Добірка наукової літератури з теми "Van der Waal materials"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Van der Waal materials".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Van der Waal materials"

1

Lado, Jose L. "Putting a twist on spintronics." Science 374, no. 6571 (November 26, 2021): 1048–49. http://dx.doi.org/10.1126/science.abm0091.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Versteegh, Kees. "“A River Runs Through It”: Crossing the Meuse in Batenburg (The Netherlands)." Roczniki Humanistyczne 71, no. 6sp (July 24, 2023): 273–95. http://dx.doi.org/10.18290/rh237106.13s.

Повний текст джерела
Анотація:
The dialects spoken in the Dutch region Land van Maas en Waal, between the two rivers Meuse and Waal, are usually classified as a mixed dialect group exhibiting characteristics of the dialects of both Brabant and Gelderland. The perceptual map of the dialects paints a different picture as it shows a division between the speakers in the southern part of the region, who regard their dialect as more related to Brabant dialects, while speakers in the northern part feel more connected with the dialects spoken to the north of the Waal. The present paper attempts to explain this difference in perception by looking at the contacts the inhabitants of the small town of Batenburg had across the river. Materials used for this study include interviews with elderly people in Batenburg and data from the municipal archives.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jiandong Qiao, Jiandong Qiao, Fuhong Mei Fuhong Mei, and Yu Ye Yu Ye. "Single-photon emitters in van der Waals materials." Chinese Optics Letters 17, no. 2 (2019): 020011. http://dx.doi.org/10.3788/col201917.020011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wang, Xu, and Peter Schiavone. "Green’s functions for an anisotropic half-space and bimaterial incorporating anisotropic surface elasticity and surface van der Waals forces." Mathematics and Mechanics of Solids 22, no. 3 (August 6, 2016): 557–72. http://dx.doi.org/10.1177/1081286515598826.

Повний текст джерела
Анотація:
In this paper we derive explicit expressions for the Green’s functions in the case of an anisotropic elastic half-space and bimaterial subjected to a line force and a line dislocation. In contrast to previous studies in this area, our analysis includes the contributions of both anisotropic surface elasticity and surface van der Waals interaction forces. By means of the Stroh sextic formalism, analytical continuation and the state-space approach, the corresponding boundary value problem is reduced to a system of six (for a half-space) or 12 (for a bimaterial) coupled first-order differential equations. By employing the orthogonality relations among the corresponding eigenvectors, the coupled system of differential equations is further decoupled to six (for a half-space) or 12 (for a bimaterial) independent first-order differential equations. The latter is solved analytically using exponential integrals. In addition, we identify four and seven non-zero intrinsic material lengths for a half-space and a bimaterial, respectively, due entirely to the incorporation of the surface elasticity and surface van der Waal forces. We prove that these material lengths can be only either real and positive or complex conjugates with positive real parts.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Han, Xiaodong. "Ductile van der Waals materials." Science 369, no. 6503 (July 30, 2020): 509. http://dx.doi.org/10.1126/science.abd4527.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lei, Yuxin, Qiaoling Lin, Sanshui Xiao, Juntao Li, and Hanlin Fang. "Optically Active Telecom Defects in MoTe2 Fewlayers at Room Temperature." Nanomaterials 13, no. 9 (April 27, 2023): 1501. http://dx.doi.org/10.3390/nano13091501.

Повний текст джерела
Анотація:
The optical and electrical properties of semiconductors are strongly affected by defect states. The defects in molybdenum ditelluride (MoTe2) show the potential for quantum light emission at optical fiber communication bands. However, the observation of defect-related light emission is still limited to cryogenic temperatures. In this work, we demonstrate the deep defect states in MoTe2 fewlayers produced via a standard van der Waal material transfer method with a heating process, which enables light emission in the telecommunication O-band. The optical measurements show evidence of localized excitons and strong interaction among defects. Furthermore, the optical emission of defects depends on the thickness of the host materials. Our findings offer a new route for tailoring the optical properties of two-dimensional materials in optoelectronic applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ajayan, Pulickel, Philip Kim, and Kaustav Banerjee. "Two-dimensional van der Waals materials." Physics Today 69, no. 9 (September 2016): 38–44. http://dx.doi.org/10.1063/pt.3.3297.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Basov, D. N., M. M. Fogler, and F. J. Garcia de Abajo. "Polaritons in van der Waals materials." Science 354, no. 6309 (October 13, 2016): aag1992. http://dx.doi.org/10.1126/science.aag1992.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nejad, Marjan A., and Herbert M. Urbassek. "Adsorption and Diffusion of Cisplatin Molecules in Nanoporous Materials: A Molecular Dynamics Study." Biomolecules 9, no. 5 (May 27, 2019): 204. http://dx.doi.org/10.3390/biom9050204.

Повний текст джерела
Анотація:
Using molecular dynamics simulations, the adsorption and diffusion of cisplatin drug molecules in nanopores is investigated for several inorganic materials. Three different materials are studied with widely-varying properties: metallic gold, covalent silicon, and silica. We found a strong influence of both the van der Waals and the electrostatic interaction on the adsorption behavior on the pore walls, which in turn influence the diffusion coefficients. While van der Waals forces generally lead to a reduction of the diffusion coefficient, the fluctuations in the electrostatic energy induced by orientation changes of the cisplatin molecule were found to help desorb the molecule from the wall.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jia-lu, ZHENG, DAI Zhi-gao, HU Guang-wei, OU Qing-dong, ZHANG Jin-rui, GAN Xue-tao, QIU Cheng-wei, and BAO Qiao-liang. "Twisted van der Waals materials for photonics." Chinese Optics 14, no. 4 (2021): 812–22. http://dx.doi.org/10.37188/co.2021-0023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Van der Waal materials"

1

Boddison-Chouinard, Justin. "Fabricating van der Waals Heterostructures." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38511.

Повний текст джерела
Анотація:
The isolation of single layer graphene in 2004 by Geim and Novoselov introduced a method that researchers could extend to other van der Waals materials. Interesting and new properties arise when we reduce a crystal to two dimensions where they are often different from their bulk counterpart. Due to the van der Waals bonding between layers, these single sheets of crystal can be combined and stacked with diferent sheets to create novel materials. With the goal to study the interesting physics associated to these stacks, the focus of this work is on the fabrication and characterization of van der Waals heterostructures. In this work, we first present a brief history of 2D materials, the fabrication of heterostructures, and the various tools used to characterize these materials. We then give a description of the custom-built instrument that was used to assemble various 2D heterostructures followed by the findings associated with the optimization of the cleanliness of the stack's interface and surface. Finally, we discuss the results related to the twisting of adjacent layers of stacked MoS2 and its relation to the interlayer coupling between said layers.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Schofield, Robert Christopher. "Raman studies of 2-dimensional van der Waals materials." Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/21313/.

Повний текст джерела
Анотація:
Presented herein are results of optical studies with emphasis on the Raman response, providing significant contribution to the knowledge of the field. In Mox W(1−x) S2 , confirmation of the behaviour of the excitonic properties is made. Raman measurements performed in this system allow investigation with unprecedented resolution, highlighting deviations in the high frequency A1g optical phonon mode from theoretical predictions, and previous experimental studies. In the low frequency, data confirms the trends in the shear and breathing interlayer modes in alloys between WS2 and MoS2 are well described by the modification in the square density. Resonant excitation for [Mo] < 0.4, highlights new evidence for the understanding of the hitherto unexplained ‘Peak X’ resonant feature. Diverse indium-selenium compounds isolated by novel means are studied. The ULF Raman modes of PDMS exfoliated InSe are documented for the first time, demonstrating the ε-phase with ABA stacking, with flake of thickness N manifesting (N − 1) shear modes owing to resonant excitation of few layer samples. InSe flakes encapsulated in hexagonal boron nitride manifest different stacking orders to those of PDMS exfoliated InSe, and were found to have significant contamination, with crystalline degradation of the monolayer flake, and peaks corresponding N2 & O2 rotational modes present. In2Se3 films grown epitaxially on GaSe display substrate-selective polymorphism, where α-, β-, & γ- phases are identified, in addition to regions of InSe. Laser photo-annealing is shown to drive a phase change from the groundstate β → α phase, which is against the thermodynamic gradient. MoSe2/WS2 twisted hetero-bi-layer structures are studied, where shear modes showing a linear softening from AA′ stacking towards the AB at 60° indicating reduced interlayer coupling, as expected from the difference in interlayer spacing of AA′ and AB ordering. High frequency modes in the heterobilayer also demonstrate some sensitivity in the relative angle, and are analysed in detail.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zheng, Zhikun, Xianghui Zhang, Christof Neumann, Daniel Emmrich, Andreas Winter, Henning Vieker, Wei Liu, Marga Lensen, Armin Gölzhäuser, and Andrey Turchanin. "Hybrid van der Waals heterostructures of zero-dimensional and two-dimensional materials." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-188567.

