoelectronic Response and van der Waals Materials." In Optoelectronic Properties of Graphene-Based van der Waals Hybrids, 37–77. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59627-9_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Roy, Kallol. "Introduction." In Optoelectronic Properties of Graphene-Based van der Waals Hybrids, 1–11. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59627-9_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Roy, Kallol. "Number Resolved Single Photon Detection." In Optoelectronic Properties of Graphene-Based van der Waals Hybrids, 207–28. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59627-9_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Roy, Kallol. "Various Graphene, MoS$$_{{2}}$$ Devices and Room Temperature Operations." In Optoelectronic Properties of Graphene-Based van der Waals Hybrids, 229–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59627-9_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Roy, Kallol. "Conclusion and Outlook." In Optoelectronic Properties of Graphene-Based van der Waals Hybrids, 237–45. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59627-9_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Roy, Kallol. "Review: Electronic Band Structure and Interface Properties." In Optoelectronic Properties of Graphene-Based van der Waals Hybrids, 13–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59627-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Roy, Kallol. "Experimental Techniques, Instruments, and Cryostat." In Optoelectronic Properties of Graphene-Based van der Waals Hybrids, 79–121. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59627-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Roy, Kallol. "Material and Heterostructure Interface Characterization." In Optoelectronic Properties of Graphene-Based van der Waals Hybrids, 123–39. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59627-9_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Roy, Kallol. "Photoresponse in Graphene-on-MoS$$_2$$ Heterostructures." In Optoelectronic Properties of Graphene-Based van der Waals Hybrids, 141–56. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59627-9_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Roy, Kallol. "Switching Operation with Graphene-on-MoS$$_2$$ Heterostructures." In Optoelectronic Properties of Graphene-Based van der Waals Hybrids, 157–70. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59627-9_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Van der Waals Hybrid"

1

Mooshammer, Fabian, Philipp Merkl, Simon Ovesen, Samuel Brem, Anna Girnghuber, Kai-Qiang Lin, Marlene Liebich, et al. "Twist-Tailoring Hybrid Excitons In Van Der Waals Homobilayers." In 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2021. http://dx.doi.org/10.1109/cleo/europe-eqec52157.2021.9542072.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yong, C. K., P. Merkl, M. Liebich, I. Hofmeister, G. Berghäuser, E. Malic, and R. Huber. "Tailoring interlayer exciton-phonon hybridization in van der Waals heterostructures." In CLEO: QELS_Fundamental Science. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.ftu5b.5.

Повний текст джерела
Анотація:
We introduce proximity-controlled strong-coupling between Coulomb correlations and lattice dynamics in neighboring van der Waals materials, creating new electrically neutral hybrid eigenmodes. We directly trace their spectral fingerprints using phase-locked few-cycle mid-infrared pulses.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dushaq, Ghada, Juan Esteban Villegas, Bruna Paredes, Srinivasa Reddy Tamalampudi, and Mahmoud Rasras. "Four-Waveguide Crossing Functions Utilizing Anisotropic Van der Waals 2D GeAs." In CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_si.2023.stu4n.6.

Повний текст джерела
Анотація:
we demonstrate a hybrid integration of anisotropic multilayer 2D GeAs on the SiPh platform for on-chip light manipulation. Results show a remarkable light attenuation ratio difference between the two orthogonal in-plane crystal axes orientations of ~ 3.5.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Athira, K. M., B. R. Bhagat, and Alpa Dashora. "Tuning of electronic and magnetic properties in 2D van der Waals hybrid ferromagnet (Fe3GeTe2/Co3GeTe2)." In NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM2020. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0060879.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bonetti, Daniel R. F., Gesiel Rios Lopes, Alexandre C. B. Delbem, Paulo S. L. Souza, Kalinka C. Branco, and Gonzalo Travieso. "Comparing Parallel Algorithms for Van der Waals Energy with Cell-List Technique for Protein Structure Prediction." In XVII Workshop em Desempenho de Sistemas Computacionais e de Comunicação. Sociedade Brasileira de Computação - SBC, 2018. http://dx.doi.org/10.5753/wperformance.2018.3322.

Повний текст джерела
Анотація:
This paper compares the runtime of three distinct parallel algorithms for the evaluation of an ab initio and full-atom approach based on GA and celllist technique, in order to minimize the van der Waals energy. The three parallel algorithms are developed in C and use one of these programming models: MPI, OpenMP or hybrid (MPI+OpenMP). Our preliminary results show that van der Waals Energy are executed faster and with better speedups when using hybrid and more flexible parallel algorithms to predict the structure of larger proteins. We also show that for small proteins the communication of MPI imposes a high overhead for the parallel execution and, thus the OpenMP presents a better relation cost x benefit in such cases.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tittl, Andreas. "Merging bound states in the continuum and van der Waals materials for enhanced hybrid light-matter coupling." In Smart Photonic and Optoelectronic Integrated Circuits 2023, edited by Sailing He and Laurent Vivien. SPIE, 2023. http://dx.doi.org/10.1117/12.2647132.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Luo, Yunqiu Kelly. "Electrical control of opto-valleytronic spin and charge injections in monolayer MoS2/graphene hybrid van der Waals systems (Conference Presentation)." In Spintronics XII, edited by Henri-Jean M. Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2019. http://dx.doi.org/10.1117/12.2527721.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Belardinelli, Pierpaolo, Abhilash Chandrashekar, Farbod Alijani, and Stefano Lenci. "Non-Smooth Dynamics of Tapping Mode Atomic Force Microscopy." In ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/detc2022-88005.

Повний текст джерела
Анотація:
Abstract This paper investigates the nonlinear dynamics in tapping-mode atomic force microscopy (AFM) with tip-surface interactions that include Van der Waals and Derjaguin-Müller-Toporov contact forces. We study the periodic solutions of the hybrid system by performing numerical pseudo-arclength continuation. The overall dynamical response scenario is evaluated via bifurcation loci maps in the set of parameters of the discontinuous model. We showcase the influence of different dissipation mechanisms activated when the AFM is in contact or out-of contact with the sample. The robustness of the stable solution in the repulsive regime is studied via local and global analyses. The impacting non-smooth dynamics framed within a higher-mode Galerkin discretization is able to capture windows of irregular and complex motion.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rafati, Jacob, Mohsen Asghari, and Sachin Goyal. "Effects of DNA Encapsulation on Buckling Instability of Carbon Nanotube Based on Nonlocal Elasticity Theory." In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34430.

Повний текст джерела
Анотація:
Carbon nanotubes (CNTs) are capable to absorb and encapsulate some molecules to create new hybrid nano-structures providing a variety of functionally useful properties. CNTs functionalized by encapsulaitng single-stranded deoxy-ribonucleic acid (ssDNA) promise great potentials for applications in nanotechnology and nano-biotechnology. In this paper, buckling instability of ssDNA@CNT i.e. hybrid nano-structure composed of ssDNA encapsulated inside CNT has been investigated using the nonlocal elasticity theory. The nonlocal elasticity theory is capable to capture the small scale effects due to the discontinuity of nano-structures at atomic scales. The nonlocal elastic rod and shell equations are derived for modeling ssDNA and CNT respectively. Providing numerical examples, it is predicted that, ssDNA@(10,10) CNT is more resistant than the pristine (10,10) CNT against the buckling instability under radial pressure due to the inter-atomic van der Waals interactions between DNA and CNT. Furthermore, nonlocal elasticity theory predicts lower critical buckling pressure than does the local elasticity theory.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

CAPOZZIELLO, S., V. F. CARDONE, S. CARLONI, and A. TROISI. "VAN DER WAALS QUINTESSENCE." In Proceedings of the International Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702999_0038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Van der Waals Hybrid"

1

Klots, C. E. (Physics and chemistry of van der Waals particles). Office of Scientific and Technical Information (OSTI), October 1990. http://dx.doi.org/10.2172/6608231.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mak, Kin Fai. Understanding Topological Pseudospin Transport in Van Der Waals' Materials. Office of Scientific and Technical Information (OSTI), May 2021. http://dx.doi.org/10.2172/1782672.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kim, Philip. Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures. Fort Belvoir, VA: Defense Technical Information Center, March 2015. http://dx.doi.org/10.21236/ada616377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sandler, S. I. The generalized van der Waals theory of pure fluids and mixtures. Office of Scientific and Technical Information (OSTI), June 1990. http://dx.doi.org/10.2172/6382645.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sandler, S. I. (The generalized van der Waals theory of pure fluids and mixtures). Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5610422.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

O'Hara, D. J. Molecular Beam Epitaxy and High-Pressure Studies of van der Waals Magnets. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1562380.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Menezes, W. J. C., and M. B. Knickelbein. Metal cluster-rare gas van der Waals complexes: Microscopic models of physisorption. Office of Scientific and Technical Information (OSTI), March 1994. http://dx.doi.org/10.2172/10132910.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gwo, Dz-Hung. Tunable far infrared laser spectroscopy of van der Waals bonds: Ar-NH sub 3. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/7188608.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

French, Roger H., Nicole F. Steinmetz, and Yingfang Ma. Long Range van der Waals - London Dispersion Interactions For Biomolecular and Inorganic Nanoscale Assembly. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1431216.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Busarow, K. L. Tunable far infrared laser spectroscopy of Van der Waals molecules in a planar supersonic jet expansion. Office of Scientific and Technical Information (OSTI), December 1990. http://dx.doi.org/10.2172/5610416.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії