Добірка наукової літератури з теми "Unstructured meshe"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Unstructured meshe".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Unstructured meshe"
SCHNEIDERS, ROBERT. "OCTREE-BASED HEXAHEDRAL MESH GENERATION." International Journal of Computational Geometry & Applications 10, no. 04 (August 2000): 383–98. http://dx.doi.org/10.1142/s021819590000022x.
Повний текст джерелаNoleto, Luciano Gonçalves, Manuel N. D. Barcelos, and Antonio C. P. Brasil. "A Pseudo-Stokes Mesh Motion Algorithm." Advances in Applied Mathematics and Mechanics 5, no. 2 (April 2013): 194–211. http://dx.doi.org/10.4208/aamm.11-m1186.
Повний текст джерелаCai, Jian, Lan Chen, and Umezuruike Linus Opara. "Numerical Simulation of Powder Dispersion Performance by Different Mesh Types." Key Engineering Materials 680 (February 2016): 82–85. http://dx.doi.org/10.4028/www.scientific.net/kem.680.82.
Повний текст джерелаSong, Tao, Jiarong Wang, Danya Xu, Wei Wei, Runsheng Han, Fan Meng, Ying Li, and Pengfei Xie. "Unsupervised Machine Learning for Improved Delaunay Triangulation." Journal of Marine Science and Engineering 9, no. 12 (December 7, 2021): 1398. http://dx.doi.org/10.3390/jmse9121398.
Повний текст джерелаGustafsson, Tom. "simple technique for unstructured mesh generation via adaptive finite elements." Rakenteiden Mekaniikka 54, no. 2 (June 14, 2021): 69–79. http://dx.doi.org/10.23998/rm.99648.
Повний текст джерелаSchneider, Teseo, Yixin Hu, Xifeng Gao, Jérémie Dumas, Denis Zorin, and Daniele Panozzo. "A Large-Scale Comparison of Tetrahedral and Hexahedral Elements for Solving Elliptic PDEs with the Finite Element Method." ACM Transactions on Graphics 41, no. 3 (June 30, 2022): 1–14. http://dx.doi.org/10.1145/3508372.
Повний текст джерелаGruzintsev, I., M. Kornilina, and M. Yakobovskiy. "Adaptive 3D unstructured mesh refinement." E3S Web of Conferences 224 (2020): 01011. http://dx.doi.org/10.1051/e3sconf/202022401011.
Повний текст джерелаPeng, Biao, Chunhua Zhou, and Junqiang Ai. "Solution Reconstruction on Unstructured Tetrahedral Meshes Using P1-Conservative Interpolation." Advances in Applied Mathematics and Mechanics 8, no. 5 (July 8, 2016): 847–70. http://dx.doi.org/10.4208/aamm.2015.m1087.
Повний текст джерелаGao, Song, Jory Seguin, Wagdi G. Habashi, Dario Isola, and Guido Baruzzi. "A finite element solver for hypersonic flows in thermo-chemical non-equilibrium, Part II." International Journal of Numerical Methods for Heat & Fluid Flow 30, no. 2 (August 19, 2019): 575–606. http://dx.doi.org/10.1108/hff-12-2018-0725.
Повний текст джерелаKnupp, Patrick M. "Algebraic mesh quality metrics for unstructured initial meshes." Finite Elements in Analysis and Design 39, no. 3 (January 2003): 217–41. http://dx.doi.org/10.1016/s0168-874x(02)00070-7.
Повний текст джерелаДисертації з теми "Unstructured meshe"
Dapogny, Charles. "Shape optimization, level set methods on unstructured meshes and mesh evolution." Paris 6, 2013. http://www.theses.fr/2013PA066498.
Повний текст джерелаThe main purpose of this thesis is to propose a method for structural optimization which combines theaccuracy of featuring an exact description of shapes (i. E. With a mesh) at each iteration of the process withthe versatility of the level set method for tracking their evolution. Independently, we also study two problemsrelated to modeling in structural optimization. In the first, bibliographical part, we present several classical notions, together with some recent developmentsabout the three main issues of this thesis - namely level set methods (Chapter 1), shape optimization(Chapter 2), and meshing (Chapter 3). The second part of this manuscript deals with two issues in shape optimization, that of the optimalrepartition of several materials within a fixed structure (Chapter 4), and that of the robust optimization offunctions depending on the domain when perturbations are expected over the considered mechanical model. In the third part, we study the design of numerical schemes for performing the level set method onsimplicial (and possibly adapted) computational meshes. The computation of the signed distance functionto a domain is investigated in Chapter 6, and the resolution of the level set advection equation is presentedin Chapter 7. The fourth part (Chapter 8) is devoted to the meshing techniques introduced in this thesis. Eventually, the last part (Chapter 9) describes the proposed strategy for mesh evolution in the contextof shape optimization, relying on the numerical ingredients introduced in Chapters 7, 8, 9
Hindenlang, Florian [Verfasser]. "Mesh Curving Techniques for High Order Parallel Simulations on Unstructured Meshes / Florian Hindenlang." München : Verlag Dr. Hut, 2014. http://d-nb.info/1060587653/34.
Повний текст джерелаHarbrecht, Helmut, Ulf Kähler, and Reinhold Schneider. "Wavelet Galerkin BEM on unstructured meshes." Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601459.
Повний текст джерелаROCHA, ALLAN CARLOS AVELINO. "ILLUSTRATIVE VOLUME VISUALIZATION FOR UNSTRUCTURED MESHES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2011. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=18748@1.
Повний текст джерелаTécnicas de visualização científica criam imagens na tentativa de revelar estruturas e fenômenos complexos. Técnicas ilustrativas têm sido incorporadas aos sistemas de visualizacão científica para melhorar a expressividade de tais imagens. A visualização de linhas caracteríticas é uma técnica importante para transmitir uma melhor informacão sobre a forma das superfícies. Neste trabalho, propomos combinar visualização volumétrica de malhas não estruturadas com isosuperfícies ilustradas. Isto é feito estendendo um algoritmo de traçado de raio em GPU para incorporar ilustração com linhas de variação extrema da iluminação(photic extremum lines), um tipo de linha característica que captura mudanças bruscas de luminância, revelando formas de um jeito perceptualmente correto.
Scientic visualization techniques create images attempting to reveal complex structures and phenomena. Illustrative techniques have been incorporated to scientic visualization systems in order to improve the expressiveness of such images. The rendering of feature lines is an important technique for better depicting surface shapes and features. In this thesis, we propose to combine volume visualization of unstructured meshes with illustrative isosurfaces. This is accomplished by extending a GPU-based ray-casting algorithm to incorporate illustration with photic extremum lines, a type of feature lines able to capture sudden changes of luminance, conveying shapes in a perceptually correct way.
MIRANDA, FABIO MARKUS NUNES. "VOLUME RENDERING OF UNSTRUCTURED HEXAHEDRAL MESHES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2011. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=28921@1.
Повний текст джерелаCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
Importantes aplicações de engenharia usam malhas não estruturadas de hexaedros para simulações numéricas. Células hexaédricas, comparadas com tetraedros, tendem a ser mais numericamente estáveis e requerem um menor refinamento da malha. Entretando, visualização volumétrica de malhas não estruturadas é um desafio devido a variação trilinear do campo escalar dentro da célula. A solução convencional consiste em subdividir cada hexaedro em cinco ou seis tetraedros, aproximando uma variação trilinear por uma inadequada série de funções lineares. Isso resulta em imagens inadequadas e aumenta o consumo de memória. Nesta tese, apresentamos um algoritmo preciso de visualização volumétrica utilizando ray-casting para malhas não estruturadas de hexaedros. Para capturar a variação trilinear ao longo do raio, nós propomos usar uma integração de quadratura. Nós também propomos uma alternativa rápida que melhor aproxima a variação trilinear, considerando os pontos de mínimo e máximo da função escalar ao longo do raio. Uma série de experimentos computacionais demonstram que nossa proposta produz resultados exatos, com um menor gasto de memória. Todo algoritmo é implementado em placas gráficas, garantindo uma performance competitiva.
Important engineering applications use unstructured hexahedral meshes for numerical simulations. Hexahedral cells, when compared to tetrahedral ones, tend to be more numerically stable and to require less mesh refinement. However, volume visualization of unstructured hexahedral meshes is challenging due to the trilinear variation of scalar fields inside the cells. The conventional solution consists in subdividing each hexahedral cell into five or six tetrahedra, approximating a trilinear variation by an inadequate piecewise linear function. This results in inaccurate images and increases the memory consumption. In this thesis, we present an accurate ray-casting volume rendering algorithm for unstructured hexahedral meshes. In order to capture the trilinear variation along the ray, we propose the use of quadrature integration. We also propose a fast approach that better approximates the trilinear variation to a series of linear ones, considering the points of minimum and maximum of the scalar function along the ray. A set of computational experiments demonstrates that our proposal produces accurate results, with reduced memory footprint. The entire algorithm is implemented on graphics cards, ensuring competitive performance.
Burgess, David A. "Parallel computing for unstructured mesh algorithms." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318758.
Повний текст джерелаPerez, Sansalvador Julio. "Parallel unstructured mesh adaptation and applications." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/parallel-unstructured-mesh-adaptation-and-applications(26248d4d-48a6-4101-a687-004218e39cb4).html.
Повний текст джерелаHindenlang, Florian [Verfasser], and Claus-Dieter [Akademischer Betreuer] Munz. "Mesh curving techniques for high order parallel simulations on unstructured meshes / Florian Hindenlang. Betreuer: Claus-Dieter Munz." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2014. http://d-nb.info/1063938082/34.
Повний текст джерелаBushrod, Rebecca. "Unstructured mesh generation for mesh improvement techniques and contour meshing." Thesis, Swansea University, 2005. https://cronfa.swan.ac.uk/Record/cronfa42434.
Повний текст джерелаKumar, Amitesh. "Hole patching in 3D unstructured surface mesh." Birmingham, Ala. : University of Alabama at Birmingham, 2007. http://www.mhsl.uab.edu/dt/2007m/kumar.pdf.
Повний текст джерелаКниги з теми "Unstructured meshe"
Mavriplis, Dimitri J. Multigrid techniques for unstructured meshes. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1995.
Знайти повний текст джерелаDimitri, Mavriplis, and Langley Research Center, eds. Implicit solvers for unstructured meshes. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1991.
Знайти повний текст джерелаPeraire, Jaime. Unstructured mesh methods for CFD. London, England: Imperial College of Science, Technology and Medicine. Dept. of Aeronautics, 1990.
Знайти повний текст джерелаMavriplis, Dimitri J. Unstructured mesh generation and adaptivity. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1995.
Знайти повний текст джерелаInstitute for Computer Applications in Science and Engineering., ed. Unstructured mesh generation and adaptivity. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1995.
Знайти повний текст джерелаMavriplis, Dimitri J. Unstructured mesh algorithms for aerodynamic calculations. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1992.
Знайти повний текст джерелаBercovier, Michel, and Tanya Matskewich. Smooth Bézier Surfaces over Unstructured Quadrilateral Meshes. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63841-6.
Повний текст джерелаBokhari, Shahid H. The tera multithreaded architecture and unstructured meshes. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1998.
Знайти повний текст джерелаMavriplis, Dimitri J. Algebraic turbulence modeling for unstructured and adaptive meshes. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1990.
Знайти повний текст джерелаMavriplis, Dimitri J. Turbulent flow calculations using unstructured and adaptive meshes. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1990.
Знайти повний текст джерелаЧастини книг з теми "Unstructured meshe"
Löhner, Rainald. "Breakthrough ‘Workarounds’ in Unstructured Mesh Generation." In Mesh Generation and Adaptation, 261–76. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92540-6_12.
Повний текст джерелаJung, Mun Seung, and Oh Joon Kwon. "Development of a Conservative Overset Mesh Method on Unstructured Meshes." In Computational Fluid Dynamics 2010, 893–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17884-9_118.
Повний текст джерелаBercovier, Michel, and Tanya Matskewich. "Introduction." In Smooth Bézier Surfaces over Unstructured Quadrilateral Meshes, 1–24. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63841-6_1.
Повний текст джерелаBercovier, Michel, and Tanya Matskewich. "G 1-Smooth Surfaces." In Smooth Bézier Surfaces over Unstructured Quadrilateral Meshes, 25–42. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63841-6_2.
Повний текст джерелаBercovier, Michel, and Tanya Matskewich. "MDS: Quadrilateral Meshes and Polygonal Boundary." In Smooth Bézier Surfaces over Unstructured Quadrilateral Meshes, 43–72. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63841-6_3.
Повний текст джерелаBercovier, Michel, and Tanya Matskewich. "Global MDS." In Smooth Bézier Surfaces over Unstructured Quadrilateral Meshes, 73–91. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63841-6_4.
Повний текст джерелаBercovier, Michel, and Tanya Matskewich. "MDS for a Smooth Boundary." In Smooth Bézier Surfaces over Unstructured Quadrilateral Meshes, 93–136. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63841-6_5.
Повний текст джерелаBercovier, Michel, and Tanya Matskewich. "Computational Examples." In Smooth Bézier Surfaces over Unstructured Quadrilateral Meshes, 137–43. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63841-6_6.
Повний текст джерелаBercovier, Michel, and Tanya Matskewich. "Conclusions and Further Research." In Smooth Bézier Surfaces over Unstructured Quadrilateral Meshes, 145–47. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63841-6_7.
Повний текст джерелаRossow, C. C. "Convergence Acceleration on Unstructured Meshes." In New Results in Numerical and Experimental Fluid Mechanics III, 304–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-540-45466-3_37.
Повний текст джерелаТези доповідей конференцій з теми "Unstructured meshe"
Turner, Michael, David Moxey, Spencer J. Sherwin, and Joaquim Peiro. "AUTOMATIC GENERATION OF 3D UNSTRUCTURED HIGH-ORDER CURVILINEAR MESHE." In VII European Congress on Computational Methods in Applied Sciences and Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2016. http://dx.doi.org/10.7712/100016.1825.8410.
Повний текст джерелаLepage, C., F. Suerich-Gulick, and W. Habashi. "Anisotropic 3-D mesh adaptation on unstructured hybrid meshes." In 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-859.
Повний текст джерелаSheng, Chunhua, and Christian Allen. "Efficient Mesh Deformation Using Radial Basis Functions on Unstructured Meshes." In 42nd AIAA Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-2685.
Повний текст джерелаHidalgo, Victor, XianWu Luo, Xavier Escaler, An Yu, and Esteban Valencia. "Study of Partial Cavitation on a Plane-Convex Hydrofoil With Mesh Development by Using GMSH Free Software." In ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-05531.
Повний текст джерелаPodshivalov, Lev, Anath Fischer, and Pinhas Z. Bar-Yoseph. "Performance Assessment of Hexahedral Meshing Methods for Design and Mechanical Analysis of Composite Materials." In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82247.
Повний текст джерелаda Silva Tonon, Daniel, Jesuíno Takachi Tomita, Ezio Castejon Garcia, Cleverson Bringhenti, Rubén Bruno Díaz, and Luiz Henrique Lindquist Whitacker. "Comparative Study Between Structured and Unstructured Meshes Applied in Turbopump’s Hydraulic Turbine." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-15004.
Повний текст джерелаRichardson, Scott M. "Transonic Turbomachinery Calculations Using a Hybrid Structured-Unstructured Grid Method." In ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/94-gt-062.
Повний текст джерелаYang, Hong, and Leiyong Jiang. "A Dual-Mesh Approach to Enhance Accuracy of the Boundary Conditions for Unstructured Grid Modeling of Turbomachinery Flows." In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-23390.
Повний текст джерелаKatz, Aaron, and Venkateswaran Sankaran. "Mesh Quality Effects on the Accuracy of CFD Solutions on Unstructured Meshes." In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-652.
Повний текст джерелаYang, ZhiJian, and Dimitri Mavriplis. "A Mesh Deformation Strategy Optimized by the Adjoint Method on Unstructured Meshes." In 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-557.
Повний текст джерелаЗвіти організацій з теми "Unstructured meshe"
Smith, William G., and Michael P. Ebert. A Method for Unstructured Mesh-to-Mesh Interpolation. Fort Belvoir, VA: Defense Technical Information Center, August 2010. http://dx.doi.org/10.21236/ada531390.
Повний текст джерелаSpencer, Joshua Bradly, and Jennifer Louise Alwin. Big Ten MCNP6 Unstructured Mesh Benchmark. Office of Scientific and Technical Information (OSTI), June 2019. http://dx.doi.org/10.2172/1529515.
Повний текст джерелаDzur, Micky, Jerawan Armstrong, and Chelsea D'Angelo. MCNP Unstructured Mesh Verification: Oktavian Models. Office of Scientific and Technical Information (OSTI), August 2022. http://dx.doi.org/10.2172/1881771.
Повний текст джерелаAnsari, S. M., E. M. Schetselaar, and J. A. Craven. Three-dimensional magnetotelluric modelling of the Lalor volcanogenic massive-sulfide deposit, Manitoba. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/328003.
Повний текст джерелаJones, M. T., and P. E. Plassmann. Computational results for parallel unstructured mesh computations. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/34394.
Повний текст джерелаLeiendecker, Harrison, Alex Warhover, Jerawan Armstrong, and Jim Ferguson. Code Verification for MCNP Unstructured Mesh Geometry. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1647184.
Повний текст джерелаKuprat, A. Adaptive smoothing techniques for 3-D unstructured meshes. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/226042.
Повний текст джерелаSpencer, Joshua Bradly, Roger Lee Martz, and Jennifer Louise Alwin. Introduction to the MCNP6 Unstructured Mesh Geometry Capability. Office of Scientific and Technical Information (OSTI), May 2018. http://dx.doi.org/10.2172/1438161.
Повний текст джерелаAlwin, Jennifer Louise, and Joshua Bradly Spencer. Critical Experiment Benchmark Results using MCNP6.2 Unstructured Mesh. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1565798.
Повний текст джерелаJ. MOREL, J. MCGHEE, and ET AL. 3-D UNSTRUCTURED HEXAHEDRAL-MESH Sn TRANSPORT METHODS. Office of Scientific and Technical Information (OSTI), November 2000. http://dx.doi.org/10.2172/768173.
Повний текст джерела