Добірка наукової літератури з теми "Vaccines Synthesis"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Vaccines Synthesis".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Vaccines Synthesis"
Adegbite, Ayobami, and Pumtiwitt C. McCarthy. "Recent and Future Advances in the Chemoenzymatic Synthesis of Homogeneous Glycans for Bacterial Glycoconjugate Vaccine Development." Vaccines 9, no. 9 (September 14, 2021): 1021. http://dx.doi.org/10.3390/vaccines9091021.
Повний текст джерелаZhou, Yang, Abid H. Banday, Victor J. Hruby, and Minying Cai. "Development of N-Acetylated Dipalmitoyl-S-Glyceryl Cysteine Analogs as Efficient TLR2/TLR6 Agonists." Molecules 24, no. 19 (September 27, 2019): 3512. http://dx.doi.org/10.3390/molecules24193512.
Повний текст джерелаGoldstein, Leslie GB. "Safety and Efficacy of Influenza Vaccine in Children." Annals of Pharmacotherapy 37, no. 11 (November 2003): 1712–15. http://dx.doi.org/10.1345/aph.1d009.
Повний текст джерелаWintermeyer, Susan M., Milap C. Nahata, and Kay S. Kyllonen. "Whole-Cell and Acellular Pertussis Vaccines." Annals of Pharmacotherapy 28, no. 7-8 (July 1994): 925–39. http://dx.doi.org/10.1177/106002809402800718.
Повний текст джерелаMitchell, Hana, Rebecca Lim, Prubjot K. Gill, Joban Dhanoa, Ève Dubé, and Julie A. Bettinger. "What do adolescents think about vaccines? Systematic review of qualitative studies." PLOS Global Public Health 2, no. 9 (September 29, 2022): e0001109. http://dx.doi.org/10.1371/journal.pgph.0001109.
Повний текст джерелаXu, Shuqin, Kunpeng Yang, Rose Li, and Lu Zhang. "mRNA Vaccine Era—Mechanisms, Drug Platform and Clinical Prospection." International Journal of Molecular Sciences 21, no. 18 (September 9, 2020): 6582. http://dx.doi.org/10.3390/ijms21186582.
Повний текст джерелаForce, Rex W., Ralph A. Lugo, and Milap C. Nahata. "Haemophilus Influenzae Type B Conjugate Vaccines." Annals of Pharmacotherapy 26, no. 11 (November 1992): 1429–40. http://dx.doi.org/10.1177/106002809202601117.
Повний текст джерелаSheibak, V. M., and M. V. Haretskaya. "DEVELOPMENT OF VACCINES FOR SARS-COV-2." Journal of the Grodno State Medical University 20, no. 1 (March 1, 2022): 5–12. http://dx.doi.org/10.25298/2221-8785-2022-20-1-5-12.
Повний текст джерелаSu, Huali, Qing Liu, Xiaoping Bian, Shifeng Wang, Roy Curtiss, and Qingke Kong. "Synthesis and delivery of Streptococcus pneumoniae capsular polysaccharides by recombinant attenuated Salmonella vaccines." Proceedings of the National Academy of Sciences 118, no. 2 (December 30, 2020): e2013350118. http://dx.doi.org/10.1073/pnas.2013350118.
Повний текст джерелаMoysa, A. A., and E. F. Kolesanova. "Synthetic peptide vaccines." Biomeditsinskaya Khimiya 57, no. 1 (January 2011): 14–30. http://dx.doi.org/10.18097/pbmc20115701104.
Повний текст джерелаДисертації з теми "Vaccines Synthesis"
Sarkar, Sourav. "SYNTHESIS AND STUDY OF ANTI-TUMOR VACCINES." University of Toledo / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1345008057.
Повний текст джерелаKärkkäinen, Tiina Sinikka. "Synthesis of glycopeptide-based anti-cancer vaccines." Thesis, University of East Anglia, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273509.
Повний текст джерелаHaynie, Teron D. "Synthesis of Bacterial Surface Glycans for Conjugate Vaccines." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8669.
Повний текст джерелаKarmakar, Partha. "Synthesis and Study of MUC1-Based Anti-tumor Vaccines." University of Toledo / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1449750902.
Повний текст джерелаPan, Yanbin. "1. Design and Synthesis of Carbohydrate Cancer Vaccines Based on Biochemical Modification of Cancer Cells 2. Studies on the Total Synthesis of an Antitumor Saponin, OSW-1." online version, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=case1121130600.
Повний текст джерелаHewitt, Michael Charles 1975. "Solution and solid-phase synthesis of potential carbohydrate vaccines for leishmaniasis and malaria." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/27111.
Повний текст джерелаVita.
Includes bibliographical references.
The human disease leishmaniasis afflicts over 20 million people worldwide, and is caused by unicellular protozoan parasites. Cell surface carbohydrates are implicated in immune recognition of the parasite by host macrophages. The synthesis of a unique tetrasaccharide found on the parasite cell surface lipophosphoglycan is described. The synthetic material was used to create two novel immungens that are currently being evaluated in an animal model. New methods were also developed for an automated solid-phase synthesis that took a fraction of the time required for the solution-phase synthesis. Malaria kills over 2 million people per year, and is caused by protozoan parasites of the genus Plasmodium. Much of the morbidity and mortality associated with malaria is thought to be due to a toxin released in the host following red blood cell rupture. A glycosylphosphatidylinositol (GPI) anchor of parasite origin was recently identified, and had the properties of a toxin. The synthesis of a modified version of the malarial GPI both in solution and on solid-phase in an automated fashion is described. The synthetic material was attached to a carrier protein and used to immunize mice, who were substantially protected against all aspects of a subsequent challenge by malarial parasites. A new capping protocol for automated solid-phase synthesis is described. A novel fluorous silyl triflate was used to tag deletion sequences that could then be separated from the desired sequence by filtration through fluorous reverse-phase silica gel. Two trisaccharide sequences were synthesized both with and without fluorous capping to demonstrate the effectiveness of the capping protocol.
by Michael Charles Hewitt.
Ph.D.
Nishat, Sharmeen. "Syntheses and Immunological Evaluation of Zwitterionic Polysaccharide (PS A1) Based Vaccines." University of Toledo / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1470365834.
Повний текст джерелаLe, Guen Yann. "Synthèse de fragments diversement acétylés des polysaccharides spécifiques des bactéries Shigella flexneri type I." Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCB143.
Повний текст джерела700,000 children die each year due to diarrheal diseases, making it the second cause of death among this population. Shigella flexneri is a Gram negative enterobacterium responsible of the endemic form of shigellosis in developing countries. The O-antigen part of the bacterial lipopolysaccharide is the major target of the immune system during natural infection. The O-antigen of S. flexeni 1b, one of the prevalent serotypes, is defined by a ramified pentasaccharide made of three L-rhamnose, one D-glucosamine and one D-glucose with two non-stoichiometric sites for acetylation (I). This work is part of the project aimed at the development of a synthetic carbohydrate-based vaccine against Shigella infections. In order to obtain suitable glyconjugates inducing a high level of protection especially in children, the synthesis of mono- to pentasaccharide precursors was optimized, allowing a convergent synthesis of oligosaccharides with different acetylation patterns. Optimization of the glycosylation conditions, acetylations and protecting group manipulations enable the access to fragments from di to pentadecasaccharides representing S. flexneri type I O-antigen
Pifferi, Carlo. "Design and synthesis of multivalent glycoconjugates for anti-cancer immunotherapy." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAV060/document.
Повний текст джерелаCancer is one on the leading causes of death in developed countries; although surgical resection, direct irradiation and cytotoxic chemotherapy represent nowadays the main treatment options for patients suffering with malignancies, their severe side effects paved the way for the rise in popularity of antitumoral immunotherapy. Apart from passive immunotherapy, which is comprised of antibodies or other immune system components that are made outside of the body and has been shown to be associated to potentially life threatening immune reactions, we focused our efforts towards active immunotherapy, which purpose is stimulate the patient immune system to selectively eradicate malignant cells. The identification of tumor-associated carbohydrate antigens (TACAs) on the surface of cancer cells has allowed the development of antigen-specific vaccines. It has been known for over four decades that the majority of human cancers are characterized by aberrant glycosylation. Tumor cells may over-express truncated versions of oligosaccharides, unusual terminal oligosaccharide sequences, or increase sialylation of cell-surface glycolipids and O- and N-linked glycoproteins. A truncated oligosaccharide of a glycoprotein may render a part of the peptide backbone, which is normally shielded by the glycan, more accessible to the immune system. Among the assortment of TACAs we focussed our attention on Tn and TF-antigens, which can be found in membrane-bound glycoproteins like MUC-1, over-expressed in more than 90% of breast carcinomas. Although the design of such immuno-modulators still relies on empiric rules, it is noteworthy important to trigger both humoral and cellular responses, and a memory effect. This challenge can be achieved by combining, within a single molecule, carbohydrate antigen expressed on the surface of tumors (B-cell epitope), peptides capable to stimulate both CD4+ and CD8+ T-cells (T-cell epitopes) and an adjuvant, to gather immune system elements in the injection site and boost the antigen uptake. Previous studies of our research group reported for the first time the synthesis and immunological evaluation of a four-component anticancer vaccine prototype capable of inducing a long-lasting immune response in mice models. In my PhD work we aimed to synthesize TACA-based anticancer vaccine prototypes with improved immunological properties. The principles which guided our design strategies rely on (i) the importance of a high density of carbohydrate epitopes to promote a more effective antigen capture and processing by antigen-presenting cells, and (ii) the evidence of heterogenic expression patterns of TACAs during the course of the disease and among different individuals. Addressing these two aspects would provide a stronger and multifaceted immune response
Forner, Mar 1980. "Multi-epitope peptide platforms for vaccine applications." Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2021. http://hdl.handle.net/10803/671028.
Повний текст джерелаLa vacunació constitueix un dels mètodes més eficients i rendibles per promoure la salut mundial. No obstant això, poques vacunes són plenament efectives, per diverses raons que van des de limitacions intrínseques a deficiències més contingents relacionades, per exemple, amb el transport, manipulació i/o emmagatzematge en cadena de fred. En aquest context, les vacunes basades en pèptids, que plantegen un enfocament totalment sintètic en la reproducció d’epítops de cèl·lules B i T, han sorgit com una alternativa atractiva per superar molts d’aquests problemes. Malauradament, els pèptids lineals i curts s’han relacionat generalment amb baixa immunogenicitat i baixa protecció. En aquesta tesi continuem avançant cap al desenvolupament de vacunes peptídiques eficaces contra la febre aftosa, una malaltia vírica del bestiar altament contagiosa i amb important impacte econòmic. En particular, hem avaluat la resposta immune sota diverses condicions (dosi, durada, diferents epítops de cèl·lules T i nous candidats) en models animals. A més, també hem desenvolupat la síntesi de pèptids multivalents utilitzant reaccions de lligament quimioselectiu amb la coneguda química “click”.
Книги з теми "Vaccines Synthesis"
Guido, Grandi, ed. Genomics, proteomics, and vaccines. Chichester: Wiley, 2004.
Знайти повний текст джерелаB, Beklemishev A., Savich I. M, and Vorobʹev, A. A., chl.-kor. AMN SSSR., eds. Sovremennye podkhody k konstruirovanii͡u molekuli͡arnykh vakt͡sin. Novosibirsk: Izd-vo "Nauka," Sibirskoe otd-nie, 1987.
Знайти повний текст джерелаLaboratory animals in vaccine production and control: Replacement, reduction, and refinement. Dordrecht: Kluwer Academic Publishers, 1988.
Знайти повний текст джерелаBruce, Nicholson, ed. Synthetic vaccines. Oxford: Blackwell Scientific Publications, 1994.
Знайти повний текст джерелаP, Talwar G., Rao K. V. S, and Chauhan V. S, eds. Recombinant and synthetic vaccines. New Delhi: Narosa Pub. House, 1994.
Знайти повний текст джерела1925-, Brown Fred, ed. Vaccine design. Chichester: Wiley, 1993.
Знайти повний текст джерелаA, Hughes Huw P., and Campos Manuel, eds. Designer vaccines: Principles for successful prophylaxis. Boca Raton: CRC Press, 1998.
Знайти повний текст джерела1947-, Isaacson Richard E., ed. Recombinant DNA vaccines: Rationale and strategy. New York: Marcel Dekker, 1992.
Знайти повний текст джерелаInternational Symposium on the Immunobiology of Proteins and Peptides: Vaccines--Mechanisms, Design, and Applications (1989 Alberta). Immunobiology of proteins and peptides V: Vaccines : mechanisms, design, and applications. New York: Plenum Press, 1989.
Знайти повний текст джерела1946-, Cohen Sara, Shafferman A, and OHOLO Conference on Vaccines: Novel Strategies in Design and Production (1995 : Eilat, Israel), eds. Novel strategies in the design and production of vaccines. New York: Plenum Press, 1996.
Знайти повний текст джерелаЧастини книг з теми "Vaccines Synthesis"
Potetinova, Zhanna, and Gordon E. Willick. "Synthesis of Peptide-Based Vaccines." In Advances in Experimental Medicine and Biology, 361–62. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-73657-0_159.
Повний текст джерелаMurray, Michael G., and Eckard Wimmer. "Chemical Synthesis of Poliovirus Peptides and Neutralizing Antibody Responses." In New Vaccines and Chemotherapy, 129–40. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4757-9268-3_11.
Повний текст джерелаSkakic, Ivana, Jasmine E. Francis, and Peter M. Smooker. "Design and Synthesis of Protein-Based Nanocapsule Vaccines." In Vaccine Design, 339–54. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1892-9_17.
Повний текст джерелаKowalczyk, Renata, Margaret A. Brimble, and Rod Dunbar. "Synthesis of Mannosylated Glycopeptides as Components for Synthetic Vaccines." In Advances in Experimental Medicine and Biology, 351–52. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-73657-0_155.
Повний текст джерелаTorres, Oscar B., Carl R. Alving, and Gary R. Matyas. "Synthesis of Hapten-Protein Conjugate Vaccines with Reproducible Hapten Densities." In Vaccine Design, 695–710. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3387-7_39.
Повний текст джерелаLitschko, Christa, Insa Budde, Monika Berger, and Timm Fiebig. "Exploitation of Capsule Polymerases for Enzymatic Synthesis of Polysaccharide Antigens Used in Glycoconjugate Vaccines." In Vaccine Delivery Technology, 313–30. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0795-4_16.
Повний текст джерелаBrent Chesson, C., Rojelio Elias Alvarado, and Jai S. Rudra. "Microwave-Assisted Synthesis and Immunological Evaluation of Self-Assembling Peptide Vaccines." In Methods in Molecular Biology, 249–59. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7811-3_15.
Повний текст джерелаStocker, Bridget L., Alexandra Hölemann, and Peter H. Seeberger. "Automated Oligosaccharide Synthesis to Create Vaccines for Malaria and Other Parasites." In ACS Symposium Series, 137–62. Washington, DC: American Chemical Society, 2008. http://dx.doi.org/10.1021/bk-2008-0989.ch007.
Повний текст джерелаKoganty, R. Rao, Damayanthi Yalamati, and Zi-Hua Jiang. "Glycopeptide-Based Cancer Vaccines: The Role of Synthesis and Structural Definition." In ACS Symposium Series, 311–34. Washington, DC: American Chemical Society, 2008. http://dx.doi.org/10.1021/bk-2008-0989.ch014.
Повний текст джерелаChua, Brendon Y., Weiguang Zeng, and David C. Jackson. "Synthesis of Toll-Like Receptor-2 Targeting Lipopeptides as Self-Adjuvanting Vaccines." In Peptide-Based Drug Design, 247–61. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-419-3_14.
Повний текст джерелаТези доповідей конференцій з теми "Vaccines Synthesis"
Campo, Vanessa Leiria, Marcelo Dias Baruffi, and Ivone Carvalho. "Synthesis of glycopeptides mimetics of T. cruzi and tumor mucins as potential vaccines." In 15th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-15bmos-bmos2013_2013819161927.
Повний текст джерелаSvarovsky, Sergei A., and Joseph J. Barchi. "SYNTHESIS OF MULTIVALENT TUMOR-ASSOCIATED GLYCOPEPTIDE ANTIGENS AS POTENTIAL CANCER VACCINES." In XXIst International Carbohydrate Symposium 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.680.
Повний текст джерелаSEEBERGER, PETER H. "AUTOMATED OLIGOSACCHARIDE SYNTHESIS: FROM INSIGHTS INTO FUNDAMENTAL GLYCOBIOLOGY TO VACCINES AND DIAGNOSTICS." In 23rd International Solvay Conference on Chemistry. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814603836_0020.
Повний текст джерелаRekoslavskaya, N. I., R. K. Salyaev, and А. S. Stolbikov. "ABOUT THE METHODS OF THE INTENSIFICATION OF THE SYNTHESIS OF ANTIGENIC PROTEINS WITH USING PLANT VIRUS REGULATORY ELEMENTS AT THE DEVELOPMENT OF INNOVATIVE VACCINES ON THE BASE OF PLANT EXPRESSION SYSTEMS." In The All-Russian Scientific Conference with International Participation and Schools of Young Scientists "Mechanisms of resistance of plants and microorganisms to unfavorable environmental". SIPPB SB RAS, 2018. http://dx.doi.org/10.31255/978-5-94797-319-8-1348-1352.
Повний текст джерелаV.S., Petrenko, and Krotova O.E. "PRODUCTION OF HUMAN LEPTOSPIROSIS VACCINE WITH INCLUDED STRAIN OF LEPTOSPIRA INTERROGANS OF SEROGROUP CANICOLA." In "INNOVATIVE TECHNOLOGIES IN SCIENCE AND EDUCATION". ДГТУ-Принт, 2021. http://dx.doi.org/10.23947/itno.2021.163-165.
Повний текст джерелаKunz, Horst, Stefanie Keil, Nicole Bezay, Constanze Brocke, and Sebastian Dziadek. "SYNTHETIC GLYCOPEPTIDES FOR THE DEVELOPMENT OF ANTITUMOR VACCINES." In XXIst International Carbohydrate Symposium 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.362.
Повний текст джерелаBordoloi, Devivasha, Peng Xiao, Hyeree Choi, Michelle Ho, Alfredo Perales-Puchalt, Makan Khoshnejad, J. Joseph Kim, et al. "Abstract 1915: Novel synthetic DNA vaccines in prostate cancer immunotherapy." In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-1915.
Повний текст джерелаSizova, Olga V., Andrei V. Nikolaev, and Michael A. J. Ferguson. "THE PREPARATION OF NEOGLYCOPROTEINS AS POTENTIAL SYNTHETIC ANTI-LEISHMANIA VACCINES." In XXIst International Carbohydrate Symposium 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.678.
Повний текст джерелаJiang, Ziqing, Lajos Gera, Wendy Hartsock, Zhe Yan, Brook Hirsch, Colin T. Mant, Zhaohui Qian, Kathryn V. Kathryn V., J. Paul Kirwan, and Robert S. Hodges. "Platform Technology to Develop Synthetic Peptide Vaccines to Prevent Viral Infections." In The Twenty-Third American and the Sixth International Peptide Symposium. Prompt Scientific Publishing, 2013. http://dx.doi.org/10.17952/23aps.2013.132.
Повний текст джерелаGriebel, Adam, Tyler Novak, Kent D. Butz, Kevin Harris, Amy Kornokovich, Michael Chiappetta, and Corey P. Neu. "Prestress as an Optimal Biomechanical Parameter for Needle Penetration and Formulation Injection." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53202.
Повний текст джерелаЗвіти організацій з теми "Vaccines Synthesis"
Dudkin, Vadim, and Samuel J. Danishefsky. Targeting Breast Cancer by Active Immunotherapy: Chemical Synthesis of Multiantigenic Unimolecular Antitumor Vaccines. Fort Belvoir, VA: Defense Technical Information Center, June 2004. http://dx.doi.org/10.21236/ada428193.
Повний текст джерелаTulloch, Olivia, Tamara Roldan de Jong, and Kevin Bardosh. Data Synthesis: COVID-19 Vaccine Perceptions in Africa: Social and Behavioural Science Data, March 2020-March 2021. Institute of Development Studies (IDS), May 2021. http://dx.doi.org/10.19088/sshap.2021.030.
Повний текст джерелаTulloch, Olivia, Tamara Roldan de Jong, and Kevin Bardosh. Data Synthesis: COVID-19 Vaccine Perceptions in Sub-Saharan Africa: Social and Behavioural Science Data, March 2020-April 2021. Institute of Development Studies (IDS), May 2021. http://dx.doi.org/10.19088/sshap.2028.
Повний текст джерелаKim, Hyunjin M., and Samuel Danishefshky. A Solid Support Synthesis and Novel Conjugation Methods of Breast Tumor Associated Antigen: Toward the Development of Cancer Vaccines. Fort Belvoir, VA: Defense Technical Information Center, July 1999. http://dx.doi.org/10.21236/ada373924.
Повний текст джерелаButler, Nadia, and Soha Karam. Evidence Review: COVID-19 Vaccine Acceptance by Key Influencers in the MENA Region - Teachers and Healthworkers. Institute of Development Studies (IDS), November 2021. http://dx.doi.org/10.19088/sshap.2021.039.
Повний текст джерелаRoldan de Jong, Tamara. Rapid Review: Perceptions of COVID-19 Vaccines in South Africa. SSHAP, April 2022. http://dx.doi.org/10.19088/sshap.2021.021.
Повний текст джерелаQuak, Evert-jan. Lessons Learned from Market Shaping Interventions to Stimulate Vaccine Production in LMIC. Institute of Development Studies (IDS), December 2021. http://dx.doi.org/10.19088/k4d.2022.009.
Повний текст джерелаSatterthwait, Arnold C. Conformationally Restricted Synthetic AIDS Vaccine. Fort Belvoir, VA: Defense Technical Information Center, February 2001. http://dx.doi.org/10.21236/ada392520.
Повний текст джерелаKlaehn, John R. Synthesis of Phosphazenes for Use as Vaccine Adjuvants. Office of Scientific and Technical Information (OSTI), October 2011. http://dx.doi.org/10.2172/1027852.
Повний текст джерелаBuchmeier, Michael J. Synthetic Vaccines for the Control of Arenavirus Infections. Fort Belvoir, VA: Defense Technical Information Center, March 1992. http://dx.doi.org/10.21236/ada256173.
Повний текст джерела