Добірка наукової літератури з теми "USLE Universal soil loss equation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "USLE Universal soil loss equation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "USLE Universal soil loss equation":

1

Keller, Boglárka, Csaba Centeri, Judit Alexandra Szabó, Zoltán Szalai, and Gergely Jakab. "Comparison of the Applicability of Different Soil Erosion Models to Predict Soil Erodibility Factor and Event Soil Losses on Loess Slopes in Hungary." Water 13, no. 24 (December 9, 2021): 3517. http://dx.doi.org/10.3390/w13243517.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Climate change induces more extreme precipitation events, which increase the amount of soil loss. There are continuous requests from the decision-makers in the European Union to provide data on soil loss; the question is, which ones should we use? The paper presents the results of USLE (Universal Soil Loss Equation), RUSLE (Revised USLE), USLE-M (USLE-Modified) and EPIC (Erosion-Productivity Impact Calculator) modelling, based on rainfall simulations performed in the Koppány Valley, Hungary. Soil losses were measured during low-, moderate- and high-intensity rainfalls on cultivated soils formed on loess. The soil erodibility values were calculated by the equations of the applied soil erosion models and ranged from 0.0028 to 0.0087 t ha h ha−1 MJ−1 mm−1 for the USLE-related models. EPIC produced larger values. The coefficient of determination resulted in an acceptable correlation between the measured and calculated values only in the case of USLE-M. Based on other statistical indicators (e.g., NSEI, RMSE, PBIAS and relative error), RUSLE, USLE and USLE-M resulted in the best performance. Overall, regardless of being non-physically based models, USLE-type models seem to produce accurate soil erodibility values, thus modelling outputs.
2

Erol, A., Ö. Koşkan, and M. A. Başaran. "Socioeconomic modifications of the universal soil loss equation." Solid Earth 6, no. 3 (August 28, 2015): 1025–35. http://dx.doi.org/10.5194/se-6-1025-2015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. While social scientists have long focused on socioeconomic and demographic factors, physical modelers typically study soil loss using physical factors. In the current environment, it is becoming increasingly important to consider both approaches simultaneously for the conservation of soil and water, and the improvement of land use conditions. This study uses physical and socioeconomic factors to find a coefficient that evaluates the combination of these factors. It aims to determine the effect of socioeconomic factors on soil loss and, in turn, to modify the universal soil loss equation (USLE). The methodology employed in this study specifies that soil loss can be calculated and predicted by comparing the degree of soil loss in watersheds, with and without human influence, given the same overall conditions. A coefficient for socioeconomic factors, therefore, has been determined based on adjoining watersheds (WS I and II), employing simulation methods. Combinations of C and P factors were used in the USLE to find the impact of their contributions to soil loss. The results revealed that these combinations provided good estimation of soil loss amounts for the second watershed, i.e., WS II, from the adjoining watersheds studied in this work. This study shows that a coefficient of 0.008 modified the USLE to reflect the socioeconomic factors, such as settlement, influencing the amount of soil loss in the studied watersheds.
3

Benavidez, Rubianca, Bethanna Jackson, Deborah Maxwell, and Kevin Norton. "A review of the (Revised) Universal Soil Loss Equation ((R)USLE): with a view to increasing its global applicability and improving soil loss estimates." Hydrology and Earth System Sciences 22, no. 11 (November 27, 2018): 6059–86. http://dx.doi.org/10.5194/hess-22-6059-2018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. Soil erosion is a major problem around the world because of its effects on soil productivity, nutrient loss, siltation in water bodies, and degradation of water quality. By understanding the driving forces behind soil erosion, we can more easily identify erosion-prone areas within a landscape to address the problem strategically. Soil erosion models have been used to assist in this task. One of the most commonly used soil erosion models is the Universal Soil Loss Equation (USLE) and its family of models: the Revised Universal Soil Loss Equation (RUSLE), the Revised Universal Soil Loss Equation version 2 (RUSLE2), and the Modified Universal Soil Loss Equation (MUSLE). This paper reviews the different sub-factors of USLE and RUSLE, and analyses how different studies around the world have adapted the equations to local conditions. We compiled these studies and equations to serve as a reference for other researchers working with (R)USLE and related approaches. Within each sub-factor section, the strengths and limitations of the different equations are discussed, and guidance is given as to which equations may be most appropriate for particular climate types, spatial resolution, and temporal scale. We investigate some of the limitations of existing (R)USLE formulations, such as uncertainty issues given the simple empirical nature of the model and many of its sub-components; uncertainty issues around data availability; and its inability to account for soil loss from gully erosion, mass wasting events, or predicting potential sediment yields to streams. Recommendations on how to overcome some of the uncertainties associated with the model are given. Several key future directions to refine it are outlined: e.g. incorporating soil loss from other types of soil erosion, estimating soil loss at sub-annual temporal scales, and compiling consistent units for the future literature to reduce confusion and errors caused by mismatching units. The potential of combining (R)USLE with the Compound Topographic Index (CTI) and sediment delivery ratio (SDR) to account for gully erosion and sediment yield to streams respectively is discussed. Overall, the aim of this paper is to review the (R)USLE and its sub-factors, and to elucidate the caveats, limitations, and recommendations for future applications of these soil erosion models. We hope these recommendations will help researchers more robustly apply (R)USLE in a range of geoclimatic regions with varying data availability, and modelling different land cover scenarios at finer spatial and temporal scales (e.g. at the field scale with different cropping options).
4

Erol, A., Ö. Koşkan, and M. A. Başaran. "Socio-economic modifications of the Universal Soil Loss Equation." Solid Earth Discussions 7, no. 2 (June 15, 2015): 1731–59. http://dx.doi.org/10.5194/sed-7-1731-2015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. While social scientists have long focused on socio-economic and demographic factors, physical modelers typically study soil loss using physical factors. In the current environment, it is becoming increasingly important to consider both approaches simultaneously for the conservation of soil and water, and the improvement of land use conditions. This study uses physical and socio-economic factors to find a coefficient that evaluates the combination of these factors. It aims to determine the effect of socio-economic factors on soil loss and, in turn, to modify the Universal Soil Loss Equation (USLE). The methodology employed in this study specifies that soil loss can be calculated and predicted by comparing the degree of soil loss in watersheds, with and without human influence, given the same overall conditions. A coefficient for socio-economic factors, therefore, has been determined based on adjoining watersheds (WS I and II), employing simulation methods. Combinations of C and P factors were used in the USLE to find the impact of their contributions on soil loss. The results revealed that these combinations provided good estimation of soil loss amounts for the second watershed, i.e. WS II, from the adjoining watersheds studied in this work. This study shows that a coefficient of 0.008 modified the USLE to reflect the socio-economic factors as settlement influencing the amount of soil loss in the watersheds studied.
5

Freebairn, DM, DM Silburn, and RJ Loch. "Evaluation of three soil erosion models for clay soils." Soil Research 27, no. 1 (1989): 199. http://dx.doi.org/10.1071/sr9890199.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Universal Soil Loss Equation (USLE) and two modified USLE models were assessed for their ability to predict soil erosion on contour bay catchments on the Darling Downs, Queensland. The models were applied using USLE handbook values as well as optimized values determined by fitting the models to the experimental data. All three models explained greater than 80% of the variance in measured soil loss with no single model being consistently superior to the others. Cover reduced erosion more than that predicted by the USLE.
6

Jones, Bilal G., Buddhi R. Gyawali, Demetrio Zourarakis, Maheteme Gebremedhin, and George Antonious. "Soil Loss Analysis of an Eastern Kentucky Watershed Utilizing the Universal Soil Loss Equation." Environments 9, no. 10 (October 4, 2022): 126. http://dx.doi.org/10.3390/environments9100126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Soil erosion is the displacement of soil’s upper layer(s) triggered by a variation in topography, land use and soil types, and anthropogenic activities. This study selected the Marrowbone Creek-Russel Fork watershed in eastern Kentucky to estimate the mean annual soil loss over eight years (from 2013 to 2020) utilizing the Universal Soil Loss Equation (USLE). We included monthly precipitation, soil survey, digital elevation model (DEM), and land cover data to estimate the parameters of the USLE. The mean annual soil loss for the study area ranged from 1.77 to 2.91 Mg ha−1 yr−1 with an eight-year mean of 2.31 Mg ha−1 yr−1. In addition, we observed that developed land cover classes were less erosion-resistant than undeveloped land cover classes over the observation period. The results of this case study in our small watershed that has been historically impacted by upstream coal-mining activities are comparable to the results from similar studies in other geographic regions. However, we suggest other researchers conduct similar studies using robust data to determine the applicability of the USLE model and validate the results in developing measures to address soil loss issues.
7

Oshunsanya, Suarau Odutola, and Nkem Joseph Nwosu. "Suitability of Universal Soil Loss Erodibility, Inter-rill and Rill Erodibility Models for Selected Tropical Soils." Agricultura Tropica et Subtropica 50, no. 4 (December 1, 2017): 191–98. http://dx.doi.org/10.1515/ats-2017-0020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThe universal soil loss equation (USLE) and water erosion prediction project (WEPP) (inter-rill and rill) erodibility factors are important indicators for land degradation assessment all over the world, which were primarily developed for the United States of America (USA). However, information on suitability of USLE and WEPP for tropical environment is scarce. Therefore, studies were carried out to investigate the suitability of USLE and WEPP for selected tropical soils of Southwestern Nigeria. Four pedons classified based on USDA soil taxonomy as Plinthic Petraquept (Adio series), Kanhaplic Haplaustalf (Oyo series), Typic Plinthustalf (Temidire series) and Typic Haplaustalf (Owutu series) were used for the study. Soil erodibility factor was determined using USLE and WEPP models. Origin-Pro. 8.1 software was employed to compare USLE and WEPP models for conformity and suitability. The results showed perfect agreement (R2= 1.0;P< 0.001) between the two WEPP (inter-rill and rill) erodibility models in all the four soil types investigated. In addition, WEPP models (inter-rill and rill erodibility) significantly (R2= 0.82;P< 0.001) related to USLE (El-Swaify and Dangler, 1977) erodibility model. There was a poor relationship (R2= 0.46;P< 0.06) between USLE (Wischmeier and Mannering, 1968) and the WEPP erodibility factors. The WEPP erodibility models with a perfect relationship with soil properties of the four soil types are more suitable than USLE models for predicting soil erodibility of the identified soil types in tropical environments.
8

Lane, LJ, KG Renard, GR Foster, and JM Laflen. "Development and application of modern soil erosion prediction technology - The USDA experience." Soil Research 30, no. 6 (1992): 893. http://dx.doi.org/10.1071/sr9920893.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Erosion prediction efforts are described to provide a synopsis of the USDA's experience in developing and applying soil erosion prediction technology in its research and development activities and its soil conservation programs. For almost five decades, equations to predict soil erosion by water have been useful m developing plans for controlling soil erosion and sedimentation. The Universal Soil Low Equation (USLE) is the most widely known and used of the erosion prediction equations. The USLE presents a simply understood and easily applied technology which has been of incalculable benefit to soil conservation and land management. The Chemicals, Runoff, and Erosion from Agricultural Management Systems Model (CREAMS) contains a sophisticated erosion component based, in part, on the USLE and on flow hydraulics and the processes of sediment detachment, transport, and deposition. In 1985, the USDA in cooperation with BLM and several universities initiated a national project called the Water Erosion Prediction Project (WEPP) to develop a next generation water erosion prediction technology. The Revised Universal Soil Loss Equation (RUSLE) is an update of the USLE to improve erosion prediction in the interim before WEPP is adopted and to provide and adjunct technology thereafter.
9

Erskine, Wayne D., A. Mahmoudzadeh, C. M. Browning, and C. Myers. "Sediment yields and soil loss rates from different land uses on Triassic shales in western Sydney, NSW." Soil Research 41, no. 1 (2003): 127. http://dx.doi.org/10.1071/sr01078.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Sedimentation surveys of small dams demonstrate that land use is the dominant factor generating high sediment yields in the ungullied shale catchments of western Sydney where rainfall erosivity and soil erodibility are relatively constant. A single urban catchment produced 6.5 t/ha.year and cropped catchments an average of 6.7 ± 1.99 t/ha.year, whereas grazed woodland/forest and grazed pasture exported averages of only 2.5 ± 0.57 and 2.9 ± 1.02 t/ha.year, respectively. These yields are high by Australian standards and the farm dam sediments are enriched in both clay and phosphorus, in comparison to catchment topsoils. Empirical soil loss equations based on the Universal Soil Loss Equation (USLE) [Modified Universal Soil Loss Equation (MUSLE), Soiloss and Revised Universal Soil Loss Equation (RUSLE)] accurately predicted the measured sediment yields, with Soiloss being the most accurate. Although Soiloss is the only empirical equation to use Australian data, it is only marginally better than MUSLE, a simplified version of the USLE used for teaching. RUSLE predictions of soil loss rates were closely correlated with measured sediment yields but required inputs for poorly defined parameters. European land uses in the South Creek catchment, the largest shale catchment in western Sydney, have probably increased mean annual sediment yield by 4.4 times over that in 1788. Further increases are likely with increasing urbanisation.
10

Karyadinata Putra, Abdurrohim. "PEMETAAN KAWASAN RAWAN EROSI MENGGUNAKAN METODE USLE (UNIVERSAL SOIL LOSS EQUATION)." Jurnal ARTESIS 1, no. 1 (May 25, 2021): 88–95. http://dx.doi.org/10.35814/artesis.v1i1.2871.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
DAS Ciliwung Tengah terletak di Kabupaten Bogor Jawa Barat dan Administratif Depok, yang memiliki topografi datar hingga bergunung dengan kemiringan lereng yang bervariasi dan curah hujan tahunan hingga 4839.67 mm/tahun yang memungkinkan terjadinya bahaya erosi. Penelitian ini bertujuan untuk mengidentifikasi luas daerah yang memiliki tingkat bahaya dan menghitung nilai erosi (Ton/Ha/Tahun) pada Kawasan Ciliwung Tengah berdasarkan USLE menggunakan data penginderaan jauh berupa citra Landsat 8 OLI dan analisis SIG, serta menganalisis faktor yang dominan terhadap bahaya erosi tanah di Sub Ciliwung Tengah menggunakan analisis statistik. Metode USLE menggunakan lima parameter, yaitu indeks panjang dan kemiringan lereng (LS) diperoleh dari peta kemiringan lereng, indeks erosivitas hujan (R) diperoleh dari perhitungan erosivitas hujan, pengelolaan tanaman (C) dan indeks konservasi lahan (P) yang diperoleh dari interpretasi citra dan survei lapangan, serta indeks erodibilitas tanah (K) yang diperoleh dari peta jenis tanah. Pengolahan data dan analisis overlay parameter erosi dan perhitungan erosi menggunakan metode USLE. Hasil penelitian menunjukkan bahwa bahaya erosi di Sub DAS Ciliwung Tengah terdiri dari tiga kelas, yaitu rendah sebesar 18.29 – 773 Ton/Ha/Tahun seluas 14,476.22 Ha dengan persentase 92.17%, sedang sebesar 774 – 1,548 Ton/Ha/Tahun seluas 0.28% dengan luas 43.95 Ha, dan berat sebesar 1,549 – 2,340 Ton/Ha/Tahun seluas 1,185.57 Ha dengan persentase 7.55%. Pemetaan tingkat bahaya erosi ini akan sangat membantu dalam menentukan tindakan pengelolaan dan konservasi lahan yang baik dan sesuai di daerah penelitian

Дисертації з теми "USLE Universal soil loss equation":

1

Kelsey, Kurt L. "Use of the Revised Universal Soil Loss Equation (Rusle) to predict event soil loss /." Link to abstract, 2002. http://epapers.uwsp.edu/abstracts/2002/Kelsey.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Son, Vo Thanh, and n/a. "Evaluation of the USLE (Universal Soil Loss Equation) to estimate soil loss from hobby farms and commercial pastoral properties around Murrumbateman, NSW, Australia." University of Canberra. Applied Science, 1993. http://erl.canberra.edu.au./public/adt-AUC20061108.171337.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis is an evaluation of the use the USLE to estimate soil loss from two pastoral land uses - commercial properties and "hobby farms" in Murrumbateman. Sensitivity analysis was used to evaluate the USLE components. Sediment measurement in farm dams was taken to estimate sediment yield from several sites, as an alternative approach to study soil loss. The annual soil loss from entire study area was 0.25 t/ha/year whilst these figures from commercial properties and hobby farms were 0.29 t/ha/year and 0.21 t/ha/year, respectively. The annual average sediment yield from three catchments in hobby farms was 0.3 t/ha/year. The USLE was found to be highly sensitive to slope steepness, ground cover and stocking rates. The critical values were 16% for slopes, 35% for the ground cover and 19 Dry Sheep Equivalent/ha for stocking rate. I tentatively conclude that the USLE is sufficiently sensitive to detect differences in soil loss between the two land uses. There is, however, a need to improve the operation of the model in some respects. The use of farm dams for estimating sediment yield also shows promise.
3

Ferreira, Edi Carlos. "Mapeamento e análise da suscetibilidade à erosão pluvial na Unidade de Gerenciamento dos Recursos Hídricos do rio Aguapeí (UGRHI 20), no Estado de São Paulo, Brasil /." Presidente Prudente, 2019. http://hdl.handle.net/11449/191149.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Orientador: Isabel Cristina Moroz-Caccia Gouveia
Resumo: O presente trabalho tem como objetivo principal analisar a suscetibilidade aos processos erosivos laminares e lineares, identificando áreas mais críticas e seus impactos sobre os recursos hídricos na Unidade de Gerenciamento de Recursos Hídricos da Bacia Hidrográfica do Rio Aguapeí (UGRHI-20), localizada no oeste do Estado de São Paulo. Para determinar a suscetibilidade à erosão laminar utilizou-se a Equação Universal de Perda de Solo (EUPS), desenvolvida por Wischmeier e Smith (1976). Para a suscetibilidade à erosão linear utilizou-se a metodologia de Fragilidade Ambiental proposta por Ross (1994). Os resultados mostraram que na UGRHI-20, as estimativas de perda de solo por erosão laminar estão muito acima do recomendado pela FAO (1965) e por Wischmeier & Smith (1978), pois 73% da área se enquadra na classe indicativa “Alta” com valores entre 50 – 200 t.ha-1 ano -1. Em relação à erosão linear, a condição da UGRHI-20 é considerada crítica, pois apresenta 57% de sua área nível de fragilidade emergente forte. Diante de tais resultados, espera-se que esse trabalho possa subsidiar o planejamento ambiental desta bacia hidrográfica pelo poder público e principalmente por órgãos gestores. Para isso, serão entregues exemplares desse trabalho em meio digital para o Comitê de Bacias Hidrográficas dos Rios Aguapeí e Peixe (CBH-AP).
Abstract: The present work has as main objective to analyze the susceptibility to laminar and linear erosive processes, identifying the most critical areas and their impacts on water resources at the Aguapeí River Basin Water Resources Management Unit (UGRHI 20), located in the west of São Paulo. To determine susceptibility to laminar erosion, The Universal Soil Loss Equation (USLE) developed by Wischmeier and Smith (1976) was used. For susceptibility to linear erosion, the Environmental Fragility methodology proposed by Ross (1994) was used. The results showed that in the UGRHI-20 laminar erosion soil loss estimates are far above those recommended by FAO (1965) and Wischmeier & Smith (1978), as 73% of the area falls under the “High” indicative class with values between 50 – 200 t.ha-1year-1. Regarding linear erosion, the condition of UGRHI-20 is considered critical, as it presents 57% of its area strong emerging fragility level. Given these results, it is hoped that this work can subsidize the environmental planning of this watershed by the government and especially by management agencies. To this end, copies of this work will be delivered digitally to the Aguapeí and Peixe River Watershed Committee (CBH-AP).
Mestre
4

Maranhão, Karinna Ugulino de Araújo. "Zoneamento ambiental do município de Monteiro-PB." Universidade Federal da Paraíba, 2014. http://tede.biblioteca.ufpb.br:8080/handle/tede/7681.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Submitted by Maike Costa (maiksebas@gmail.com) on 2016-01-05T11:42:13Z No. of bitstreams: 1 arquivototal.pdf: 9083735 bytes, checksum: 38931cb14eb92588b2dd5f4223417162 (MD5)
Made available in DSpace on 2016-01-05T11:42:13Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 9083735 bytes, checksum: 38931cb14eb92588b2dd5f4223417162 (MD5) Previous issue date: 2014-09-26
The objective is to evaluate the environmental fragility and guidelines for environmental zoning (EZ) using geospatial analyses techniques in the Monteiro County, Paraíba State. The purpose of this study was to evaluate two different environmental fragility methodologies to use the results to develop environmental zone classes within Brazilian semiarid region. The two methodologies used in this study were: (a) original purpose developed by Crepani et. al. (2008) and adapted to the local reality, in which it was analyzed the vulnerability to soil loss, its use and occupation, and the Permanent Preservation Areas (PPAs); (b) adopted purpose of Crepani et. al. (2008), that instead of using the map of soil loss vulnerability, it was used the estimation of soil loss achieved from the Universal Soil Loss Equation (USLE). The map of soil loss vulnerability was achieved by algebra of maps related to the following themes: Geology, Geomorphology, Pedology, Land Use Cover, and Climatology. The estimative map of soil losses, using USLE, was achieved from the factors of rainfall erosivity, soil erodibility, topographic and management, and conservation practices. As a result, two EZ maps were achieved. In both cases were identified ten types of indicated use, having one of them presented a higher percentage of Environmental Control area, which demands maintenance of both the existent vegetal cover and the quality of hydric sources; while another map has presented a higher percentage of Priority Preservation Area, which presents areas covered by vegetation of dense and preserved forest, but with high erosion degree. This research not only shows the city areas of higher environmental vulnerability, but also proves the importance of EZ to the control of soil use and occupation in an orderly and planned way. It is, then, government duty to elaborate, based on this study, its law to ordainment of territory. From this research it is possible to deepen the studies to create the Ecological-Economic Zoning (EEZ), which is concerned not only with the preservation, rehabilitation and recovery of environmental quality, but also with the social and economic development.
Objetivou-se avaliar a fragilidade ambiental e diretrizes para o Zoneamento Ambiental (ZA) utilizando técnicas de análises geoespaciais para o município de Monteiro, localizado no Estado da Paraíba. A proposta desse estudo foi aplicar duas metodologias diferentes para avaliar a fragilidade ambiental e usar os resultados para criar classes de zonas ambientais em uma porção semiárida da região Nordeste do Brasil. As duas metodologias utilizadas foram: (a) proposta original de Crepani et al. (2008) e adaptada à realidade local, em que foi analisada a vulnerabilidade à perda de solo, o seu uso e ocupação, e as Áreas de Preservação Permanente (APPs); e (b) proposta adaptada de Crepani et al. (2008), que ao invés de utilizar o mapa de vulnerabilidade à perda de solo, utilizou-se a estimativa de perda de solo gerada a partir da Equação Universal de Perda de Solo (EUPS). O mapa de vulnerabilidade à perda de solo foi adquirido por álgebra de mapas relacionados aos temas: Geologia, Geomorfologia, Pedologia, Cobertura Vegetal e Uso da Terra e Climatologia. O mapa de estimativa das perdas de solo, utilizando EUPS, foi gerado a partir dos fatores de erosividade das chuvas, erodibilidade do solo, comprimento de rampa e declividade, uso e manejo e práticas conservacionistas. Como resultado, foi obtido dois mapas de ZA. Em ambos os casos, foram identificadas dez classes de uso indicado, tendo um apresentado maior percentual de área de Controle Ambiental, que requer manutenção da cobertura vegetal existente e da qualidade dos recursos hídricos, e outro apresentou maior percentual de Área de Preservação Prioritária, que apresenta áreas cobertas por vegetação de mata densa e preservada, porém com alto grau de erosão. Essa pesquisa mostra as áreas de maior fragilidade ambiental do município, além de comprovar a importância do ZA para o controle do uso e ocupação do solo de forma ordenada e planejada. Cabe, portanto, ao órgão municipal elaborar, baseado nesse estudo, sua legislação para ordenamento do território. A partir dessa pesquisa é possível aprofundar os estudos para gerar o Zoneamento Ecológico-Econômico (ZEE), onde, além das preocupações com a preservação, reabilitação e recuperação da qualidade ambiental, passa-se a uma maior preocupação com o desenvolvimento econômico e social.
5

Hosseinzadeh, Atiyeh. "Evaluation d'un modèle à base physique pour l'estimation des flux de sédiments lors des crues soudaines." Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette étude évalue la performance d'un modèle hydrologique à base physique, distribué, appelé MARINE, pour la simulation du transport de sédiments en suspension pendant les crues soudaines à l'échelle du bassin versant. Les crues soudaines et intenses peuvent induire une érosion du sol et un transport de sédiments importants, entraînant une perte de sol durable. MARINE permet de prendre en compte la variabilité spatiale des caractéristiques du bassin versant et des précipitations. L'étude est menée sur deux petits bassins versants du sud de la France, la Claduègne en Ardèche (42,3 km2) et Auradé dans le Gers (3,28 km2). MARINE utilise une équation d'advection par l'écoulement moyen pour simuler l'évolution spatio-temporelle de la concentration en sédiments non cohésifs, en prenant en compte des termes sources représentant l'érosion par impact des précipitations et l'érosion par cisaillement.L'étude examine l'influence de divers paramètres sur la simulation de la concentration pendant les crues rapides dans ces bassins versants, y compris : (i) le diamètre médian des particules de sédiments, (ii) la cote de l'interface entre la charge de lit et la charge en suspension, (iii) le coefficient de sensibilité du sol à l'érosion par cisaillement, (iv) le coefficient de sensibilité du sol à l'érosion par impact des gouttes de pluie. Les résultats des analyses de sensibilité appliquées à des crues éclair sélectionnées mettent en évidence la sensibilité du modèle à deux paramètres clés pour les deux bassins versants : le coefficient de sensibilité du sol à l'érosion par cisaillement et le diamètre médian des particules de sédiments. Grâce à l'analyse de sensibilité des paramètres du modèle, les simulations permettent de classer les inondations en deux catégories : les crues dominées par l'érosion par impact des gouttes de pluie et celles dominées par l'érosion par cisaillement. En outre, l'analyse des résultats souligne la nécessité de prendre en compte la variabilité spatiale de la sensibilité du sol à l'érosion en identifiant notamment l'emplacement des sources potentielles de sédiments.Pour évaluer les performances du modèle en matière d'estimation de l'érosion, les résultats sur le bassin versant de la Claduègne sont comparés à deux modèles empiriques largement utilisés, dérivés de l'équation universelle de perte de sol (USLE), à savoir RUSLE et MUSLE. Pour comparer les trois modèles avec MARINE comme référence, une analyse de sensibilité est menée sur le facteur d'occupation du sol intervenant dans MUSLE et RUSLE. Bien que l'érosion simulée par les trois méthodes soit généralement comparable, des variations apparaissent pour les événements dominés par l'érosion par impact des gouttes de pluie, ce qui suggère la nécessité de poursuivre les recherches pour améliorer la modélisation de cette érosion dans le cadre du modèle MARINE.Les simulations du modèle MARINE offrent également la possibilité de générer des cartes d'aléas érosion/déposition qui, combinées à une carte de vulnérabilité, peuvent être utiles aux décideurs et planificateurs environnementaux pour identifier les zones exposées aux risques d'érosion et de dépôt
This study evaluates the performance of a physically-based, distributed hydrological model, called MARINE, for simulating suspended sediment transport during flash floods at the catchment scale. Intense flash floods can induce significant soil erosion and sediment transport, leading to long-lasting soil loss. MARINE takes into account the spatial variability of catchment characteristics and precipitation. The study was carried out on two small catchments in southern France, La Claduègne in Ardèche (42.3 km²) and Auradé in Gers (3.28 km²). MARINE uses a mean-flow advection equation to simulate the spatio-temporal evolution of non-cohesive suspended sediment concentration, taking into account source terms representing raindrop erosion and shear stress erosion.The study examines the impact of various parameters on the simulation of suspended sediment concentration during flash floods in these catchments, including (i) the median diameter of sediment particles, (ii) the location of the interface between bed load and suspended load, (iii) the soil sensitivity coefficient to shear stress erosion, (iv) the soil sensitivity coefficient to raindrop erosion. The results of the sensitivity analyses applied to selected flash flood events highlight the model's sensitivity to two key parameters for both catchments: the soil sensitivity coefficient to shear stress erosion and the median sediment particle diameter. Thanks to the sensitivity analysis of the model parameters, the simulations led to the classification of floods into two categories: those dominated by raindrop erosion and those dominated by shear stress erosion. Analysis of the results also highlights the need to take into account the spatial variability of soil sensitivity to erosion, in particular by identifying the location of potential sources of sediment.To assess the model's performance in estimating erosion, the results for the Claduègne catchment are compared with two widely used empirical models derived from the Universal Soil Loss Equation (USLE), namely RUSLE and MUSLE. To compare the three models with MARINE as a reference, a sensitivity analysis is carried out on the land-use factor involved in MUSLE and RUSLE. Although the erosion simulated by the three methods is generally comparable, variations appear for events dominated by raindrop erosion, suggesting the need for further research to improve raindrop erosion modeling within the MARINE model.MARINE model simulations also offer the possibility of generating erosion/deposition hazard maps which, combined with a vulnerability map, can be useful to environmental decision-makers and planners in identifying areas at risk from erosion and deposition
6

Gomes, Márcia da Silva. "Avaliação da degradação do solo através da dinâmica da matéria orgânica, na micro bacia do Arroio Morungava, Gravataí, RS." Universidade do Vale do Rio dos Sinos, 2009. http://www.repositorio.jesuita.org.br/handle/UNISINOS/3345.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Submitted by CARLA MARIA GOULART DE MORAES (carlagm) on 2015-04-23T20:17:19Z No. of bitstreams: 1 MarciaGomesGeologia.pdf: 3212123 bytes, checksum: 2a235d35b0c87594b8e37e68a2ffd53b (MD5)
Made available in DSpace on 2015-04-23T20:17:19Z (GMT). No. of bitstreams: 1 MarciaGomesGeologia.pdf: 3212123 bytes, checksum: 2a235d35b0c87594b8e37e68a2ffd53b (MD5) Previous issue date: 2009-09-15
Nenhuma
A degradação dos solos é um dos principais problemas relacionados ao desenvolvimento sustentável, e um dos grandes desafios a serem enfrentados já neste século. A ação do homem no planejamento e desenvolvimento da ocupação do espaço na Terra requer cada vez mais uma visão ampla sobre as necessidades da população, os recursos terrestres e aquáticos disponíveis e o conhecimento sobre o comportamento dos processos naturais, para racionalmente compatibilizar necessidades crescentes com recursos limitados. A crescente degradação do solo sob exploração agrícola em todo o mundo despertou nos últimos anos uma preocupação com a qualidade do solo e a sustentabilidade da produção agrícola. A matéria orgânica do solo é um fator relevante na qualidade deste, sendo uma fonte de energia, de carbono e doadora de elétrons da grande maioria dos organismos, o que evidencia sua importância para a biota desempenhar suas funções no sentido de promover as propriedades do solo. O objetivo deste trabalho é avaliar a degradação do solo na microbacia do arroio Morungava, com uso da Equação Universal de Perda de Solo (EUPS), através de análise da variação temporal da matéria orgânica nos horizontes superficiais, em solos Hidromórficos e Argissolos, sob práticas de cultivo em diferentes períodos de uso (18 meses de cultivo; 10 anos de cultivo; 15 anos de cultivo e mais de 30 anos de cultivo), utilizando áreas de mata nativa como referência. Em condições naturais os argissolos mostram um aumento de matéria orgânica (MO) com a profundidade. Nos horizontes superficiais dos solos cultivados analisados observa-se perda de MO por erosão e oxidação superficial, com pouca translocação vertical. Neste caso, a erosão superficial acelerada antropicamente, faz com que o Horizonte B dos argissolos fique próximo a superfície, eventualmente exposto, com o passar do tempo. Já os solos hidromórficos verificam-se grandes perdas iniciais com a retirada de matas nativas, o que pode ser em parte atribuído à oxidação acelerada da MO, devido às mudanças ambientais. Para os solos hidromórficos com mais de 15 anos de uso, verifica-se um comportamento inverso, ocorrendo um significativo aumento superficial da MO, o que pode ser devido ao aporte de MO originado dos argissolos adjacentes. Assim, as planícies aluvionares, para tempos de uso superiores há 15 anos, devem provavelmente atuar como zonas de acumulação de MO na bacia hidrográfica. Há um provável processo menos intenso de translocação vertical, o qual é observado nos primeiros 10 anos de uso dos hidromórficos. Quanto à avaliação espacial de perda de MO observa-se taxas com variação de 0 até 239,15 t ha¯¹ ano¯¹ com o uso do solo atual. Assim, 54,12 % da área apresentam taxas de perda de MO entre 0 a 0,5 t ha¯¹ ano¯¹ 42,21 % variam de 0,5 a 5 t ha¯¹ ano¯¹e os demais 3,67 % de área apresentam perdas de MO acima de 5 t ha¯¹ ano¯¹. Em um cenário onde a legislação ambiental (Código Florestal Federal - Lei 4.771 de 1965 e Código Florestal Estadual - Lei 9.519 de 1992) é cumprida, com reflorestamento nas Áreas de Preservação Permanente ? APPs, referente às encostas com declividade acima de 45º e faixas de 30 metros de cada lado, ao longo dos cursos d´água, observa-se 62,17 % da área com taxas de perda de MO entre 0 a 0,5 t ha¯¹ ano¯¹, 36,86 % variam de 0,5 a 5 t ha¯¹ ano¯¹e os demais 0,97 % de área apresentam perdas de MO acima de 5 t ha¯¹ ano¯¹, chegando a atingir 37,28 t ha¯¹ ano¯¹em alguns pontos. Para um cenário onde a faixa de preservação é de apenas 5 metros de cada lado, ao longo dos cursos d´águas, de acordo com a legislação ambiental do Estado de Santa Catarina (Art. 114 da Lei Estadual 14.675, de 13 abril de 2009), observa-se que as taxas de perda de MO aumentam. No cenário anterior as perdas acima de 5 t ha¯¹ ano¯¹, atingem apenas 0,97% do total da área. Aplicando a legislação do Estado de Santa Catarina, as taxas de perda acima de 5 t ha¯¹ ano¯¹, atingem 1,03 % do total da área. As taxas baixas de perda de MO (abaixo de 0,5 t ha¯¹ ano¯¹) para o cenário de 30 metros de preservação chegam a 62,17% da área. Já no cenário com faixa de preservação de apenas 5 metros, as taxas baixas de perda de MO chegam a 53,16% da área. Apesar de ser uma diferença pequena de taxas de perda de MO, estas taxas apresentadas comprovam que a diminuição das faixas de preservação de 30 metros para cinco metros, acarretará em prejuízos ao meio ambiente. Em um cenário onde toda a faixa de preservação de 30 metros de cada lado, ao longo dos cursos d´água, é retirada, as taxas de perda de MO variam de 0 até 239,15 t ha¯¹ ano¯¹. Neste caso 53,16 % da área apresenta taxas de perda de MO entre 0 a 0,5 t ha¯¹ ano¯¹, 43,02 % variam de 0,5 a 5 t ha¯¹ ano¯¹ e 3,82 % de área apresentam perdas de MO acima de 5 t ha¯¹ ano¯¹, chegando a atingir 239,15 t ha¯¹ ano¯¹ em alguns pontos. Essas taxas de perda são equivalentes ao uso do solo atual da área. Isto ocorre pelo fato da microbacia do arroio Morungava apresentar grandes extensões de faixa de preservação ao longo desses cursos d´água, totalmente desmatadas. O cenário criado para desmatamento de 30 metros é semelhante à situação real da área. A partir dos resultados obtidos das coletas de campo e dados gerados em laboratório, conclui-se que a micro bacia do arroio Morungava está sofrendo processo erosivo acelerado com o decorrer dos anos, principalmente em zonas de maior declividade, onde predominam os argissolos. Já os solos em posição fisiográficas com baixa erosão potencial superficial, como os hidromórficos, atuam como zonas de acumulação de sedimentos e matéria orgânica. Verifica-se uma variação ampla nas taxas de perda de MO com o uso do solo atual, com teores elevados nas áreas com maior declividade. Estes teores, de acordo com cenários gerados de reflorestamento, podem diminuir com o cumprimento da legislação ambiental. Assim pode-se afirmar que a EUPS foi fundamental para avaliar a perda de matéria orgânica na microbacia.
Soil degradation is one of the main concerns regarding sustainable development, and one of the challenges to be faced on this century. Mankind actions on planning and development of Earth occupation, needs more and more a broader view of population needs, available terrestrial and hydric resources and knowledge over natural processes behavior, to rationally conciliate growing needs with limited resources. The worldwide growing soil degradation due to agricultural exploitation, over the last years awoke a concern with soil quality and agricultural production sustainability. The soil organic matter is a relevant factor for its quality, being energy and Carbone source and an electron donator to most organisms, which only shows how it is important to biota?s functions and promote soil proprieties. The objective of this study is to evaluate the soil degradation at the micro basin of the Morungava stream, using the Universal Soil Loss Equation (USLE), through temporal variation analysis of organic matter on superficial horizons, on hydromorphic and argillaceous soils, under cultivation on different usage periods (18 months of cultivation, 10 years of cultivation, 15 years of cultivation and more than 30 years of cultivation), utilizing areas of native forest as reference. In natural conditions argillaceous soils show an increase in organic matter (OM) as it deepens. On the analyzed cultivated soils superficial horizons, was observed a loss of OM due to erosion and superficial oxidation, with low vertical translocation. In this case, the superficial erosion hasten by anthropic influence, causes the B horizon of argillaceous soils to be near the surface, eventually exposed with time. On the hydromorphic soils, there are big initial losses with the removal of native forests, which can be in part caused by hasten oxidation of OM due to environmental changes. To hydromorphic soils with more than 15 years of usage, a inverse behavior is observed, occurring a significant increase of superficial OM, which can be due to the arrive of OM from the adjacent argillaceous soils. So, the alluvial plains, to usage periods greater than 15 years, probably act as OM accumulation zones on the basin. There is a probable process less intense of vertical translocation, which is observed during the first 10 years of hydromorphic soil usage. As for the spatial evaluation of OM loss, its observed with variation from 0 to 239,15 t.ha¯¹.year¯¹ with current soil usage. This way, 54,12% of the area presents OM loss rate between 0 and 0,5 t.ha¯¹.year¯¹, 42,21% varies from 0,5 to 5 t.ha¯¹.year¯¹, and the remaining 3,67% of the area show OM losses superior to 5 t.ha¯¹.year¯¹. In a scenery where the environmental legislation (Federal Forest Code ? Law 4.771 of 1965 and State Forest Code ? Law 9.519 of 1992) is followed, with reforesting of Permanent Preservation Areas (APPs), referring to acclivity superior to 45° and a 30 meters preservation band from the margins of any watercourse, is observed that 62,17% of the area have a OM loss rate between 0 and 0,5 t.ha¯¹.year¯¹, 36,86% varies from 0,5 to 5 t.ha¯¹.year¯¹ and the remaining 0,97% have a OM loss rate superior to 5 t.ha¯¹.year¯¹, peaking 37,28 t.ha¯¹.year¯¹ at some points. In a scenery where the preservation band is only 5 meters from the margin of watercourses, in accordance with the environmental legislation of Santa Catarina state (Art.114 State Law 14.675 from 2009, April 13), its observed an increase in the OM loss Rates. If in the previous scenery the OM losses over 5 t.ha¯¹.ano¯¹, were only 0,97% of total area, applying the Santa Catarina State Law, the OM losses over 5 t.ha¯¹.ano¯¹, are 1,03% of total area. The low OM loss rates (under 0,5 t.ha¯¹.ano¯¹,) on the 30 meters preservation scenery were 62,17% of the area, applying the Santa Catarina state 5 meters preservation scenery it drops to 53,16% of the area. Even if it is a small difference on OM loss rates, these rates testify that the reduction of the preservation bands will incur in harm to the environment. In a scenery where all the preservation band is removed along the watercourses, the OM loss rates varies from 0 to 239,15 t.ha¯¹.year¯¹. In which case 53,16% of the area presents OM loss rates from 0 to 0,5 t.ha¯¹.year¯¹, 43,02% varies from 0,5 to 5 t.ha¯¹.year¯¹ and 3,82% of the area show OM losses over 5 t.ha¯¹.year¯¹, peaking 239,15 t.ha¯¹.year¯¹ at some points. Those loss rates are equivalent to those of the current soil usage in this area. This is due to the fact that the micro basin of the Morungava stream presents great extensions of preservation bands along its watercourses totally depleted. The scenery created with no preservation band is similar to the current situation of the area. From the gotten results of the collections of field and data generated in laboratory, one concludes that the micro basin of the Morungava stream is suffering sped up erosive process with elapsing of the years, mainly in zones of bigger declivity, where the argissolos predominate. Already the ground in position fisiográficas with low superficial potential erosion, as the hidromórficos, act as zones of accumulation of sediments and organic matter. An ample variation in the taxes of loss ME with the use of the ground is verified current, with texts raised in the areas with bigger declivity. These texts, scenes in accordance with generated of reforestation, can diminish with the fulfilment of the ambient legislation. Thus it can be affirmed that the EUPS was basic to evaluate the loss of organic matter in the micron basin.
7

Martin, Paulo Sérgio. "Determinação do potencial de perda de solo através do Sistema de Informação Geográfica (SIG) para priorização de estradas rurais no município de Ouro Verde/SP." Universidade Estadual Paulista (UNESP), 2018. http://hdl.handle.net/11449/154515.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Submitted by PAULO SÉRGIO MARTIN (paulosergiomartin@gmail.com) on 2018-07-14T03:59:20Z No. of bitstreams: 1 Martin_PS_Dissert_MP_Estradas_Rurais_2018.pdf: 5079449 bytes, checksum: 5b99661ef6b9e4b120ee8a099ee40004 (MD5)
Approved for entry into archive by ALESSANDRA KUBA OSHIRO ASSUNÇÃO (alessandra@fct.unesp.br) on 2018-07-16T12:21:43Z (GMT) No. of bitstreams: 1 martin_ps_me_prud.pdf: 5079449 bytes, checksum: 5b99661ef6b9e4b120ee8a099ee40004 (MD5)
Made available in DSpace on 2018-07-16T12:21:43Z (GMT). No. of bitstreams: 1 martin_ps_me_prud.pdf: 5079449 bytes, checksum: 5b99661ef6b9e4b120ee8a099ee40004 (MD5) Previous issue date: 2018-06-04
Neste presente trabalho buscou-se identificar as diversas variáveis do potencial de perda de solo no município de Ouro Verde/SP, considerando como parâmetro a classificação de solos, geologia, relevo, precipitação pluvial, o uso e ocupação da terra, as práticas de manejo conservacionista, mapeando as áreas com potencial de erosão laminar dos solos e o cruzamento das informações com a situação atual das estradas rurais não pavimentadas. As estradas não pavimentadas foram classificadas em trechos-tipos, destacando-se algumas características importantes, como altura de barranco, se está “encaixada”. O uso do MDE (Modelo Digital de Elevação) possibilitou a representação do relevo da superfície terrestre e com os dados vetoriais do município de Ouro Verde, baixados através do site do IBGE, foi possível a interpretação visual da área de estudo, analisadas através das imagens do satélite Sentinel-2. O objetivo foi identificar as estradas rurais ou trechos prioritários para readequação, através do Sistema de Informação Geográfica (SIG), com mapeamento das áreas do município e realizando o cruzamento de informações e, aplicação da Equação Universal de Perdas de Solo (USLE) e do programa InVEST®, estimando perdas de solo por erosão laminar. Servir de orientação para os gestores públicos (Prefeitura Municipal e FEHIDRO) na análise e tomada de decisão. Para determinação do Fator R para o município de Ouro Verde, a precipitação pluvial foi analisada através de uma série histórica, fornecida pelo Escritório de Desenvolvimento Rural de Dracena. Para determinação dos valores do fator R para os demais municípios que compõem as Unidades de Gerenciamento de Recursos Hídricos 20 e 21, utilizou-se o software livre netErosividade SP. Para realização da priorização dos trechos críticos das estradas, foram utilizados os parâmetros (estruturas e situações), adaptado do Projeto de Desenvolvimento Rural Sustentável – Microbacias Hidrográficas II – Acesso ao mercado, obtendo-se o enquadramento das Classes de priorização. O programa InVEST® possibilitou explorar cenários com resultados futuros prováveis, e assim foram gerados os diversos mapas de potencialidade de erosão para o município de Ouro Verde: Mapa de Susceptibilidade à Erosão Laminar, Mapa do Potencial à Erosão, Mapa do Potencial de Erosão Laminar Total por Microbacias Hidrográficas e Mapa final de Priorização das Estradas Não Pavimentadas. Obteve-se o Mapa Final de Priorização utilizando alguns parâmetros, mas é possível cruzar tantas informações quanto forem necessárias, subjetivas e objetivas, e assim chegar no objetivo, que é a priorização de trechos críticos de Estradas Rurais Não Pavimentadas.
This work aimed to identify the various variables of soil loss potential in the municipality of Ouro Verde / SP, considering as a parameter the classification of soils, geology, relief, rainfall, land use and occupation, management practices conservationist, mapping the areas with potential of laminar erosion of the soils and the crossing of the information with the current situation of the unpaved rural roads. Unpaved roads have been classified into parts-types, highlighting some important characteristics, such as height of ravine, if it is "docked". The use of the MDE (Digital Elevation Model) made possible the representation of the land surface and the vectorial data of the municipality of Ouro Verde, downloaded through the IBGE website, it was possible the visual interpretation of the study area, analyzed through the images of the Sentinel-2 satellite. The objective was to identify the rural roads or priority stretches for readjustment, through the Geographic Information System (GIS), with mapping of the areas of the municipality and carrying out the information crossing and, applying the Universal Soil Loss Equation (USLE) and the InVEST® program, estimating soil losses due to laminar erosion. To serve as guidance for public managers (City Hall and FEHIDRO) in the analysis and decision making. To determine the R factor for the municipality of Ouro Verde, rainfall was analyzed through a historical series, provided by the Office of Rural Development of Dracena. To determine the R factor values for the other municipalities that make up the Water Resources Management Units 20 and 21, the free software netErosividade SP was used. For the prioritization of the critical stretches of the roads, the parameters (structures and situations), adapted from the Sustainable Rural Development Project - Hydrographic Microbasins II - Access to the market, were used to obtain the prioritization classes. The InVEST® program made it possible to explore scenarios with probable future results, thus generating the various erosion potential maps for the municipality of Ouro Verde: Laminar Erosion Susceptibility Map, Erosion Potential Map, Total Laminar Erosion Potential Map by Hydrographic Microbasins and Final Map of Prioritization of Non-Paved Roads. The final Prioritization Map was obtained using some parameters, but it is possible to cross as much information as necessary, subjective and objective, and thus reach the objective, which is the prioritization of critical sections of Non-Paved Rural Roads.
8

Sabo, Rudolf. "Studie návrhu opatření proti nepříznivým účinkům povrchového odtoku v k.ú. Štefanov." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2012. http://www.nusl.cz/ntk/nusl-225492.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis is focused to determine water erosion of soil and drain from basin of štefanov stream. The basin of štefanov stream is unobserved with area 15,1 km2. After evaluation of current status is processed integrated design against the adverse effects of surface runoff.
9

Gericke, Andreas. "Evaluation of empirical approaches to estimate the variability of erosive inputs in river catchments." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2013. http://dx.doi.org/10.18452/16861.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Die Dissertation erforscht die Unsicherheit, Sensitivität und Grenzen großskaliger Erosionsmodelle. Die Modellierung basiert auf der allgemeinen Bodenabtragsgleichung (ABAG), Sedimenteintragsverhältnissen (SDR) und europäischen Daten. Für mehrere Regionen Europas wird die Bedeutung der Unsicherheit topographischer Modellparameter, ABAG-Faktoren und kritischer Schwebstofffrachten für die Anwendbarkeit empirischer Modelle zur Beschreibung von Sedimentfrachten und SDR von Flusseinzugsgebieten untersucht. Der Vergleich alternativer Modellparameter sowie Kalibrierungs- und Validierungsdaten zeigt, dass schon grundlegende Modellentscheidungen mit großen Unsicherheiten behaftet sind. Zur Vermeidung falscher Modellvorhersagen sind kalibrierte Modelle genau zu dokumentieren. Auch wenn die geschickte Wahl nicht-topographischer Algorithmen die Modellgüte regionaler Anwendungen verbessern kann, so gibt es nicht die generell beste Lösung. Die Ergebnisse zeigen auch, dass SDR-Modelle stets mit Sedimentfrachten und SDR kalibriert und evaluiert werden sollten. Mit diesem Ansatz werden eine neue europäische Bodenabtragskarte und ein verbessertes SDR-Modell für Einzugsgebiete nördlich der Alpen und in Südosteuropa abgeleitet. In anderen Regionen Europas ist das SDR-Modell bedingt nutzbar. Die Studien zur jährlichen Variabilität der Bodenerosion zeigen, dass jahreszeitlich gewichtete Niederschlagsdaten geeigneter als ungewichtete sind. Trotz zufriedenstellender Modellergebnisse überwinden weder sorgfältige Algorithmenwahl noch Modellverbesserungen die Grenzen europaweiter SDR-Modelle. Diese bestehen aus der Diskrepanz zwischen modellierten Bodenabtrags- und maßgeblich zur beobachteten bzw. kritischen Sedimentfracht beitragenden Prozessen sowie der außergewöhnlich hohen Sedimentmobilisierung durch Hochwässer. Die Integration von nicht von der ABAG beschriebenen Prozessen und von Starkregentagen sowie die Disaggregation kritischer Frachten sollte daher weiter erforscht werden.
This dissertation thesis addresses the uncertainty, sensitivity and limitations of large-scale erosion models. The modelling framework consists of the universal soil loss equation (USLE), sediment delivery ratios (SDR) and European data. For several European regions, the relevance of the uncertainty in topographic model parameters, USLE factors and critical yields of suspended solids for the applicability of empirical models to predict sediment yields and SDR of river catchments is systematically evaluated. The comparison of alternative model parameters as well as calibration and validation data shows that even basic modelling decisions are associated with great uncertainties. Consequently, calibrated models have to be well-documented to avoid misapplication. Although careful choices of non-topographic algorithms can also be helpful to improve the model quality in regional applications, there is no definitive universal solution. The results also show that SDR models should always be calibrated and evaluated against sediment yields and SDR. With this approach, a new European soil loss map and an improved SDR model for river catchments north of the Alps and in Southeast Europe are derived. For other parts of Europe, the SDR model is of limited use. The studies on the annual variability of soil erosion reveal that seasonally weighted rainfall data is more appropriate than unweighted data. Despite satisfactory model results, neither the careful algorithm choice nor model improvements overcome the limitations of pan-European SDR models. These limitations are related to the mismatch of modelled soil loss processes and the relevant processes contributing to the observed or critical sediment load as well as the extraordinary sediment mobilisation during floods. Therefore, further research on integrating non-USLE processes and heavy-rainfall data as well as on disaggregating critical yields is needed.
10

Yuan, Xu. "EVALUATION OF THE PHOSPHORUS LOSS ASSESSMENT TOOL (PLAT) AND REVISED UNIVERSAL SOIL LOSS EQUATION (RUSLE) USING GEOSPATIAL INFORMATION." NCSU, 2007. http://www.lib.ncsu.edu/theses/available/etd-12212006-120809/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Excessive agricultural phosphorus (P) has been a major contributor to non-point source pollution. North Carolina developed the Phosphorus Loss Assessment Tool (PLAT) to evaluate the potential P loss from agricultural fields to waterbodies via four components. Our overall goal was to evaluate the potential of using spatial data to estimate P loss without physically visiting fields since many PLAT required parameters occur in spatial formats. The objective of the first study was to assess the possibility of spatial implementation of PLAT and to compare the effect of scale on the PLAT numerical results and the associated categorical rankings. Since an important input parameter, the average annual soil loss determined by the Revised Universal Soil Loss Equation, is not directly available from field measurement, our objective in the second study was to assess the potential of obtaining RUSLE estimates, specifically the topography factor LS, through Digital Elevation Model data in a Geographic Information System environment. In the first study, two methods of whole field average (WFA) and grid average (GA) were used to compare the difference in modeling P loss at different scales. The same list of PLAT required parameters were prepared from soil test reports and spatial database at the coarse scale of whole agriculture field and the fine scale of 0.4-ha grid. Soil tolerance value was used to temporarily replace the soil loss data. In the second study, a widely used Arc Macro Language (AML) program for estimating RUSLE topographic factor LS was evaluated through two approaches of whole field (WF) and representative profile (RP) analysis on a North Carolina landscape. Watershed delineation technique was adopted to select the representative profiles based on the references of slope distributions and field subdivisions from NRCS water quality specialists. Results from the first study indicated that soluble and particulate P loss, which occupied 59.3% and 26.3% of the total P loss through WFA method, and 56.1% and 39.0% through GA method, were the major pathways. Leaching P loss from PLAT was negligible. Particulate P loss was sensitive to scale as verified by the 12.7% increase of proportion in total P loss. The difference of particulate P loss through two methods was significant (p < 0.05), but no difference of soluble P loss and P source effect was found on a 95% confidence level. The overall P loss potential through two methods exhibited no significant difference due to the neutralization effect of individual pathways. Results from the second study showed that the AML program alone was not suitable for calculating RUSLE topographic factor on a North Carolina landscape because of the significant underestimation (~35% and ~20% through WF and RP approach, respectively). The concept of representative profile indeed improved the estimation accuracy (~15%), however, the linearity of the fitted line between field measured LS and GIS-aided LS estimate was not satisfactory. An adjustment factor was proposed rectifying the RUSLE-based AML program in order to approximate field measurements. This study demonstrated the potential of implementing PLAT model and the soil loss equation using spatial parameters derived from database instead of visiting the fields. The scale of modeling in estimating particulate P loss and RUSLE topographic factor LS was important and the adjustment factor was necessary to adapt the AML program application. The accuracy of model performance needed to be improved before claiming that GIS-aided PLAT modeling will provide a complete replacement for the field measurement.

Книги з теми "USLE Universal soil loss equation":

1

Thomas, A. W. Computer program for stochastic utilization of the USLE. Watkinsville, GA: Southern Piedmont Conservation Research Center, Agricultural Research Service, USDA, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kesteren, A. R. Van. Universal soil loss equation (USLE) soil erodibility (K) factors for some common forest types of western Newfoundland. St. John's, Nfld: Canadian Forest Service, Newfoundland and Labrador Region, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kiggundu, Lawrence. Distribution of rainfall erosivity in Swaziland: For use in the universal soil loss equation (USLE) and the soil loss estimator for southern Africa (SLEMSA) to estimate soil loss due to sheet and rill erosion. Kwaluseni, Swaziland: Social Science Research Unit and Research and Publications, University of Swaziland, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Marx, Johannes. Die Erodierbarkeit charakteristischer Böden im Südosten der VR China. Berlin: In Kommission bei Duncker & Humblot, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

G, Renard K., Smith D. D, Wischmeier W. H, and United States. Department of Agriculture. Agricultural Research Service., eds. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Washington, D.C: United States Department of Agriculture [for sale by the U.S. Government printing Office, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Laurens J. P. Van Vliet. Water erosion prediction for soils in the Peace River Region of British Columbia: Estimates using the universal soil loss equation. [Ottawa]: Research Branch, Agriculture Canada, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wiesner, Klaus Peter. Programme zur Erfassung von Landschaftsdaten, eine Bodenerosionsgleichung und ein Modell der Kaltluftentstehung =: Programmes for the collection of landdscape data, a soil erosion equation and a model showing how cold air arises. Heidelberg: Im Selbstverlag des Geographischen Institutes der Universität Heidelberg, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Blaszczynski, Jacek S. Watershed soil erosion, runoff, and sediment yield prediction using geographic information systems: A manual of GIS procedures. Denver, Colo: U.S. Dept. of the Interior, Bureau of Land Management, BLM Service Center, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Potensi laju erosi di DAS Tondano Hulu: Suatu analisis menggunakan metode universal soil loss equation (USLE) dengan memanfaatkan teknologi sistem informasi geografis (SIG) = Erosion potential at Tondano Upper Watershed : an analysis using universal soil loss equation (USLE) in geographical information system (GIS) technology. Jakarta: Program Studi Ilmu Lingkungan, Program Pascasarjana, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

U S Department of Agriculture Soil C. Predicting Soil Loss Using the Universal Soil Loss Equation. Creative Media Partners, LLC, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "USLE Universal soil loss equation":

1

LaRocque, Armand. "Universal Soil Loss Equation (USLE)." In Encyclopedia of Natural Hazards, 1062. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-1-4020-4399-4_43.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Renard, K. G., D. C. Yoder, D. T. Lightle, and S. M. Dabney. "Universal Soil Loss Equation and Revised Universal Soil Loss Equation." In Handbook of Erosion Modelling, 135–67. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781444328455.ch8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Browning, George M. "Development for and of the Universal Soil Loss Equation." In Universal Soil Loss Equation, 1–5. Madison, WI, USA: Soil Science Society of America, 2015. http://dx.doi.org/10.2136/sssaspecpub8.c1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Robinson, A. R. "Sediment Yield as a Function of Upstream Erosion." In Universal Soil Loss Equation, 7–16. Madison, WI, USA: Soil Science Society of America, 2015. http://dx.doi.org/10.2136/sssaspecpub8.c2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Foster, G. R. "Sediment Yield from Farm Fields: The Universal Soil Loss Equation and Onfarm 208 Plan Implementation." In Universal Soil Loss Equation, 17–24. Madison, WI, USA: Soil Science Society of America, 2015. http://dx.doi.org/10.2136/sssaspecpub8.c3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Onstad, C. A., R. A. Young, M. A. Otterby, and R. F. Holt. "Sediment Yield Modeling for 208 Planning." In Universal Soil Loss Equation, 25–32. Madison, WI, USA: Soil Science Society of America, 2015. http://dx.doi.org/10.2136/sssaspecpub8.c4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Moldenhauer, W. C. "Erosion Control Obtainable under Conservation Practices." In Universal Soil Loss Equation, 33–43. Madison, WI, USA: Soil Science Society of America, 2015. http://dx.doi.org/10.2136/sssaspecpub8.c5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Holt, R. F., D. R. Timmons, and R. E. Burwell. "Water Quality Obtainable under Conservation Practices." In Universal Soil Loss Equation, 45–53. Madison, WI, USA: Soil Science Society of America, 2015. http://dx.doi.org/10.2136/sssaspecpub8.c6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Thapa, Pawan. "Soil Erosion Estimation Using Revised Universal Soil Loss Equation (RUSLE) Model and GIS." In GIScience for the Sustainable Management of Water Resources, 253–66. New York: Apple Academic Press, 2022. http://dx.doi.org/10.1201/9781003284512-16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ishak, N. A., Lariyah Mohd Sidek, M. R. Yalit, S. K. A. Z. A. Razad, S. A. Sinnakaudan, and A. M. A. Aziz. "Development of Soil Loss Erosion Forecasting Using the Revised Universal Soil Loss Equation and Geographic Information System." In Water Resources Development and Management, 103–14. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-1971-0_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "USLE Universal soil loss equation":

1

Shellenberger, Kim, Nicole Wagner, and Nicole Wagner. "UNIVERSAL SOIL LOSS EQUATION AND ARCGIS APPLICATIONS IN EROSION OF ARSENIC CONTAMINATED SOIL." In Joint 69th Annual Southeastern / 55th Annual Northeastern GSA Section Meeting - 2020. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020se-344216.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Park, Soyoung, Cheunggil Jin, and Chuluong Choi. "Predicting soil erosion under land-cover area and climate changes using the revised universal soil loss equation." In SPIE Remote Sensing, edited by Christopher M. U. Neale and Antonino Maltese. SPIE, 2011. http://dx.doi.org/10.1117/12.896325.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

BRIBIESCA RODRIGUEZ, MIGUEL ANGEL, ORGE IVAN JUAREZ DEHESA, FERNANDO J. GONZALEZ VILLARREAL, and GABRIELA GUTIÉRREZ AVIÑA. "SEDIMENT LOAD CALCULATION BY USING THE UNIVERSAL SOIL LOSS EQUATION WITH A GEOGRAPHIC INFORMATION SOFTWARE." In 38th IAHR World Congress. The International Association for Hydro-Environment Engineering and Research (IAHR), 2019. http://dx.doi.org/10.3850/38wc092019-0300.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Li, Hui, Huizhong He, Xiaoling Chen, and Lihua Zhang. "An approach to compute the C factor for universal soil loss equation using EOS-MODIS vegetation index (VI)." In International Conference on Earth Observation Data Processing and Analysis, edited by Deren Li, Jianya Gong, and Huayi Wu. SPIE, 2008. http://dx.doi.org/10.1117/12.815335.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kopecký, Marek, Jaroslav Bernas, Ladislav Kolář, and Pavlína Hloucalová. "MONITORING OF ENERGY GAIN AND EROSION PROTECTION OF CORN AND TALL WHEATGRASS CROPS IN THE CONDITIONS OF THE CZECH REPUBLIC." In RURAL DEVELOPMENT. Aleksandras Stulginskis University, 2018. http://dx.doi.org/10.15544/rd.2017.084.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
With the growing energy demand of the society and the increased requirements for ecological aspects of obtaining and utilizing energies, renewable energy sources have been getting to the forefront. In the conditions of Central Europe, transformation of biomass to biogas through anaerobic digestion appears to be promising. The article describes the results of a field experiment carried out in an experimental site of the University of South Bohemia in České Budějovice (South Bohemia, Czech Republic). The goal of the article is to compare the conventionally grown corn (Zea mays L., hybrid Simao), the areas of which have increased considerably as a result of the development of biogas stations, and the alternative perennial grass called tall wheatgrass (Elymus elongatus subsp. ponticus cv. Szarvasi-1), which is, according to the literature, well positioned to replace corn. The harvests of the plants took place in 2013-2015, and tall wheatgrass was cut twice per season. A number of aspects – dry phytomass yield, specific methane yield and hectare methane yield – were monitored. In addition, the long-term soil loss by water erosion was calculated through the Universal Soil Loss Equation for both species of energy crops. In terms of yield parameters and methane production, better results were achieved by corn, given the average energy gain 238 GJ·ha-1 as compared to 126 GJ·ha-1 for tall wheatgrass. The protection of the soil surface from water erosion by corn appears to be insufficient and, in this criterion, it absolutely lags behind the anti-erosion abilities of tall wheatgrass, which protects soil incomparably better.

До бібліографії