Повний текст джерела
Анотація:
van der Waals heterostructures meet other low-dimensional materials. Stacking of about 1 nm thick nanosheets with out-of-plane anchor groups functionalized with fullerenes integrates this zero-dimensional material into layered heterostructures with a well-defined chemical composition and without degrading the mechanical properties. The developed modular and highly applicable approach enables the incorporation of other low-dimensional materials, e.g. nanoparticles or nanotubes, into heterostructures significantly extending the possible building blocks.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hadland, Erik. "Thin Film van der Waals Heterostructures containing MoSe2 from Modulated Elemental Precursors." Thesis, University of Oregon, 2019. http://hdl.handle.net/1794/24520.

Повний текст джерела
Анотація:
Transition metal dichalcogenides (TMDs) are naturally occurring layered materials that have attracted immense research interest due to their high degree of chemical tunability. In particular, MoSe2 has been the focus of significant investigation stemming from reports that it converts to a direct band gap semiconductor material at ultralow dimensions. Yet, as more and more is learned about increasingly thin MoSe2, efforts are now aimed at imparting the novel functionality of MoSe2 into van der Waals heterostructures. This dissertation focuses on synthesis and characterization of novel MoSe2-based nanolaminate structures that have been self assembled from modulated elemental precursors. The first section describes a new treatment of x-ray fluorescence spectroscopy data and its use as a powerful probe for determining the absolute composition per unit area of a thin film with sub-monolayer accuracy. While this has widespread application in the thin film world, it is particularly useful for MER synthesis in the calibration of modulated elemental precursors. In order to crystallize a target structure, it is imperative to deposit the correct number of atoms, which is now possible with greater precision. The second section shows the importance of rotational (i.e. “turbostratic”) disorder on lowering cross-plane thermal conductivity in two systems—MoSe2 and the (SnSe2)1(MoSe2)1.32 heterostructure. The binary systems exhibits ultralow thermal conductivity that rivals that of WSe2, yet some interlayer atomic registry was noted in TEM images. By interleaving layers of MoSe2 with SnSe2—which also possesses hexagonal symmetry, but has a significantly larger basal plane—the cross-plane thermal iv conductivity was depressed to the lowest reported value in the literature for a fully dense solid. The final section presents the synthesis and characterization of a new, ternary phase of Bi|Mo|Se. The structure consists of alternating layers of a “puckered” rock salt BiSe lattice and nanosheets of MoSe2. Notably, the MoSe2 sublattice consists of a mixture of the semiconducting 2H phase (~60%) and the metallic 1T phase (~40%). This is the result of electron injection from the BiSe into the conduction band of the MoSe2, which is known to undergo a rearrangement upon reduction. This dissertation includes previously published and unpublished coauthored materials.
2021-04-30
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rajter, Richard F. "Chirality-dependent, van der Waals-London dispersion interactions of carbon nanotube systems." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/46670.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2009.
Includes bibliographical references (p. 185-192).
The Lifshitz formulation is a quantum electrodynamic, first principals formulation used to determine van der Waals - London dispersion interactions in the continuum limit. It has many advantages over crude, pairwise potential models. Most notably, it can solve for complex interactions (e.g. repulsive and multi-body effects) and determine the vdW-Ld interaction magnitude and sign a priori from the optical properties rather than by parameterization. Single wall carbon nanotubes (SWCNTs) represent an ideal class of materials to study vdW-Ld interactions because very small changes in their geometrical construction, via the chirality vector [n,m], can result in vastly different electronic and optical properties. These chirality-dependent optical properties ultimately lead to experimentally exploitable vdW-Ld interactions, which already exist in the literature.Proper use of the Lifshitz formulation requires 1) An analytical extension for the geometry being studied 2) The optical properties of all materials present and 3) A method to incorporate spatially varying properties. This infrastructure needed to be developed to study the vdW-Ld interactions of SWCNTs systems because they were unavailable at the onset. The biggest shortfall was the lack of the E" optical properties out to 30+ eV.
(cont.) This was solved by using an ab initio method to obtain this data for 63 SWCNTs and a few MWCNTs. The results showed a clear chirality AND direction dependence that is unique to each [n,m]. Lifshitz and spectral mixing formulations were then derived and introduced respectively for obtaining accurate Hamaker coefficients and vdW-Ld total energies for these optically anisotropic SWCNTs at both the near and far-limits. With the infrastructure in place, it was now possible to study the trends and breakdowns over a large population as a function of SWCNT class and chirality. A thorough analysis of all these properties at all levels of abstraction yielded a new classification system specific to the vdW-Ld properties of SWCNTs. Additionally, the use of this data and an understanding of the qualitative trends makes it straightforward to design experiments that target, trap, and/or separate specific SWCNTs as a function of SWCNT class, radius, etc.
by Richard F. Rajter.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wood, Cody. "A Continuum Model for the van der Waals Interaction Energy of Carbon Nanotubes." University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1493376354522434.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yankowitz, Matthew Abraham. "Local Probe Spectroscopy of Two-Dimensional van der Waals Heterostructures." Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/594649.

Повний текст джерела
Анотація:
A large family of materials, collectively known as "van der Waals materials," have attracted enormous research attention over the past decade following the realization that they could be isolated into individual crystalline monolayers, with charge carriers behaving effectively two-dimensionally. More recently, an even larger class of composite materials has been realized, made possible by combining the isolated atomic layers of different materials into "van der Waals heterostructures," which can exhibit electronic and optical behaviors not observed in the parent materials alone. This thesis describes efforts to characterize the atomic-scale structural and electronic properties of these van der Waals materials and heterostructures through scanning tunneling microscopy measurements. The majority of this work addresses the properties of monolayer and few-layer graphene, whose charge carriers are described by massless and massive chiral Dirac Hamiltonians, respectively. In heterostructures with hexagonal boron nitride, an insulating isomorph of graphene, we observe electronic interference patterns between the two materials which depend on their relative rotation. As a result, replica Dirac cones are formed in the valence and conduction bands of graphene, with their energy tuned by the rotation. Further, we are able to dynamically drag the graphene lattice in these heterostructures, owing to an interaction between the scanning probe tip and the domain walls formed by the electronic interference pattern. Similar dragging is observed in domain walls of trilayer graphene, whose electronic properties are found to depend on the stacking configuration of the three layers. Scanning tunneling spectroscopy provides a direct method for visualizing the scattering pathways of electrons in these materials. By analyzing the scattering, we can directly infer properties of the band structures and local environments of these heterostructures. In bilayer graphene, we map the electrically field-tunable band gap and extract electronic hopping parameters. In WSe₂, a semiconducting transition metal dichalcogenide, we observe spin and layer polarizations of the charge carriers, representing a coupling of the spin, valley and layer degrees of freedom.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Coy, Diaz Horacio. "Preparation and Characterization of Van der Waals Heterostructures." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6212.

Повний текст джерела
Анотація:
In this dissertation different van der Waals heterostructures such as graphene-MoS2 and MoTe2-MoS2 were prepared and characterized. In the first heterostructure, polycrystalline graphene was synthesized by chemical vapor deposition and transferred on top of MoS2 single crystal. In the second heterostructure, MoTe2 monolayers were deposited on MoS2 by molecular beam epitaxy. Characterization of graphene-MoS2 heterostructures was conducted by spin and angle resolve spectroscopy which showed that the electronic structure of the bulk MoS2 and graphene in this van der Waals heterostructures is modified. For MoS2 underneath the graphene, a band structure renormalization and spin polarization are observed. The band structure of MoS2 is modified because the graphene induces screening which shifts the Г-point ~150 meV to lower binding compared to the sample without graphene. The spin polarization is explained by the dipole arising from band bending which breaks the symmetry at the MoS2 surface. For graphene, the band structure at lower binding energy shows that the Dirac cone remains intact with no significant doping. Instead, away from the Fermi level the formation of several gaps in the pi-band due to hybridization with states from the MoS2 is observed. For the heterostructures made depositing monolayer of MoTe2 on MoS2, the morphology, structure and electronic structure were studied. Two dimensional growth is observed under tellurium rich growth conditions and a substrate temperature of 200 °C but formation of a complete monolayer was not achieved. The obtained MoTe2 monolayer shows a high density of the mirror-twins grain boundaries arranged in a pseudo periodic wagon wheel pattern with a periodicity of ~2.6 nm. These grain boundary are formed due to Te-deficiency during the growth. The defect states from these domain boundary pin the Fermi level in MoTe2 and thus determine the band alignment in the MoTe2-MoS2 heterostructures.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Henck, Hugo. "Hétérostructures de van der Waals à base de Nitrure." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS319/document.

Повний текст джерела
Анотація:
Le sujet de cette thèse est à l’interface entre l’étude de composés à base de nitrure et des structures émergeantes formées par les matériaux bidimensionnels (2D) d’épaisseur atomique. Ce travail se consacre sur l’hybridation des propriétés électriques et optiques des semi-conducteurs à larges bandes interdites que sont les nitrures et des performances mécaniques, électriques et optiques des matériaux lamellaires, récemment isolé à l’échelle d’un plan atomique, qui sont aujourd’hui considérées avec attention aux regards de futures applications et d’études plus fondamentales. En particulier, une étude des propriétés électroniques, optiques et structurelles d’hétérostructures composées de plusieurs matériaux lamellaires et d’interfaces entre matériaux 2D et 3D a été réalisé par des moyens de microscopie et de spectroscopie tel que la spectroscopie Raman, de photoémission et d’absorption.Ce manuscrit traite dans un premier temps des propriétés structurelles et électroniques du nitrure de bore hexagonal (h-BN), matériau isolant aux propriétés optiques exotiques et essentiel dans la future intégration de ce type de matériaux 2D permettant de mettre en valeur leurs propriétés intrinsèques.En utilisant le graphène comme substrat les problèmes de mesures par photoémission rencontrés pour des matériaux isolant ont pu être surmonté dans le cas du h-BN et une étude des défauts structurels a pu être réalisée. Par conséquent, les premières mesures directes de la structure de bande électronique de plusieurs plans de h-BN sont présentées dans ce manuscrit.Dans un second temps, une approche d’intégration de ces matériaux 2D différente a été étudiée en formant une hétérostructure 2D/3D. L’interface de cette hétérojonction, composée d’un plan de disulfure de molybdène (MoS2) de dopage intrinsèque N associé à 300 nm de nitrure de gallium (GaN) intentionnellement dopé P à l’aide de magnésium, a été caractérisée. Un transfert de charge du GaN vers le MoS2 a pu être identifié suggérant un contrôle des propriétés électroniques de ce type de structure par le choix de matériaux.Ces travaux ont permis de révéler les diagrammes de bandes électroniques complet des structures étudiées a pu être obtenu permettant une meilleur compréhension de ces systèmes émergeants
This thesis is at the interface between the study of nitride based compounds and the emerging structures formed by atomically thin bi-dimensional (2D) materials. This work consists in the study of the hybridization of the properties of large band gap materials from the nitride family and the mechanical, electronic and optical performances of layered materials, recently isolated at the monolayer level, highly considered due to their possible applications in electronics devices and fundamental research. In particular, a study of electronics and structural properties of stacked layered materials and 2D/3D interfaces have been realised with microscopic and spectroscopic means such as Raman, photoemission and absorption spectroscopy.This work is firstly focused on the structural and electronic properties of hexagonal boron nitride (h-BN), insulating layered material with exotic optical properties, essential in in the purpose of integrating these 2D materials with disclosed performances. Using graphene as an ideal substrate in order to enable the measure of insulating h-BN during photoemission experiments, a study of structural defects has been realized. Consequently, the first direct observation of multilayer h-BN band structure is presented in this manuscript. On the other hand, a different approach consisting on integrating bi-dimensional materials directly on functional bulk materials has been studied. This 2D/3D heterostructure composed of naturally N-doped molybdenum disulphide and intentionally P-doped gallium nitride using magnesium has been characterised. A charge transfer from GaN to MoS2 has been observed suggesting a fine-tuning of the electronic properties of such structure by the choice of materials.In this work present the full band alignment diagrams of the studied structure allowing a better understanding of these emerging systems
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Froehlicher, Guillaume. "Optical spectroscopy of two-dimensional materials : graphene, transition metal dichalcogenides and van der Waals heterostructures." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAE033/document.

Повний текст джерела
Анотація:
Au cours de ce projet, nous avons utilisé la microspectroscopie Raman et de photoluminescence pour étudier des matériaux bidimensionnels (graphène et dichalcogénures de métaux de transition) et des hétérostructures de van der Waals. Tout d’abord, à l’aide de transistors de graphène munis d’une grille électrochimique, nous montrons que la spectroscopie Raman est un outil extrêmement performant pour caractériser précisément des échantillons de graphène. Puis, nous explorons l’évolution des propriétés physiques de N couches de dichalcogénures de métaux de transition semi-conducteurs, en particulier de ditellurure de molybdène (MoTe2) et de diséléniure de molybdène (MoSe2). Dans ces structures lamellaires, nous observons la séparation de Davydov des phonons optiques au centre de la première zone de Brillouin, que nous décrivons à l’aide d’un modèle de chaîne linéaire. Enfin, nous présentons une étude toute optique du transfert de charge et d’énergie dans des hétérostructures de van der Waals constituées de monocouches de graphène et de MoSe2. Ce travail de thèse met en évidence la riche photophysique de ces matériaux atomiquement fins et leur potentiel en vue de la réalisation de nouveaux dispositifs optoélectroniques
In this project, we have used micro-Raman and micro-photoluminescence spectroscopy to study two-dimensional materials (graphene and transition metal dichalcogenides) and van der Waals heterostructures. First, using electrochemically-gated graphene transistors, we show that Raman spectroscopy is an extremely sensitive tool for advanced characteri-zations of graphene samples. Then, we investigate the evolution of the physical properties of N-layer semiconducting transition metal dichalcogenides, in particular molybdenum ditelluride (MoTe2) and molybdenum diselenide (MoSe2). In these layered structures, theDavydov splitting of zone-center optical phonons is observed and remarkably well described by a ‘textbook’ force constant model. We then describe an all-optical study of interlayer charge and energy transfer in van der Waals heterostructures made of graphene and MoSe2 monolayers. This work sheds light on the very rich photophysics of these atomically thin two-dimensional materials and on their potential in view of optoelectronic applications
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Van der Waal materials"

1

Telford, Evan James. Magnetotransport Studies of Correlated Electronic Phases in Van der Waals Materials. [New York, N.Y.?]: [publisher not identified], 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hybridization of Van Der Waals Materials and Close-Packed Nanoparticle Monolayers. [New York, N.Y.?]: [publisher not identified], 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yeh, Po-Chun. Van der Waals Layered Materials: Surface Morphology, Interlayer Interaction, and Electronic Structure. [New York, N.Y.?]: [publisher not identified], 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hua, Xiang. Processing and Properties of Encapsulated van der Waals Materials at Elevated Temperature. [New York, N.Y.?]: [publisher not identified], 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Buhmann, Stefan Yoshi. Dispersion Forces I: Macroscopic Quantum Electrodynamics and Ground-State Casimir, Casimir–Polder and van der Waals Forces. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wang, Dennis. Optical and Electronic Studies of Air-Sensitive van der Waals Materials Encapsulated by Hexagonal Boron Nitride. [New York, N.Y.?]: [publisher not identified], 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Heijden, Paul van der. Romeins Nijmegen: Luxe en ondergang van Rome aan de Waal. [Nijmegen, Netherlands]: BnM uitgevers, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Heijden, Paul van der. Romeins Nijmegen: Luxe en ondergang van Rome aan de Waal. [Nijmegen, Netherlands]: BnM uitgevers, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Henri van de Waal: Bundel ter gelegenheid van zijn honderdste geboortedag 3 maart 1910/3 maart 2010. Leiden: Coördesign, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Oosten, Frits van. De stad en de wethouder: Hoe Cees Waal de binnenstad van Leiden vernieuwde. Leiden: Ginkgo Uitgeverij, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Van der Waal materials"

1

Hermann, Jan, and Alexandre Tkatchenko. "Van der Waals Interactions in Material Modelling." In Handbook of Materials Modeling, 259–91. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-44677-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hermann, Jan, and Alexandre Tkatchenko. "van der Waals Interactions in Material Modelling." In Handbook of Materials Modeling, 1–33. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-42913-7_6-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wang, Guorui. "Interfacial Mechanics Between van der Waals Materials." In Characterization and Modification of Graphene-Based Interfacial Mechanical Behavior, 97–134. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8029-1_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Holwill, Matthew. "Properties of Two-Dimensional Materials." In Nanomechanics in van der Waals Heterostructures, 7–17. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18529-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lui, C. H. "Raman Spectroscopy of van der Waals Heterostructures." In Raman Spectroscopy of Two-Dimensional Materials, 81–98. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1828-3_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Roy, Kallol. "Review: Optoelectronic Response and van der Waals Materials." In Optoelectronic Properties of Graphene-Based van der Waals Hybrids, 37–77. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59627-9_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tsukada, M., N. Shima, S. Tsuneyuki, and H. Kageshima. "Theory of Electron Attachment of Van der Waals Microclusters." In Springer Series in Materials Science, 174–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83064-8_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wang, Shuang, Shi-Jun Liang, and Feng Miao. "Neuromorphic Vision Based on van der Waals Heterostructure Materials." In Near-sensor and In-sensor Computing, 67–79. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11506-6_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jaegermann, Wolfram, Andreas Klein, and Christian Pettenkofer. "Electronic Properties of Van Der Waals-Epitaxy Films and Interfaces." In Electron Spectroscopies Applied to Low-Dimensional Materials, 317–402. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/0-306-47126-4_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kim, Hyunseok, Wei Kong, and Jeehwan Kim. "Advanced Epitaxial Growth of LEDs on Van Der Waals Materials." In Series in Display Science and Technology, 87–114. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5505-0_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Van der Waal materials"

1

Liu, Chang-Hua. "van der Waals materials integrated nanophotonics." In Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVIII, edited by Takuo Tanaka and Din Ping Tsai. SPIE, 2020. http://dx.doi.org/10.1117/12.2567598.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Majumdar, Arka. "Van der Waals material integrated nanophotonics." In 2D Photonic Materials and Devices IV, edited by Arka Majumdar, Carlos M. Torres, and Hui Deng. SPIE, 2021. http://dx.doi.org/10.1117/12.2581864.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Khanikaev, Alexander B. "Topological polaritonics with Van der Waals materials." In Metamaterials, Metadevices, and Metasystems 2022, edited by Nader Engheta, Mikhail A. Noginov, and Nikolay I. Zheludev. SPIE, 2022. http://dx.doi.org/10.1117/12.2633470.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ye, P. "1D van der Waals Materials in 2D Form." In 2017 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2017. http://dx.doi.org/10.7567/ssdm.2017.c-6-01.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Balandin, Alexander A. "Quasi 2D and 1D van der Waals quantum materials." In Low-Dimensional Materials and Devices 2021, edited by Nobuhiko P. Kobayashi, A. Alec Talin, Albert V. Davydov, and M. Saif Islam. SPIE, 2021. http://dx.doi.org/10.1117/12.2601790.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Law, Stephanie. "Growth of van der Waals topological insulator thin films." In Low-Dimensional Materials and Devices 2021, edited by Nobuhiko P. Kobayashi, A. Alec Talin, Albert V. Davydov, and M. Saif Islam. SPIE, 2021. http://dx.doi.org/10.1117/12.2596181.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Liu, Chang-Hua, Tian-Yun Chang, Po-Liang Chen, Wei-Qing Li, Yueyang Chen, Jiajiu Zheng, and Arka Majumdar. "Novel optoelectronics and nanophotonics based on van der Waals materials." In 2D Photonic Materials and Devices III, edited by Arka Majumdar, Carlos M. Torres, and Hui Deng. SPIE, 2020. http://dx.doi.org/10.1117/12.2552177.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Li, Peining. "Infrared hyperbolic metasurface based on nanostructured van der Waals materials." In Optoelectronic Devices and Integration. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/oedi.2019.oth3b.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lado, Jose, and Adolfo Fumega. "Artificial van der Waals multiferroics with twisted two-dimensional materials." In MATSUS23 & Sustainable Technology Forum València (STECH23). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.matsus.2023.050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Menon, Vinod M. "Strong light-matter interaction in Van der Waals materials (Conference Presentation)." In 2D Photonic Materials and Devices, edited by Arka Majumdar, Xiaodong Xu, and Joshua R. Hendrickson. SPIE, 2018. http://dx.doi.org/10.1117/12.2295227.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Van der Waal materials"

1

Mak, Kin Fai. Understanding Topological Pseudospin Transport in Van Der Waals' Materials. Office of Scientific and Technical Information (OSTI), May 2021. http://dx.doi.org/10.2172/1782672.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mohideen, Umar. Investigating the Role of Ferromagnetic Materials on the Casimir Force & Investigation of the Van Der Waals/Casimir Force with Graphene. Office of Scientific and Technical Information (OSTI), April 2015. http://dx.doi.org/10.2172/1319578.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

During, R., M. Pleijte, and J. Vreke. Legitimatie van de nevengeul voor de Waal langs Varik : constructies van risico’s uit onzekerheden die redenen geven voor voorzorg : achtergrondrapport. Wageningen: Wageningen UR, Wetenschapswinkel, 2016. http://dx.doi.org/10.18174/381623.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

During, R., M. Pleijte, and J. Vreke. Legitimatie van de nevengeul voor de Waal langs Varik : constructies van risico’s uit onzekerheden die redenen geven voor voorzorg : publieksrapport. Wageningen: Wageningen UR, Wetenschapswinkel, 2016. http://dx.doi.org/10.18174/381631.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Quigley, Kevin, Sergey Chemerisov, Peter Tkac, and George F. Vandegrift. Van de Graaff Irradiation of Materials. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1335678.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wildschut, Jeroen. 24-uurs Opslag van het Warmteoverschot van een Zonnedak : Phase Change Materials als alternatief voor Water. Bleiswijk: Wageningen University & Research, BU Glastuinbouw - Bloembollen, 2018. http://dx.doi.org/10.18174/464369.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Snyder, Victor A., Dani Or, Amos Hadas, and S. Assouline. Characterization of Post-Tillage Soil Fragmentation and Rejoining Affecting Soil Pore Space Evolution and Transport Properties. United States Department of Agriculture, April 2002. http://dx.doi.org/10.32747/2002.7580670.bard.

Повний текст джерела
Анотація:
Tillage modifies soil structure, altering conditions for plant growth and transport processes through the soil. However, the resulting loose structure is unstable and susceptible to collapse due to aggregate fragmentation during wetting and drying cycles, and coalescense of moist aggregates by internal capillary forces and external compactive stresses. Presently, limited understanding of these complex processes often leads to consideration of the soil plow layer as a static porous medium. With the purpose of filling some of this knowledge gap, the objectives of this Project were to: 1) Identify and quantify the major factors causing breakdown of primary soil fragments produced by tillage into smaller secondary fragments; 2) Identify and quantify the. physical processes involved in the coalescence of primary and secondary fragments and surfaces of weakness; 3) Measure temporal changes in pore-size distributions and hydraulic properties of reconstructed aggregate beds as a function of specified initial conditions and wetting/drying events; and 4) Construct a process-based model of post-tillage changes in soil structural and hydraulic properties of the plow layer and validate it against field experiments. A dynamic theory of capillary-driven plastic deformation of adjoining aggregates was developed, where instantaneous rate of change in geometry of aggregates and inter-aggregate pores was related to current geometry of the solid-gas-liquid system and measured soil rheological functions. The theory and supporting data showed that consolidation of aggregate beds is largely an event-driven process, restricted to a fairly narrow range of soil water contents where capillary suction is great enough to generate coalescence but where soil mechanical strength is still low enough to allow plastic deforn1ation of aggregates. The theory was also used to explain effects of transient external loading on compaction of aggregate beds. A stochastic forInalism was developed for modeling soil pore space evolution, based on the Fokker Planck equation (FPE). Analytical solutions for the FPE were developed, with parameters which can be measured empirically or related to the mechanistic aggregate deformation model. Pre-existing results from field experiments were used to illustrate how the FPE formalism can be applied to field data. Fragmentation of soil clods after tillage was observed to be an event-driven (as opposed to continuous) process that occurred only during wetting, and only as clods approached the saturation point. The major mechanism of fragmentation of large aggregates seemed to be differential soil swelling behind the wetting front. Aggregate "explosion" due to air entrapment seemed limited to small aggregates wetted simultaneously over their entire surface. Breakdown of large aggregates from 11 clay soils during successive wetting and drying cycles produced fragment size distributions which differed primarily by a scale factor l (essentially equivalent to the Van Bavel mean weight diameter), so that evolution of fragment size distributions could be modeled in terms of changes in l. For a given number of wetting and drying cycles, l decreased systematically with increasing plasticity index. When air-dry soil clods were slightly weakened by a single wetting event, and then allowed to "age" for six weeks at constant high water content, drop-shatter resistance in aged relative to non-aged clods was found to increase in proportion to plasticity index. This seemed consistent with the rheological model, which predicts faster plastic coalescence around small voids and sharp cracks (with resulting soil strengthening) in soils with low resistance to plastic yield and flow. A new theory of crack growth in "idealized" elastoplastic materials was formulated, with potential application to soil fracture phenomena. The theory was preliminarily (and successfully) tested using carbon steel, a ductile material which closely approximates ideal elastoplastic behavior, and for which the necessary fracture data existed in the literature.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії