Добірка наукової літератури з теми "Urban Traffic Simulator"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Urban Traffic Simulator".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Urban Traffic Simulator"

1

De Palma, André, Fabrice Marchal, and Yurii Nesterov. "METROPOLIS: Modular System for Dynamic Traffic Simulation." Transportation Research Record: Journal of the Transportation Research Board 1607, no. 1 (January 1997): 178–84. http://dx.doi.org/10.3141/1607-24.

Повний текст джерела
Анотація:
METROPOLIS proposes an interactive environment that simulates automobile traffic in large urban areas. The core of the system is a dynamic simulator that integrates commuters’ departure time and route choice behaviors over large networks: Drivers are assumed to minimize a generalized travel cost function that depends on travel time and schedule delay. This simulator is based on a behavioral driver information process. It allows real-time and off-line simulations. The system also includes a scenario builder and a graphical results viewer. The main ideas underlying METROPOLIS are presented, and preliminary computer simulation experiments are discussed for Geneva, Switzerland.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Félez, Jesus, Joaquin Maroto, Gregorio Romero, and Jose M. Cabanellas. "A Full Driving Simulator of Urban Traffic including Traffic Accidents." SIMULATION 83, no. 5 (May 2007): 415–31. http://dx.doi.org/10.1177/0037549707083109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Louw, Cobus, Louwrens Labuschagne, and Tiffany Woodley. "Comparison of Reinforcement Learning Agents Applied to Traffic Signal Optimisation." SUMO Conference Proceedings 3 (September 29, 2022): 15–43. http://dx.doi.org/10.52825/scp.v3i.116.

Повний текст джерела
Анотація:
Traditional methods for traffic signal control at an urban intersection are not effective in controlling traffic flow for dynamic traffic demand which leads to negative environmental, psychological and financial impacts for all parties involved. Urban traffic management is a complex problem with multiple factors effecting the control of traffic flow. With recent advancements in machine learning (ML), especially reinforcement learning (RL), there is potential to solve this problem. The idea is to allow an agent to learn optimal behaviour to maximise specific metrics through trial and error. In this paper we apply two RL algorithms, one policy-based, the other value-based, to solve this problem in simulation. For the simulation, we use an open-source traffic simulator, Simulation of Urban MObility (SUMO), packaged as an OpenAI Gym environment. We trained the agents on different traffic patterns on a simulated intersection. We compare the performance of the resultant policies to traditional approaches such as the Webster and vehicle actuated (VA) methods. We also examine and contrast the policies learned by the RL agents and evaluate how well they generalise to different traffic patterns.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mital, Dinesh P. "An Intelligent Urban Traffic Network Controller and Simulator." IETE Technical Review 7, no. 1 (January 1990): 52–57. http://dx.doi.org/10.1080/02564602.1990.11438582.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mital, Dinesh P. "An intelligent urban traffic network controller and simulator." Journal of Microcomputer Applications 12, no. 1 (January 1989): 75–85. http://dx.doi.org/10.1016/0745-7138(89)90008-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Meng, Meng, Chunfu Shao, Jingjing Zeng, and Chunjiao Dong. "A simulation-based dynamic traffic assignment model with combined modes." PROMET - Traffic&Transportation 26, no. 1 (February 28, 2014): 65–73. http://dx.doi.org/10.7307/ptt.v26i1.1252.

Повний текст джерела
Анотація:
This paper presents a dynamic traffic assignment (DTA) model for urban multi-modal transportation network by con­structing a mesoscopic simulation model. Several traffic means such as private car, subway, bus and bicycle are con­sidered in the network. The mesoscopic simulator consists of a mesoscopic supply simulator based on MesoTS model and a time-dependent demand simulator. The mode choice is si­multaneously considered with the route choice based on the improved C-Logit model. The traffic assignment procedure is implemented by a time-dependent shortest path (TDSP) al­gorithm in which travellers choose their modes and routes based on a range of choice criteria. The model is particularly suited for appraising a variety of transportation management measures, especially for the application of Intelligent Trans­port Systems (ITS). Five example cases including OD demand level, bus frequency, parking fee, information supply and car ownership rate are designed to test the proposed simulation model through a medium-scale case study in Beijing Chaoy­ang District in China. Computational results illustrate excel­lent performance and the application of the model to analy­sis of urban multi-modal transportation networks.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Al-Mousa, Amjed, Belal H. Sababha, Nailah Al-Madi, Amro Barghouthi, and Remah Younisse. "UTSim: A framework and simulator for UAV air traffic integration, control, and communication." International Journal of Advanced Robotic Systems 16, no. 5 (September 1, 2019): 172988141987093. http://dx.doi.org/10.1177/1729881419870937.

Повний текст джерела
Анотація:
The interest in unmanned systems especially unmanned aerial vehicle is continuously increasing. Unmanned aerial vehicles started to become of great benefit in many different fields. It is anticipated that unmanned aerial vehicles will soon become a main component of the future urban air traffic. The integration of unmanned aerial vehicles within existing air traffic environments has started getting the attention of researchers. Integrating unmanned systems in the real-world urban air traffic requires the development of tools and simulators to enable researchers in their ongoing efforts. In this article, a simulator called UTSim is introduced. The proposed simulator is built using the Unity platform. UTSim is capable of simulating unmanned aerial vehicle physical specification, navigation, control, communication, sensing and avoidance in environments with static and moving objects. The simulator enables studying and exploring several unmanned aerial vehicle air traffic integration issues like sense and avoid, communication protocols, navigation algorithms, and much more. UTSim is designed and developed to be easily used. The user can specify the properties of the environment, the number and types of unmanned aerial vehicles in the environment, and specify the algorithm to be used for path planning and collision avoidance. The simulator outputs a log file with a lot of useful information such as the number of sent and received messages, the number of detected objects and collided unmanned aerial vehicles. Three scenarios have been implemented in this article to present the capabilities of UTSim and to illustrate how it can benefit researchers in the field of integrating unmanned aerial vehicles in urban air traffic.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Keler, Andreas, Patrick Malcolm, Georgios Grigoropoulos, and Klaus Bogenberger. "Designing Maps for Bicycling Simulator Studies – three practical Approaches." Proceedings of the ICA 4 (December 3, 2021): 1–4. http://dx.doi.org/10.5194/ica-proc-4-59-2021.

Повний текст джерела
Анотація:
Abstract. Bicycle simulator studies result from attempts of solving various novel problem statements of modern transportation-related research questions. Examples imply the evaluation of novel traffic control strategies for prioritizing urban bicycle traffic, novel bicycle infrastructure (such as bicycle highways) and the interaction and communication of vulnerable road users with automated or autonomous vehicles. As one of classical disciplines of transportation research, namely traffic engineering, and less related to human factors research, automotive research, geography, urban planning or citizen science, we want to point out those bicycle simulator studies design approaches, which are more related to testing novel traffic control strategies for cyclists, experiencing changing traffic-efficiency and –safety-related parameters in ongoing interfaced microscopic traffic flow simulations. We believe that this is a key factor in experiencing various traffic situations and the evaluation of thereof. In this research, we introduce three practical approaches of how to design maps for bicycling simulator studies. This is mainly resulting from manifold practical experiences from already conducted simulator studies beginning from the year 2018.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Keler, Andreas, Patrick Malcolm, Georgios Grigoropoulos, Seyed Abdollah Hosseini, Heather Kaths, Fritz Busch, and Klaus Bogenberger. "Data-Driven Scenario Specification for AV–VRU Interactions at Urban Roundabouts." Sustainability 13, no. 15 (July 24, 2021): 8281. http://dx.doi.org/10.3390/su13158281.

Повний текст джерела
Анотація:
Detailed specifications of urban traffic from different perspectives and scales are crucial for understanding and predicting traffic situations from the view of an autonomous vehicle (AV). We suggest a data-driven specification scheme for maneuvers at different design elements of the built infrastructure and focus on urban roundabouts in Germany. Based on real observations, we define classes of maneuvers, interactions and driving strategies for cyclists, pedestrians and motorized vehicles and define a matrix for merging different maneuvers, resulting in more complex interactions. The sequences of these interactions, which partially consist of explicit communications, are extracted from real observations and adapted into microscopic traffic flow simulations. The simulated maneuver sequences are then visualized in 3D environments and experienced by bicycle simulator test subjects. Using trajectory segments (in fictional space) from two conducted simulator studies, we relate the recorded movement patterns of test subjects with observed cyclists in reality.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Diakaki, Christina, Vaya Dinopoulou, Kostas Aboudolas, Markos Papageorgiou, Elia Ben-Shabat, Eran Seider, and Amit Leibov. "Extensions and New Applications of the Traffic-Responsive Urban Control Strategy: Coordinated Signal Control for Urban Networks." Transportation Research Record: Journal of the Transportation Research Board 1856, no. 1 (January 2003): 202–11. http://dx.doi.org/10.3141/1856-22.

Повний текст джерела
Анотація:
The objectives, approach, advantages, and some application results of recent extensions of the traffic-responsive urban control (TUC) strategy are presented. Based on well-known methods of the automatic control theory, TUC allows for traffic-responsive coordinated signal control of large-scale urban networks that is particularly efficient under saturated traffic conditions. The first version of the TUC strategy controlled only the green splits. After initial development and the first field implementations and evaluations, TUC was expanded to perform real-time cycle and offset control, and to allow for public transport priority. Simulation investigations of the extended TUC application in parts of the urban networks of Tel Aviv and Jerusalem, Israel, by use of the AIMSUN microscopic simulator demonstrate the high efficiency of the new signal control strategy.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Urban Traffic Simulator"

1

Uh, Jason (Jason J. ). "Virtual urban traffic network simulator." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/66818.

Повний текст джерела
Анотація:
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 41).
In this project, I designed and implemented a virtual urban traffic network simulator. The simulator serves as a testbed for human-subject experiments to determine driver behavior in road networks and also as a platform for testing route-planning algorithms. The simulator was implemented using the C4 game engine and OpenGL. The simulator is capable of producing both 3- and 2-dimensional visualizations of a traffic network. In this thesis, I describe the key components of the simulator, the necessary inputs, and the expected outputs. I verify operation of the simulator through observation of the actual system outputs.
by Jason Uh.
M.Eng.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wright, Steven. "Supporting intelligent traffic in the Leeds driving simulator." Thesis, University of Leeds, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.274218.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lackey, Nathan. "Simulating Autonomous Vehicles in a Microscopic Traffic Simulator to Investigate the Effects of Autonomous Vehicles on Roadway Mobility." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1555072367385629.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Aronsson, Karin F. M. "Speed characteristics of urban streets based on driver behaviour studies and simulation." Doctoral thesis, Stockholm : Division of transport och logistics, Royal Institute of Technology, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4259.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

De, Nunzio Giovanni. "Traffic eco-management in urban traffic networks." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT064/document.

Повний текст джерела
Анотація:
Le problème de la gestion éco-responsable du trafic urbain est adressé. Ce type de gestion du trafic vise à réduire les arrêts des véhicules, les accélérations, la consommation énergétique, ainsi que la congestion. L'éco-management du trafic dans les réseaux urbains peut être catégorisé dans deux classes principales : contrôle du véhicule et contrôle de l'infrastructure. Les deux domaines de contrôle peuvent présenter caractéristiques soit isolées soit coordonnées, en dépendant du type d'information utilisée dans l'optimisation.La gestion du trafic côté véhicule influe sur chaque véhicule en fonction de ses propres caractéristiques et position. Le contrôle isolé du véhicule vise principalement à optimiser la transmission et/ou le profil de conduite des véhicules, en utilisant éventuellement des informations sur les caractéristiques de la route, mais sans communiquer avec les autres agents du réseau. Le contrôle coordonné du véhicule, d'autre part, fait usage de la communication entre les véhicules et avec l'infrastructure pour obtenir des bénéfices plus importants en termes de consommation d'énergie et de fluidité de la circulation.En revanche, la gestion du côté infrastructure influe sur les feux et les panneaux de signalisation, afin d'améliorer les performances de l'ensemble du trafic. Le contrôle isolé de l'infrastructure régule essentiellement les feux de signalisation pour une seule intersection, ou bien les limites de vitesse dans un seul tronçon de route, sans prendre en compte les interactions avec les jonctions et/ou les sections voisines. Le contrôle coordonné de l'infrastructure surmonte cette limitation en utilisant des informations sur les conditions de circulation dans d'autres sections de la route, afin de réduire la congestion.Les contributions de ce travail peuvent être résumées comme suit.Tout d'abord, une solution pour le contrôle coordonné du véhicule a été proposée, dans laquelle la communication avec l'infrastructure est exploitée pour réduire la consommation d'énergie. En particulier, les plans des feux de signalisation sont supposés être communiqués au véhicule et connus, et une vitesse optimale est suggérée au véhicule afin de traverser une séquence de carrefours à feux sans s'arrêter, tout en suivant une trajectoire d'énergie minimale. La stratégie proposée, appliquée indépendamment à chaque véhicule, a été testée dans un simulateur de trafic microscopique afin d'évaluer l'impact sur les performances du trafic. L'analyse a montré que la consommation d'énergie et le nombre d'arrêts peuvent être considérablement réduits sans affecter le temps de parcours.Ensuite, une solution pour le contrôle isolé de l'infrastructure a été proposée. Un modèle macroscopique du trafic urbain a été introduit, et les limites de vitesse variables ont été utilisées pour améliorer les performances de la circulation. L'optimisation vise à trouver un compromis entre la réduction de consommation énergétique et le temps de parcours moyen des véhicules dans le tronçon de route considéré. Des expériences ont démontré qu'il existe une limite de vitesse optimale qui améliore les performances du trafic, et qui réduit la longueur de la file d'attente au feu de signalisation.Enfin, une solution pour le contrôle coordonné de l'infrastructure a été proposée. La synchronisation des feux de signalisation sur les grands axes de circulation a été prouvée efficace pour réduire le temps de parcours. Notre analyse a démontré qu'un problème d'optimisation peut être formalisé pour prendre en compte également les aspects énergétiques. Des expériences approfondies dans un simulateur de trafic microscopique ont montré qu'il existe une corrélation entre la progression du trafic et ses performances. La stratégie de contrôle proposée a montré qu'une réduction significative de la consommation d'énergie peut être atteinte, en éliminant presque complètement les arrêts et le temps d'arrêt, sans affecter le temps de parcours
The problem of energy-aware traffic management in urban environment is addressed. Such traffic management aims at reducing vehicle stops, accelerations, energy consumption, and ultimately congestion. The eco-management in urban traffic networks may be divided in two broad categories: vehicle-side control and infrastructure-side control. Both control domains can feature isolated or coordinated characteristics, depending on the type of information used in the optimization.The vehicle-side traffic management influences each single vehicle according to its own characteristics and position. Isolated vehicle control aims primarily at optimizing the powertrain and/or the driving profile of the vehicles, possibly using information about the road characteristics, but without communicating with the other agents of the traffic network. Coordinated vehicle control makes use of communication among vehicles and with the infrastructure in order to achieve larger benefits in terms of energy consumption and traffic fluidity.The infrastructure-side management, on the other hand, influences traffic lights and road side panels in order to improve the performance of the traffic as a whole. Isolated infrastructure control regulates essentially the traffic lights at a single signalized intersection, or the speed limits in a single stretch of road, without taking into account the interactions with the neighboring junctions and/or road sections. Coordinated infrastructure control overcomes this limitation by using information about traffic conditions in other road sections to alleviate congestion.The contributions of this work to the energy-aware traffic management may be summarized as follows.Firstly, a solution for the coordinated vehicle control has been proposed, in which communication with the infrastructure is exploited to reduce energy consumption. In particular, the traffic lights timings are assumed to be communicated to the vehicle and known, and the vehicle is suggested an optimal speed to drive through a sequence of signalized intersections without stopping, while following a minimum-energy trajectory. The proposed strategy, independently applied to each vehicle, has been tested in a microscopic traffic simulator in order to assess the impact on the traffic performance. The analysis has demonstrated that the energy consumption and the number of stops can be drastically reduced without affecting the travel time.Then, a solution for the isolated infrastructure control has been proposed. A macroscopic urban traffic model has been introduced, and the variable speed limits have been used as actuation to improve traffic performance. In particular, the analysis has been carried out at saturated traffic conditions, with given and fixed traffic lights scheduling. The optimization aims at reducing the energy consumption in trade-off with the average travel time of the vehicles in the considered road section. Experiments have demonstrated that there exists an optimal speed limit that improves traffic performance and reduces the length of the queue at the traffic light.Lastly, a solution for the coordinated infrastructure control has been proposed. Traffic lights coordination on arterials has been proved to be effective in terms of traffic delay reduction. Our analysis has demonstrated that an optimization problem can be cast to take into account also energetic aspects. Extensive experiments in a microscopic traffic simulator have showed that a correlation exists between traffic progression and traffic performance indexes, such as energy consumption, travel time, idling time, and number of stops. The proposed control strategy has showed that a significant reduction of energy consumption can be achieved, almost completely eliminating number of stops and idling time, without affecting the travel time
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Soldado, Sérgio Torres. "FPGA urban traffic control simulation and evaluation platform." Master's thesis, Universidade de Aveiro, 2009. http://hdl.handle.net/10773/2190.

Повний текст джерела
Анотація:
Mestrado em Engenharia Electrónica e Telecomunicações
The study and development towards Urban Traffic Management and Control (UTMC) Systems have not solely or recently gained extreme importance only due to obvious issues such as traffic safety improvement, traffic congestion control and avoidance but also due to other underlying factors such as urban transportation efficiency, urban traffic originated air pollution and future concepts as are autonomous vehicle systems, which are presently taking shape. Generally speaking urban traffic simulations occur in a software environment, which comes to hinder the progress taken towards the actual implementation of UTMC systems. The reason to why such happens is based on the fact that urban traffic controllers are usually implemented and executed on hardware platforms, therefore software based models don‟t support an actual implementation directly. In this study we explore a novel approach to urban traffic simulation, aimed to eliminate the timeframe and work-distance between the UTMC system‟s design and an eventual implementation, where a Field Programmable Gate Array (FPGA) is used to execute a simulation model of an urban traffic network. Since the resource to FPGAs implies a hardware based execution, the resulting implementation of each traffic management and control element can be considered not only as having a close matched behavior to a real world implementation but also as an actual prototype. From the simulation viewpoint the use of FPGA‟s holds the prospect of being able to hold execution speeds many times faster than software based simulations as FPGA designs are able to execute a large number of parallel processes. This study shows that an Urban Traffic Control Simulation and Test Platform is possible by implementing a relatively simple urban network model in a low end FPGA. This result implies that with further time and resource investments a rather complex system can be developed which can handle large scale and complex UTMC systems with the promise of shortening the work distance between the concept and a real world running implementation.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chiu, Yi-chang. "Generalized real-time route guidance strategies in urban networks." Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2002. http://wwwlib.umi.com/cr/utexas/fullcit?p3077621.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Richard, Julien. "Apport des SIG et de la réalité virtuelle à la modélisation et la simulation du trafic urbain." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1058/document.

Повний текст джерела
Анотація:
La cartographie ainsi que les sciences qui s'y rattachent, sont en constante évolution et s'adaptent aux nouvelles technologies et les domaines d'application sont de plus en plus variés. Nous souhaitons illustrer, dans ce manuscrit, l'application des systèmes d'informations géographiques à la simulation du trafic urbain en 4D grâce aux nouvelles technologies telles que les casques de réalité virtuelle. Le flux routier se traduit en équations via des simulations discrètes (voiture par voiture) et continues (assimilées à l'écoulement d'un fluide).Dans une première partie, nous allons étudier l'historique de la cartographie, plus particulièrement la représentation de la ville au cours du temps. La gestion de trafic urbain est un élément crucial pour les urbanistes et sa représentation a évolué tant par l'utilisation d'outils de plus en plus précis, que par les enjeux actuels. L'urbanisation croissante nous conduit à être de plus en plus prévoyants sur les flux urbains. Il n'est pas seulement question de réseaux routiers, ce problème d'urbanisation influence d'autres réseaux tels que les systèmes d'assainissements qui sont sous dimensionnés face à l'augmentation de foyers et de surfaces imperméables. Il est en est de même pour les réseaux d'eau potable qui doivent être sans cesse renouvelés pour subvenir aux besoins des habitants, et plus globalement avec tous les réseaux enterrés. Nous étudierons aussi dans cette partie la modélisation du réseau routier via les graphes et les hypergraphes, cela nous permettra d'optimiser le code. En effet, la modélisation choisie, développée par M. Bouillé, la représentation HBDS, se rapproche de l'écriture de code en orienté objet et permet de bien structurer un réseau. Dans la partie suivante, nous décrirons les critères de développement en passant par le choix des données sources et des langages informatiques. Celui de la donnée source est très important pour une simulation qui s'approche au plus près de la réalité. Faire des simulations sur diverses villes du monde, sans se limiter à la France, est un des buts de ce travail. Nous ferons donc une analyse des données disponibles afin de trouver les meilleures informations pour alimenter les simulations. Ensuite, nous exposerons les méthodes et les réalisations que nous avons mises en place pour cette étude. Dans cette partie, on trouvera l'organisation du code ainsi que les différents outils de géomatique permettant la simulation de trafic en ville. Nous avons créé de nombreux algorithmes avant de développer, pour optimiser le temps de conception et renforcer le modèle créé. De plus, au cours de cette partie, nous nous intéresserons à l'apport d'un outil d'aide à la décision dans ce contexte via la mise en place d'outils :- De simulation informatique,- De Système Expert avec la création d'un module d'Intelligence Artificielle. Pour finir, les résultats visuels et les perspectives de ce travail seront abordés. Nous allons décrire l'interface homme-machine qui se devait d'être la plus intuitive possible. En effet, les interfaces des SIG propriétaires sont souvent très complexes, ils doivent être accessibles pour proposer des outils variés selon les domaines d'intérêts des utilisateurs. Dans le cadre de notre thématique, nous pouvons limiter les interactions avec l'utilisateur et nous concentrer sur des usages plus ciblés sur la simulation. Nous verrons aussi l'utilisation des principes d'immersion visuelle, comme la stéréoscopie, principe encore sous exploité dans les SIG actuels
Mapping and spatial data visualization are increasingly used to communicate to a wide audience, while providing specific expertise. We want to illustrate the application of geographical information systems to 4D urban traffic simulation thanks to new technologies such as virtual reality headsets. Road flow can be described in equations by discrete simulation (car by car) and continuous simulation (as a fluid flow).Firstly, we study the cartography history, more particularly the city representation over time. Urban traffic management is a critical piece for urban planners. Its representation has changed both with precise tools uses, and with current issues. An increase in urbanization leads us to be more and more farsighted of urban flows. It's not only a road networks question. These urbanization problems impact other networks as sanitation which are undersized dealing with population and surfaces damp-proofing increases. It's the same problem with the water supply which has to be replaced to cover the population needs, and more generally with all underground networks. We also study in this part the road network model via graphs and hypergraphs to optimize the code. Indeed, the chosen model, developed by Mr. Bouillé, the HBDS representation, is close to the object oriented code writing and helps to well structure a network. Afterwards we describe the development criterion through the raw data choice and the computer languages. Raw data choice is important to get the most realist simulation. The fact to make simulation all over the world, and not only in France, is one of the aims of this work. That's why we do a data analysis to find the best data to supply simulations. Then we expose methods and achievements that we implement for this study. In this part, we present the code organization and the geomatic tools helping to the city traffic simulation. We build many algorithms before coding, to optimize the conception time and to strengthen the created model. Moreover we talk about the benefits of a decision support tool in this context via the implementation tools :- Computer simulation,- Expert System with Artificial Intelligence creation. At least, visual results and perspectives are discussed. We describe the graphical user interface which had to be user-friendly. Indeed, owner user interfaces are often complicated. It has to be approachable to offer wide tools depending on users fields. As part of our thematic, we can limit interactions with the user and focus on targeted uses on simulation. We can also see the immersion view uses as the stereoscopy, technique underused in actual GIS
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kecir, Abd-El-Karim. "Performance evaluation of urban rail traffic management techniques." Thesis, Rennes 1, 2019. http://www.theses.fr/2019REN1S026/document.

Повний текст джерела
Анотація:
Le trafic ferroviaire urbain est quotidiennement sujet à des perturbations qui le dévient de son comportement nominal. Afin de minimiser l'impact de ces perturbations, les opérateurs ferroviaires usent de diverses techniques. Nonobstant leur efficacité, les performances de ces techniques ne sont généralement pas bien étudiées ni sont-elles optimales, car élaborées empiriquement. C'est dans ce cadre-ci que vient cet ouvrage fournir des solutions qui permettent d'évaluer ces techniques de régulation et d'en comparer les performances dans des contextes variés. L’approche proposée se base sur des variantes de réseaux de Petri comme modèles et sur la méthode de Monte-Carlo pour en simuler l’exécution. Cette combinaison a donné naissance à SIMSTORS, un outil de simulation pour les systèmes ferroviaires urbains, et plus généralement, pour les systèmes stochastiques régulés. Additionnellement, nous nous intéressons dans cette thèse à la problématique de la réalisabilité des tables horaires qui pilotent le trafic ferroviaire. Ces tables décrivent le comportement temporel désiré des systèmes pour lesquels elles sont conçues. Or, la construction de ces tables ne garantit pas toujours sa réalisabilité, notamment dans un contexte stochastique. Ainsi, nous proposons ici une méthode permettant de vérifier si une table horaire est bien réalisable avec une probabilité strictement positive
Urban rail traffic is subject to numerous disrupting events that drift it from its nominal behavior. In order to minimize the impact of these disturbances, rail operators rely on a set of techniques. Despite their efficiency, performances of theses techniques are rarely well studied, nor are they of proven optimality; a direct consequence of them being empirically built. It is in this particular context that comes our work to provide solutions that allow for the evaluation of such techniques and for the comparison of their relative performances in various scenarios. The proposed approach is based on variants of Petri nets as models, and on the Monte-Carlo method for the simulation of their execution. This combination has led to the development of SIMSTORS, a tool for the simulation of urban rail systems, and more generally, stochastic systems under dynamic rescheduling. Additionally, this thesis addresses the question of timetable realizability; that is whether or not a given timetable is indeed realizable by a system for which it was built. Indeed, a timetable is meant to drive the behavior of a system but there is no guarantee as to its realizability. We therefore propose a method for the verification of the realizability of timetables with a strictly positive probability
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhou, Yi. "The macroscopic fundamental diagram in urban network: analytical theory and simulation." Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49111.

Повний текст джерела
Анотація:
The Macroscopic Fundamental Diagram (MFD) is a diagram that presents a relationship between the average flow (production) and the average density in an urban network. Ever since the existence of low scatter MFD in urban road network was verified, significant efforts have been made to describe the MFD quantitatively. Due to the complexity of the traffic environment in urban networks, an accurate and explicit expression for the MFD is not yet developed and many recent research efforts for MFD rely on computer simulations. On a single corridor, an analytical approximation model for the MFD exists. However, this thesis expanded this theory in two directions. First, we specialize the method for models with equal road length on the corridor, which greatly reduces the complexity of the method. We introduce the adoption of seven straight cuts in approximation. Computer simulations are conducted and show a high compatibility with the approximated results. However the analytical approximation can only be applied with the assumption of constant circulating vehicles in the system without turnings and endogenous traffics. Secondly, we show that turnings and endogenous traffic can bring various impact on the shape of the MFD, the capacity, the critical density, the variance in density and cause a phenomenon of clustered traffic status along the MFD curve. Furthermore, the simulation using stochastic variables reveals that the variance in turning rates and endogenous traffic don’t have significant impact on the MFD. This discovery enables studies to focus on scenarios with deterministic parameters for those factors. While traditional objective of engineering for network is to maximize capacity and widen the range for the maximum capacity, our results indicate that traffic stability at the maximum performance is poor if the system does not stay constantly in equilibrium status. This thesis provides insights into the factors that affect the shape of the MFD by analytical approximation and simulation.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Urban Traffic Simulator"

1

2009, Guo Min active, and Wu Jianping active 2009, eds. Dao lu jiao tong zu zhi you hua yu fang zhen ping jia li lun yu fang fa: Road traffic organisation and simulation evaluation. Beijing Shi: Ren min jiao tong chu ban she, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zundong, Zhang, and Qin Yong active 2013, eds. Cheng shi dao lu jiao tong wang luo duo mo tai jie gou dong tai xing yan jiu: Multimodal Dynamics of Urban Road Traffic Networks. Beijing: Ke xue chu ban she, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Stopher, Peter R. Simulating household travel survey data in metropolitan areas. Baton Rouge, LA: Louisiana Transportation Research Center, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Daamen, Winnie, Serge P. Hoogendoorn, and Christine Buisson. Traffic Simulation and Data. Taylor & Francis Group, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wang, Fahui, and Yujie Hu. Gis-Based Simulation and Analysis of Intra-urban Commuting. Taylor & Francis Group, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

GIS-Based Simulation and Analysis of Intra-Urban Commuting. Taylor & Francis Group, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

European Commission. Directorate-General for Transport, ed. Intramuros: Integrated urban transport concepts and systems. Luxembourg: Office for Official Publications of the European Communities, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Traffic Simulation and Data: Validation Methods and Applications. Taylor & Francis Group, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Daamen, Winnie, Serge P. Hoogendoorn, and Christine Buisson. Traffic Simulation and Data: Validation Methods and Applications. Taylor & Francis Group, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Daamen, Winnie, Serge P. Hoogendoorn, and Christine Buisson. Traffic Simulation and Data: Validation Methods and Applications. Taylor & Francis Group, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Urban Traffic Simulator"

1

Tokuda, Sho, Ryo Kanamori, and Takayuki Ito. "Development of Traffic Simulator Based on Stochastic Cell Transmission Model for Urban Network." In PRIMA 2014: Principles and Practice of Multi-Agent Systems, 150–65. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13191-7_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Regueros, Andres, Joseph N. Prashker, David Mahalel, and Ron Aharoni. "An Equilibrium Assignment Model Based on Simulated Delays." In Urban Traffic Networks, 351–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79641-8_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Krajzewicz, Daniel. "Traffic Simulation with SUMO – Simulation of Urban Mobility." In Fundamentals of Traffic Simulation, 269–93. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6142-6_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fullerton, Matthew, Andreas Wenger, Mathias Baur, Florian Schimandl, Jonas Lüßmann, and Silja Hoffmann. "3D Visualization for Microscopic Traffic Data Sources." In Simulation of Urban Mobility, 83–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45079-6_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kastner, Karl-Heinz, Robert Keber, Petru Pau, and Martin Samal. "Real-Time Traffic Conditions with SUMO for ITS Austria West." In Simulation of Urban Mobility, 146–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45079-6_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sun, Jin-ping, Lei Chen, Rong Bao, Dan Li, and Dai-hong Jiang. "Video Monitoring System Application to Urban Traffic Intersection." In Simulation Tools and Techniques, 339–45. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32216-8_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lehsing, Christian, and Ilja T. Feldstein. "Urban Interaction – Getting Vulnerable Road Users into Driving Simulation." In UR:BAN Human Factors in Traffic, 347–62. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-15418-9_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hoffmann, Silja, and Fritz Busch. "Simulation and Modelling Within the UR:BAN Project." In UR:BAN Human Factors in Traffic, 287–89. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-15418-9_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Brilon, W., and N. Wu. "Evaluation of Cellular Automata for Traffic Flow Simulation on Freeway and Urban Streets." In Traffic and Mobility, 163–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60236-8_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Huber, F., and S. Kaufmann. "Time Soluted Assessment of Traffic Impacts in Urban Areas Based on Dynamic Traffic Simulation." In Traffic and Mobility, 259–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60236-8_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Urban Traffic Simulator"

1

Saber, Takfarinas, Come Cachard, and Anthony Ventresque. "RONIN: a SUMO Interoperable Mesoscopic Urban Traffic Simulator." In 2020 IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th International Conference on Smart City; IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 2020. http://dx.doi.org/10.1109/hpcc-smartcity-dss50907.2020.00145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kostikj, Aleksandar, Milan Kjosevski, and Ljupcho Kocarev. "Validation of a microscopic single lane urban traffic simulator." In 2014 International Conference on Connected Vehicles and Expo (ICCVE). IEEE, 2014. http://dx.doi.org/10.1109/iccve.2014.7297671.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Keler, Andreas, Jakob Kaths, Frederic Chucholowski, Maximilian Chucholowski, Georgios Grigoropoulos, Matthias Spangler, Heather Kaths, and Fritz Busch. "A bicycle simulator for experiencing microscopic traffic flow simulation in urban environments." In 2018 21st International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2018. http://dx.doi.org/10.1109/itsc.2018.8569576.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kostikj, Aleksandar, Milan Kjosevski, and Ljupcho Kocarev. "Development and calibration of a single lane urban traffic simulator." In 2013 International Conference on Connected Vehicles and Expo (ICCVE). IEEE, 2013. http://dx.doi.org/10.1109/iccve.2013.6799843.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cai, Panpan, Yiyuan Lee, Yuanfu Luo, and David Hsu. "SUMMIT: A Simulator for Urban Driving in Massive Mixed Traffic." In 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020. http://dx.doi.org/10.1109/icra40945.2020.9197228.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kudo, Nozomi, Takeshi Mizuma, and Hideo Nakamura. "A study of introducing an urban guideway transportation system using Traffic Flow Simulator." In 2011 IEEE International Conference on Service Operations and Logistics and Informatics (SOLI). IEEE, 2011. http://dx.doi.org/10.1109/soli.2011.5986605.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cruz-Piris, Luis, Diego Rivera, Ivan Marsa-Maestre, Enrique De la Hoz, and Susel Fernandez. "Intelligent Traffic Light Management using Multi-Behavioral Agents." In XIII Jornadas de Ingenieria Telematica - JITEL2017. Valencia: Universitat Politècnica València, 2017. http://dx.doi.org/10.4995/jitel2017.2017.6494.

Повний текст джерела
Анотація:
One of the biggest challenges in modern societies is to solve vehicular traffic problems. In this scenario, our proposal is to use a Multi-Agent Systems (MAS) composed of three types of agent: traffic light management agents, traffic jam detection agents, and agents that control the traffic lights at an intersection. This third type of agent is able to change its behaviour between what we have called a selfish mode (the agent will try to influence the other neighbour agents of its type to achieve its goal) or an altruistic mode (the agent will take into consideration the other neighbour selfish agents indications). To validate our solution, we have developed a MAS emulator which communicates with the Simulation of Urban MObility (SUMO) traffic simulator using the Traci tool to realize the experiments in a realistic environment. The obtained results show that our proposal is able to improve other existing solutions such as conventional traffic light management systems (static or dynamic) in terms of reduction of vehicle trip duration.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sanchez-Medina, Javier, Elisa Medina-Machin, Moises Diaz-Cabrera, Manuel J. Galan-Moreno, and Enrique Rubio-Royo. "Overtaking and giving way: Design and validation of a lightweight extended cellular automata urban traffic simulator." In 2012 15th International IEEE Conference on Intelligent Transportation Systems - (ITSC 2012). IEEE, 2012. http://dx.doi.org/10.1109/itsc.2012.6338736.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Salaani, M. Kamel, Gary J. Heydinger, Paul A. Grygier, and W. Riley Garrott. "Transport Delay Compensation for the Image Generator Used in the National Advanced Driving Simulator." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-42975.

Повний текст джерела
Анотація:
Despite the advances in computer graphics speed and quality, Image Generator (IG) delys are unavoidable due to the demanding details and complex scenarios run at the National Advanced Driving Simulator (NADS), in particular for urban traffic scenes. This paper introduces a new dynamic compensation algorithm for automotive driving simulator visual displays. The compensation method is based on an original approach used by NASA Ames Research Center for flight simulator applications. The compensator designed has nearly zero phase with well-maintained magnitued within the bandwidth. The algorithm has magnitude attenuation outside the bandwidth without altering the desired frequency response of the compensator. This paper discusses the compensation method, and presents results from the NADS showing drivers’ ability to steer the vehicle through corners without excessive overshoot resulting from human reactions to visual delays. The results demonstrate that compensating for visual delays for high-end driving simulators is vital for real-time fidelity.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Rocha, Francisco Wallison, Emilio Francesquini, and Daniel Cordeiro. "Fast SimEDaPE: Simulation Estimation by Data Patterns Exploration." In Escola Regional de Alto Desempenho de São Paulo. Sociedade Brasileira de Computação, 2022. http://dx.doi.org/10.5753/eradsp.2022.222246.

Повний текст джерела
Анотація:
In the context of smart cities, solving problems such as pollution, congestion, and public transport, regularly faced by large cities like São Paulo, is not trivial. To tackle those problems researchers often rely on simulations. An example of a smart city simulator is InterSCSimulator, which simulates urban traffic. However, this simulator has limitations regarding its performance in large scale scenarios. SimEDaPE, a technique used to improve simulation performance based on the recurrence of patterns from previous simulations, was proposed in this context. SimEDaPE is still under active development and as such has some performance bottlenecks in some stages, such as the temporal mapping stage. In this work, we propose an improvement to this step of SimEDaPE using optimized libraries (written in C instead of Python), and parallelism. As a result, we obtained a considerable relative performance of 156x, running on 8 cores compared to the reference sequential implementation.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Urban Traffic Simulator"

1

Ringhand, Madlen, Maximilian Bäumler, Christian Siebke, Marcus Mai, and Felix Elrod. Report on validation of the stochastic traffic simulation (Part A). Technische Universität Dresden, 2021. http://dx.doi.org/10.26128/2021.242.

Повний текст джерела
Анотація:
This document is intended to give an overview of the human subject study in a driving simulator that was conducted by the Chair of Traffic and Transportation Psychology (Verkehrspsychologie – VPSY) of the Technische Universität Dresden (TUD) to provide the Chair of Automotive Engineering (Lehrstuhl Kraftfahrzeugtechnik – LKT) of TUD with the necessary input for the validation of a stochastic traffic simulation, especially for the parameterization, consolidation, and validation of driver behaviour models. VPSY planned, conducted, and analysed a driving simulator study. The main purpose of the study was to analyse driving behaviour and gaze data at intersections in urban areas. Based on relevant literature, a simulated driving environment was created, in which a sample of drivers passed a variety of intersections. Considering different driver states, driving tasks, and traffic situations, the collected data provide detailed information about human gaze and driving behaviour when approaching and crossing intersections. The collected data was transferred to LKT for the development of the stochastic traffic simulation.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Furman, Burford, Laxmi Ramasubramanian, Shannon McDonald, Ron Swenson, Jack Fogelquist, Yu Chiao, Alex Pape, and Mario Cruz. Solar-Powered Automated Transportation: Feasibility and Visualization. Mineta Transportation Institute, December 2021. http://dx.doi.org/10.31979/mti.2021.1948.

Повний текст джерела
Анотація:
A solar-powered automated transportation network (ATN) connecting the North and South campuses of San José State University with three passenger stations was designed, visualized, and analyzed in terms of its energy usage, carbon offset, and cost. The study’s methodology included the use of tools and software such as ArcGIS, SketchUp, Infraworks, Sketchup, Rhinoceros, and Autodesk 3DS Max. ATN vehicle energy usage was estimated using data from the university’s Park & Ride shuttle bus operation and by modeling with SUMOPy, the advanced simulation suite for the micro-traffic simulator SUMO. The energy study showed that an extensive solar photovoltaic (PV) canopy over the guideway and stations is sufficient for the network to run 24/7 in better-than-zero net-metered conditions—even if ridership were to increase 15% above that predicted from SJSU Park & Ride shuttle data. The resulting energy system has a PV-rated output of 6.2 MW, a battery system capacity of 9.8 MWh, and an estimated cost of $11.4 million USD. The solar ATN also produces 98% lower CO2 and PM2.5 emissions compared to the Park & Ride shuttle bus. A team of experts including urban planners, architects, and engineers designed and visualized the conceptual prototype, including a comprehensive video explaining the need for solar ATN and what a typical rider would experience while utilizing the system. This research demonstrates both benefits and challenges for solar-powered ATN, as well as its functionality within the urban built environment to serve diverse San José neighborhoods.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Siebke, Christian, Maximilian Bäumler, Madlen Ringhand, Marcus Mai, Felix Elrod, and Günther Prokop. Report on integration of the stochastic traffic simulation. Technische Universität Dresden, 2021. http://dx.doi.org/10.26128/2021.246.

Повний текст джерела
Анотація:
As part of the AutoDrive project, the OpenPASS framework is used to develop a cognitive-stochastic traffic flow simulation for urban intersection scenarios described in deliverable D1.14. This framework was adapted and further developed. The deliverable D5.13 deals with the construction of the stochastic traffic simulation. At this point of the process, the theoretical design aspects of D4.20 are implemented. D5.13 explains the operating principles of the different modules. This includes the foundations, boundary conditions, and mathematical theory of the traffic simulation.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Siebke, Christian, Maximilian Bäumler, Madlen Ringhand, Marcus Mai, Felix Elrod, and Günther Prokop. Report on design of modules for the stochastic traffic simulation. Technische Universität Dresden, 2021. http://dx.doi.org/10.26128/2021.245.

Повний текст джерела
Анотація:
As part of the AutoDrive project, OpenPASS is used to develop a cognitive-stochastic traffic flow simulation for urban intersection scenarios described in deliverable D1.14. The deliverable D4.20 is about the design of the modules for the stochastic traffic simulation. This initially includes an examination of the existing traffic simulations described in chapter 2. Subsequently, the underlying tasks of the driver when crossing an intersection are explained. The main part contains the design of the cognitive structure of the road user (chapter 4.2) and the development of the cognitive behaviour modules (chapter 4.3).
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kodupuganti, Swapneel R., Sonu Mathew, and Srinivas S. Pulugurtha. Modeling Operational Performance of Urban Roads with Heterogeneous Traffic Conditions. Mineta Transportation Institute, January 2021. http://dx.doi.org/10.31979/mti.2021.1802.

Повний текст джерела
Анотація:
The rapid growth in population and related demand for travel during the past few decades has had a catalytic effect on traffic congestion, air quality, and safety in many urban areas. Transportation managers and planners have planned for new facilities to cater to the needs of users of alternative modes of transportation (e.g., public transportation, walking, and bicycling) over the next decade. However, there are no widely accepted methods, nor there is enough evidence to justify whether such plans are instrumental in improving mobility of the transportation system. Therefore, this project researches the operational performance of urban roads with heterogeneous traffic conditions to improve the mobility and reliability of people and goods. A 4-mile stretch of the Blue Line light rail transit (LRT) extension, which connects Old Concord Rd and the University of North Carolina at Charlotte’s main campus on N Tryon St in Charlotte, North Carolina, was considered for travel time reliability analysis. The influence of crosswalks, sidewalks, trails, greenways, on-street bicycle lanes, bus/LRT routes and stops/stations, and street network characteristics on travel time reliability were comprehensively considered from a multimodal perspective. Likewise, a 2.5-mile-long section of the Blue Line LRT extension, which connects University City Blvd and Mallard Creek Church Rd on N Tryon St in Charlotte, North Carolina, was considered for simulation-based operational analysis. Vissim traffic simulation software was used to compute and compare delay, queue length, and maximum queue length at nine intersections to evaluate the influence of vehicles, LRT, pedestrians, and bicyclists, individually and/or combined. The statistical significance of variations in travel time reliability were particularly less in the case of links on N Tryon St with the Blue Line LRT extension. However, a decrease in travel time reliability on some links was observed on the parallel route (I-85) and cross-streets. While a decrease in vehicle delay on northbound and southbound approaches of N Tryon St was observed in most cases after the LRT is in operation, the cross-streets of N Tryon St incurred a relatively higher increase in delay after the LRT is in operation. The current pedestrian and bicycling activity levels seemed insignificant to have an influence on vehicle delay at intersections. The methodological approaches from this research can be used to assess the performance of a transportation facility and identify remedial solutions from a multimodal perspective.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Siebke, Christian, Maximilian Bäumler, Madlen Ringhand, Marcus Mai, Mohamed Nadar Ramadan, and Günther Prokop. Report on layout of the traffic simulation and trial design of the evaluation. Technische Universität Dresden, 2021. http://dx.doi.org/10.26128/2021.244.

Повний текст джерела
Анотація:
Within the AutoDrive project, openPASS is used to develop a cognitive stochastic traffic flow simulation for urban intersections and highway scenarios, which are described in deliverable D1.14. The deliverable D2.16 includes the customizations of the framework openPASS that are required to provide a basis for the development and implementation of the driver behavior model and the evaluated safety function. The trial design for the evaluation of the safety functions is described. Furthermore, the design of the driver behavior study is introduced to parameterize and validate the underlying driver behavior model.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hartle, Jennifer C., Ossama (Sam) A. Elrahman, Cara Wang, Daniel A. Rodriguez, Yue Ding, and Matt McGahan. Assessing Public Health Benefits of Replacing Freight Trucks with Cargo Cycles in Last Leg Delivery Trips in Urban Centers. Mineta Transportation Institute, June 2022. http://dx.doi.org/10.31979/mti.2022.1952.

Повний текст джерела
Анотація:
Increased urbanization, population growth, and demand for time-sensitive deliveries means increased freight movement in cities, which contributes to emissions, noise, and safety concerns. One innovative mode gaining widespread attention for urban deliveries is cargo cycles—bicycles adapted for freight delivery. Despite the recognized potential and possible success of transporting at least 25% of freight via cycle, research remains limited. This research investigates the potential of cargo cycle delivery for last mile freight in Oakland, California, with a focus on the West Oakland neighborhood. The data collection included interviews, focus groups, vehicle field observation and counts, and traffic simulation modeling. The traffic simulation examined scenarios where businesses converted different percentages of current deliveries to cargo cycles using a transfer hub as the starting point for their cargo cycle delivery. The best-case scenario—where the maximum percentage of deliveries were made with cargo cycle instead of motorized vehicles—resulted in reductions of 2600 vehicle miles traveled (VMT) per day. In that case scenario, the vehicle miles traveled (VMT) reduction is equivalent to a reduction in emissions of PM2.5, PM10, NOx, and reactive organic gas (ROG) of taking about 1000 Class 4 box trucks off the roads of West Oakland per day. In the worst-case scenario, with a significantly smaller percentage of motorized package deliveries converted to cargo cycles, there is a reduction of 160 VMT, equivalent to the removal of approximately 80 Class 4 box trucks off the roads of West Oakland per day. This potential reduction in air pollution and traffic congestion, as well as job creation, would benefit West Oakland residents.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pulugurtha, Srinivas S., and Raghuveer Gouribhatla. Drivers’ Response to Scenarios when Driving Connected and Automated Vehicles Compared to Vehicles with and without Driver Assist Technology. Mineta Transportation Institute, January 2022. http://dx.doi.org/10.31979/mti.2022.1944.

Повний текст джерела
Анотація:
Traffic related crashes cause more than 38,000 fatalities every year in the United States. They are the leading cause of death among drivers up to 54 years in age and incur $871 million in losses each year. Driver errors contribute to about 94% of these crashes. In response, automotive companies have been developing vehicles with advanced driver assistance systems (ADAS) that aid in various driving tasks. These features are aimed at enhancing safety by either warning drivers of a potential hazard or picking up certain driving maneuvers like maintaining the lane. These features are already part of vehicles with Driver Assistance Technology, and they are vital for successful deployment of connected and automated vehicles in the near future. However, drivers' responses to driving vehicles with advanced features have been meagerly explored. This research evaluates driver participants' response to scenarios when driving connected and automated vehicles compared to vehicles with and without Driver Assistance Technology. The research developed rural, urban, and freeway driving scenarios in a driver simulator and tested on participants sixteen years to sixty-five years old. The research team explored two types of advanced features by categorizing them into warnings and automated features. The results show that the advanced features affected driving behavior by making driver participants less aggressive and harmonizing the driving environment. This research also discovered that the type of driving scenario influences the effect of advanced features on driver behavior. Additionally, aggressive driving behavior was observed most in male participants and during nighttime conditions. Rainy conditions and female participants were associated with less aggressive driving behavior. The findings from this research help to assess driver behavior when driving vehicles with advanced features. They can be inputted into microsimulation software to model the effect of vehicles with advanced features on the performance of transportation systems, advancing technology that could eventually save millions of dollars and thousands of lives.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії