Добірка наукової літератури з теми "Underwater Experiments"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Underwater Experiments".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Underwater Experiments"

1

Chepurin, Yu A. "Experiments on underwater acoustic tomography." Acoustical Physics 53, no. 3 (May 2007): 393–416. http://dx.doi.org/10.1134/s1063771007030141.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhang, Meiyan, Wenyu Cai, Qinan Xie, and Shenyang Xu. "Binocular-Vision-Based Obstacle Avoidance Design and Experiments Verification for Underwater Quadrocopter Vehicle." Journal of Marine Science and Engineering 10, no. 8 (July 30, 2022): 1050. http://dx.doi.org/10.3390/jmse10081050.

Повний текст джерела
Анотація:
As we know, for autonomous robots working in a complex underwater region, obstacle avoidance design will play an important role in underwater tasks. In this paper, a binocular-vision-based underwater obstacle avoidance mechanism is discussed and verified with our self-made Underwater Quadrocopter Vehicle. The proposed Underwater Quadrocopter Vehicle (UQV for short), like a quadrocopter drone working underwater, is a new kind of Autonomous Underwater Vehicle (AUV), which is equipped with four propellers along the vertical direction of the robotic body to adjust its body posture and two propellers arranged at the sides of the robotic body to provide propulsive and turning force. Moreover, an underwater binocular-vision-based obstacle positioning method is studied to measure an underwater spherical obstacle’s radius and its distance from the UQV. Due to its perfect ability of full-freedom underwater actions, the proposed UQV has obvious advantages such as a zero turning radius compared with existing torpedo-shaped AUVs. Therefore, one semicircle-curve-based obstacle avoidance path is planned on the basis of an obstacle’s coordinates. Practical pool experiments show that the proposed binocular vision can locate an underwater obstacle accurately, and the designed UQV has the ability to effectively avoid multiple obstacles along the predefined trajectory.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

RAO, C. V. K. PRASADA, J. SWAIN, P. V. HAREESH KUMAR, P. V. NAIR, V. N. PANCHALAI, and R. K. SHUKLA. "Underwater acoustic propagation experiments during ARMEX." MAUSAM 56, no. 1 (January 19, 2022): 281–86. http://dx.doi.org/10.54302/mausam.v56i1.905.

Повний текст джерела
Анотація:
Two-ship acoustic propagation experiments were conducted in deep waters of the Arabian Sea between 22-25 July and 7-8 August 2002 from onboard INS Sagardhwani and ORV Sagarkanya during ARMEX-I phase. The aim of this experiment was to understand the spatial (up to 30 km) and temporal (up to 24 hr) fluctuations of acoustic intensities within the surface duct. The acoustic transmissions were made from 15m depth at 2.4 KHz and 620 Hz frequencies from one ship and the signals were received at 15m and 40m depths on the second ship. The data were recorded for 10 min duration during each transmission and 30 sec averages were taken for computing acoustic intensities. Simultaneous oceanographic data on temperature (CTD and XBT), currents (ADCP) and waves (SBWR) were also recorded. Steady and homogeneous mixed layer depths of 50-60m offered an ideal environmental condition for surface duct propagation. The sea-state was moderate with significant wave height ranging from 1.5 to 2.3m. The surface and sub-surface currents in the upper 125m water column revealed the predominance of tides with change of current direction at 6 hr intervals. The current speeds were ~ 50 cm/s. The analysis of acoustic data highlighted the importance of temporal variations compared to spatial variations. Around 20 dB fluctuations in acoustic intensity were noticed for temporal variability where as only 7 dB fluctuation was observed for spatial variability.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hostombe, Kevin, Tom Avsic, and Delf Sachau. "Experiments with coated surfaces to generate sound waves in water." Journal of the Acoustical Society of America 154, no. 4_supplement (October 1, 2023): A355. http://dx.doi.org/10.1121/10.0023778.

Повний текст джерела
Анотація:
Sources for underwater sound have a wide range of applications, such as active sonar, navigation, and underwater communication. Particularly, sources with large dimensions l, such as a coating on a boat structure, can be suitable for generating low-frequency underwater sound. In this context, low-frequency refers to wavelength λ in water that fall within the range of 40 l > λ > 1,5 l. In this study, a sample of an active surface for generating underwater sound is created by attaching an array of 18 circular piezoelectric actuators to a glass-fiber reinforced plastic (GRP) plate. The array and the plate are coated with a potting compound that possesses the same acoustic properties as water. This coating physically separates the actuators from the water. The actuators can be individually controlled to analyze different configurations. The radiation characteristics of the active surface are investigated in an underwater test range with free field conditions, specifically for low-frequencies. Additionally, the interaction among the actuators and between the actuators and the GRP-plate are analyzed.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhu, Jifeng, Xiaohe Pan, Zheng Peng, Mengzhuo Liu, Jingqian Guo, Tong Zhang, Yu Gou, and Jun-Hong Cui. "A uw-Cellular Network: Design, Implementation and Experiments." Journal of Marine Science and Engineering 11, no. 4 (April 13, 2023): 827. http://dx.doi.org/10.3390/jmse11040827.

Повний текст джерела
Анотація:
The most significant increase of current task is in the desire for operational flexibility and agility in large-scale underwater network application scenarios in recent years. In order to address the challenging problems in Underwater Wireless Sensor Networks (UWSNs), we propose a large-scale UWSN based on the cellular network architecture called Underwater Cellular (uw-Cellular) network. It is designed especially for application scenarios where a large number of both fixed and mobile network nodes exist in a wide area to monitor the underwater environment. We also design protocols in each network layer in order to ensure reasonable channel sharing, data forwarding path selection and data reliability. The purpose of the simulation study we implement is to evaluate the performance of the CLA routing strategy compared to the VBF and the MFLOOD protocols in the uw-Cellular network. We also deploy a twenty-node uw-Cellular network in the real-world environment as the field case study. The experimental results showed that the Data Rate between any nodes could reach above 500 bps, and the network Average Throughput was no less than 550 bps under various load situations.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dunbabin, Matthew, Peter Corke, Iuliu Vasilescu, and Daniela Rus. "Experiments with Cooperative Control of Underwater Robots." International Journal of Robotics Research 28, no. 6 (May 20, 2009): 815–33. http://dx.doi.org/10.1177/0278364908098456.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ellison, William T., and Karen S. Weixel. "Considerations for designing underwater acoustical playback experiments." Journal of the Acoustical Society of America 96, no. 5 (November 1994): 3316–17. http://dx.doi.org/10.1121/1.410748.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rajendran, R., J. K. Paik, and J. M. Lee. "OF UNDERWATER EXPLOSION EXPERIMENTS ON PLANE PLATES." Experimental Techniques 31, no. 1 (January 2007): 18–24. http://dx.doi.org/10.1111/j.1747-1567.2006.00130.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pau, Hans Wilhelm, Mareike Warkentin, Olaf Specht, Helga Krentz, Anne Herrmann, and Karsten Ehrt. "Experiments on the mechanism of underwater hearing." Acta Oto-Laryngologica 131, no. 12 (September 5, 2011): 1279–85. http://dx.doi.org/10.3109/00016489.2011.607845.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Buckingham, Michael J. "Light aircraft sound for underwater acoustics experiments." Journal of the Acoustical Society of America 140, no. 4 (October 2016): 3169. http://dx.doi.org/10.1121/1.4969951.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Underwater Experiments"

1

Kodati, Parasar. "Biomimetic micro underwater vehicle with ostraciiform locomotion system design, analysis and experiments /." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 139 p, 2006. http://proquest.umi.com/pqdweb?did=1203586131&sid=7&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Farren, Maureen A. "Some experiments with underwater acoustic returns from cylinders relative to object identification for AUV operation/." Thesis, Monterey, California. Naval Postgraduate School, 1988. http://hdl.handle.net/10945/23398.

Повний текст джерела
Анотація:
Approved for public release; distribution is unlimited
Underwater Vehicles, Sonar Sound Analyzers, Underwater Navigation, Acoustics, Anechoic Chambers, Cylindrical Bodies, Data Storage Systems, Delay, Electroacoustic Transducers, Estimates, Experimental Data, Geometric Forms, Identification, Images, Position Location, Propagation, Sonar, Surface Properties, Target Strength, Theses, Time Intervals, Underwater, Underwater Equipment
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Phaneuf, Matthew D. "Experiments with the REMUS AUV." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Jun%5FPhaneuf.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tucker, Simon. "An ecological approach to the classification of transient underwater acoustic events : perceptual experiments and auditory models." Thesis, University of Sheffield, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Connor, Russya. "The poetics of gravity: Performance experiments from the natural environment to the stage." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2014. https://ro.ecu.edu.au/theses/1561.

Повний текст джерела
Анотація:
Gravity understood scientifically is normally accepted as a dictate, however when encountered creatively, the possibilities for playing with and learning from gravity in natural environments are plentiful. This practice-led research explores gravity in both artistic and functional contexts. Two nature-specific sports (ocean diving and rock-climbing) and then later, aerial silk work, acted as springboards for explorations of creative expression derived from the states of submersion and suspension. To ‘really feel’ gravity, I decided to explore its effects and impressions, physically and emotionally, in environments that draw attention to its presence. Attempts were made to capture gravity in a series of poetic and performative artefacts, performed in their respective environments; the research culminated in a final performance, Sea Inside in a classical theatre setting. The management of gravity is fundamental in all movement, thus, understanding gravity’s psychophysiological aspects can extend the parameters of performance. Locating physicality underwater and in the air provokes a deep sense of falling and sinking into being and allows both body and mind to access a stiller place of being. Discoveries in natural environment laboratories led to an appreciation of embodied inner verticality and new perceptions about aptitudes for states of flow and “being-in-the-world” (Heidegger, 1976). Submitting to and tuning into kinaesthetic experiences through relations with gravity generated feelings of being enwrapped in the environment, and cultivated a rapport with the myriad landscapes; that are geographical, psychological or metaphorical of Landschaft. Embodied outdoor experimentation led to the realisation of the significance of applying an ecological lens to investigate my affinity to gravity. I explored when the performer’s body learns to incorporate unconventional experiences like being underwater or up in the air, finding therein emergent opportunities for artistic expression. These possibilities have the potential to impact conventions of training/awareness and thus translation to performance/articulation. This thesis contextualises the larger project that is my relationship with gravity which includes the often imperceptible poetic aspects of our environment. Additionally this research wrestles with the tension of theatre and ecology but makes no attempt to solve this problem, rather touches on how the arts, in particular performance modes, may contribute to a dialogue on ecological awareness.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Becker, Kyle M. "Geoacoustic inversion in laterally varying shallow-water experiments using high-resolution wavenumber estimation." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/29056.

Повний текст джерела
Анотація:
Thesis (Ph. D. in Applied Ocean Sciences)--Joint Program in Applied Ocean Physics and Engineering (Massachusetts Institute of Technology, Dept. of Ocean Engineering; and the Woods Hole Oceanographic Institution), February 2002.
Includes bibliographical references (leaves 161-170).
Sound propagation in shallow water is highly dependent on the interaction of the sound field with the bottom. In order to fully understand this problem, it is necessary to obtain reliable estimates of bottom geoacoustic properties that can be used in acoustic propagation codes. In this thesis, perturbative inversion methods and exact inverse methods are discussed as a means for inferring geoacoustic properties of the bottom. For each of these methods, the input data to the inversion is the horizontal wavenumber spectrum of a point-source acoustic field. The main thrust of the thesis work concerns extracting horizontal wavenumber content for fully three-dimensionally varying waveguide environments. In this context, a high-resolution autoregressive (AR) spectral estimator was applied to determine wavenumber content for short aperture data. As part of this work, the AR estimator was examined for its ability to detect discrete wavenumbers in the presence of noise and also to resolve closely spaced wavenumbers for short aperture data. As part of a geoacoustic inversion workshop, the estimator was applied to extract horizontal wavenumber content for synthetic pressure field data with range-varying geoacoustic properties in the sediment. The resulting wavenumber content was used as input data to a perturbative inverse algorithm to determine the sound speed profile in the sediment. It was shown using the high-resolution wavenumber estimator that both the shape and location of the range-variability in the sediment could be determined.
(cont.) The estimator was also applied to determine wavenumbers for synthetic data where the water column sound speed contained temporal variations due to the presence of internal waves. It was shown that reliable estimates of horizontal wavenumbers could be obtained that are consistent with the boundary conditions of the waveguide. The Modal Mapping Experiment (MOMAX), an experimental method for measuring the full spatial variability of a propagating sound field and its corresponding modal content in two-dimensions, is also discussed. The AR estimator is applied to extract modal content from the real data and interpreted with respect to source/receiver motion and geometry. For a moving source, it is shown that the wavenumber content is Doppler shifted. A method is then described that allows the direct measure of modal group velocities from Doppler shifted wavenumber spectra. Finally, numerical studies are presented addressing the practical issues associated with using MOMAX type data in the exact inversion method of Gelfand-Levitan.
by Kyle M. Becker.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Louédec, Morgan. "Guaranteed ellipsoidal numerical method for the stability analysis of the formation control of a group of underwater robots." Electronic Thesis or Diss., Brest, École nationale supérieure de techniques avancées Bretagne, 2024. http://www.theses.fr/2024ENTA0007.

Повний текст джерела
Анотація:
Pour développer les activités marines humaines, des groupes de robots sous-marins peuvent automatiser certaines tâches. Ces robots étant difficiles à localiser en raison de contraintes sous-marines, ils doivent se déplacer en formation pour être fiables. Bien que plusieurs contrôleurs théoriques aient été proposés pour faire face à ces contraintes, ils doivent encore s’adapter à des contraintes plus complexes et être testés sur des systèmes réels. Comme pour tout système autonome, la stabilité de la formation doit être vérifiée par une preuve mathématique. Cependant, la complexité de ces systèmes non linéaires rend la méthode de Lyapunov conventionnelle difficile à utiliser. Ainsi, l’objectif principal de cette thèse est de développer des méthodes numériques garanties, basées sur l’arithmétique des intervalles, qui peuvent assister la preuve de stabilité. Basée sur la propagation garantie ellipsoïdale, une première méthode est conçue pour les systèmes à temps discret afin de calculer un domaine d’attraction ellipsoïdal. Cette méthode est ensuite étendue aux systèmes à temps continu, puis aux systèmes hybrides synchrones, qui sont des modélisations plus réalistes. En outre, la propagation ellipsoïdale est étendue pour prendre en compte les applications singulières et les ellipsoïdes dégénérées. Enfin, des test de formation en situation réelle viennent illustrer la stabilité
In the development of human marine activity, groups of underwater robots can automate certain tasks. Since these robots are difficult to localise because of the underwater constrains, they must move in formation to be reliable. While various theoretical controllers have been proposed to challenge these constrains, they still need to consider more complex constrains and to be tested on real systems. As for every autonomous system, the stability of the formation must be verified by a mathematical proof. However, the complexity of these nonlinear systems makes conventional Lyapunov method difficult to use. Thus, this thesis’ main objective is to develop guaranteed numerical methods, based on interval arithmetic, that can assist the stability proof. Based on ellipsoidal guaranteed propagation, a first method is designed for discrete time systems to compute an ellipsoidal domain of attraction. This method is then extended to continuous-time systems and then to synchronous hybrid systems which are more realistic modellings. In addition, the ellipsoidal propagation is extended to consider singular mappings and degenerate ellipsoids. Finally, some real world underwater formation control was achieved to illustrate the stability
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Real, Gaultier. "An ultrasonic testbench for reproducing the degradation of sonar performance in fluctuating ocean." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4753/document.

Повний текст джерела
Анотація:
Le milieu océanique est sujet à de nombreuses sources de fluctuations. Les plus importantes sont les ondes internes, très fréquentes et entrainant des fluctuations de la distribution spatiale du champ de célérité du son. En raison de la longue période de ces phénomènes comparée au temps de propagation des ondes acoustiques pour des applications sonar, le processus peut être considéré figé dans le temps pour chaque réalisation stochastique du milieu. Le développement de bancs d’essais permettant de reproduire les effets de la turbulence atmosphérique a permis des avancées considérables dans le domaine de l’optique adaptative. Nous voyons donc un fort intérêt dans la possibilité de reproduire les effets des ondes internes sur la propagation du son en environnement contrôlé. Un protocole expérimental dans une cuve d’eau est proposé: une onde ultrasonore est transmise à travers une lentille acoustique aléatoirement rugueuse, ce qui produit des distorsions du front d’onde reçu. Les fluctuations des signaux reçus sont contrôlées en modifiant les paramètres statistiques de rugosité de la lentille. Ces paramètres sont reliés à l’analyse dimensionnelle permettant de classifier les configurations étudiées selon des régimes de fluctuations et de prédire les moments statistiques du champ acoustique jusqu’à l’ordre quatre. Une excellente correspondance est observée entre notre protocole expérimental et des résultats théoriques et numériques.La dégradation des performances des techniques de détection classiques appliquées à nos données expérimentales souligne le besoin de techniques correctives. Un état de l’art des techniques existantes dans divers domaines est proposé
The ocean medium is subject to many sources of fluctuations. The most critical ones were found to be internal waves, occurring frequently and inducing fluctuations of the spatial distribution of the sound speed field. Because of the fairly long period of this phenomenon as compared to the propagation time of acoustic waves for sonar applications, the process can be considered frozen in time for each stochastic realization of the medium. The development of testbenches allowing to reproduce the effect of atmospheric turbulence on optic waves propagation under laboratory conditions lead to considerable advancements in the field of adaptive optics. We therefore see a vivid interest in being able to reproduce the effects of internal waves on sound propagation in controlled environments. An experimental protocol in a water tank is proposed: an ultrasonic wave is transmitted through a randomly rough acoustic lens, producing distortions of the received wavefront. The induced signal fluctuations are controlled by tuning the statistical parameters of the roughness of the lens. Especially, they are linked to dimensional parameters allowing to classify the configurations into regimes of fluctuations and to predict the statistical moment of the acoustic pressure up to the fourth order. A remarkable relevance of our experimental scheme is found when compared to theoretical and simulation results. The degradation of classical signal processing techniques when applied to our acquired data highlights the need for corrective detection techniques. A review of the existing techniques in other domains is proposed
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Smith, Donald F. "Acoustic modeling of the Monterey Bay tomography experiment." Thesis, Monterey, California : Naval Postgraduate School, 1990. http://handle.dtic.mil/100.2/ADA242658.

Повний текст джерела
Анотація:
Thesis (M.S. in Engineering Acoustics)--Naval Postgraduate School, December 1990.
Thesis Advisor(s): MIller, James H. ; Chiu, Ching-Sang. "December 1990." Description based on title screen as viewed on April 2, 2010. DTIC Identifier(s): Sound transmission, underwater sound, sea water, bathymetry, ray tracing, mathematical models, HARPO computer program, underwater acoustics, wave propagation, Monterey Bay (California), bays, California, shallow water, acoustic tomography, three dimensional, continental shelves, acoustic velocity, theses. Author(s) subject terms: Acoustic tomography, acoustic modeling, eigenrays, Monterey Bay. Includes bibliographical references (p. 57-58). Also available in print.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Morin, Russell Walter. "A Novel Localization System for Experimental Autonomous Underwater Vehicles." Digital WPI, 2010. https://digitalcommons.wpi.edu/etd-theses/233.

Повний текст джерела
Анотація:
Localization is a classic and complex problem in the field of mobile robotics. It becomes particularly challenging in an aqueous environment because currents within the water can move the robot. A novel localization module and corresponding localization algorithm for experimental autonomous underwater vehicles is presented. Unlike other available positioning systems which require fixed hardware beacons, this custom built module relies only on information available from sensors on-board the vehicle and knowledge of its bounded domain. This allows the user to save valuable time which would otherwise be devoted to the setup and calibration of a beacon or sensor network. The module uses three orthogonal ultrasonic transducers to measure distances to the tank boundaries. Using the measured tri-axial orientation of the vehicle, the algorithm analytically determines the robot's position within the domain in absolute coordinates. Certain vehicle states do not allow the position to be completely resolved by the algorithm alone. In this case, state estimation is used to estimate the robot position until its state is no longer indeterminate. The modular design of this system makes it ideal for application on underwater vehicles which operate in a bounded environment for research purposes. An experimental version of the module was constructed and tested in the WPI swimming pool and showed successful localization under normal conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Underwater Experiments"

1

Farren, Maureen A. Some experiments with underwater acoustic returns from cylinders relative to object identification for AUV operation. Monterey, California: Naval Postgraduate School, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Becker, Kyle M. Geoacoustic inversion in laterally varying shallow-water experiments using high-resolution wavenumber estimation. Cambridge, Mass: Massachusetts Institute of Technology, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Great Britain. Marine Accident Investigation Branch. Report on the underwater survey of the stern trawler Gaul H.243 and the supporting model experiments August 1998-January 1999. Southampton: Marine Accident Investigation Branch, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tolstoy, Ivan. Ocean acoustics: Theory and experiment in underwater sound. New York, N.Y: Published for the Acoustical Society of America by the American Institute of Physics, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Headrick, Robert Hugh. Analysis of internal wave induced mode coupling effects on the 1995 SWARM experiment acoustic transmissions. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Plueddemann, Albert J. ADCP measurements from the ICESHELF 94 experiment. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

A, Caiti, ed. Experimental acoustic inversion methods for exploration of the shallow water environment. Dordrecht: Kluwer Academic, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Meyer, Robert H. Experimental determination of transfer functions for a coated, ring stiffened cylinder as a function of hydrostatic pressure. Springfield, Va: Available from National Technical Information Service, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Russia) U.S.-Russia Workshop on Experimental Underwater Acoustics (1999 Nizhniĭ Novgorod. Proceedings of the U.S.-Russia Workshop on Experimental Underwater Acoustics, November 18-20, 1999. Edited by Talanov V. I and Institut prikladnoĭ fiziki (Rossiĭskai͡a akademii͡a nauk). Nizhniĭ Novgorod: Russian Academy of Science, Institute of Applied Physics, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Heinemann, Michael Gerhard. Experimental studies of applications of time-reversal acoustics to non-coherent underwater communications. Monterey, Calif: Naval Postgraduate School, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Underwater Experiments"

1

Antonelli, Gianluca. "Experiments of Dynamic Control of a 6-DOF AUV." In Underwater Robots, 117–26. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02877-4_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

McLain, Timothy W., Stephen M. Rock, and Michael J. Lee. "Experiments in the Coordinated Control of an Underwater Arm/Vehicle System." In Underwater Robots, 139–58. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1419-6_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nuske, Stephen, Jonathan Roberts, David Prasser, and Gordon Wyeth. "Experiments in Visual Localisation around Underwater Structures." In Springer Tracts in Advanced Robotics, 295–304. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13408-1_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Melville, W. K., M. R. Loewen, and Eric Lamarre. "Bubbles, Noise and Breaking Waves: A Review of Laboratory Experiments." In Natural Physical Sources of Underwater Sound, 483–501. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1626-8_36.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Goodman, R. R., and P. Krishnan. "A Review of Environmental Measurements Taken during Ambient Noise Experiments." In Natural Physical Sources of Underwater Sound, 85–92. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1626-8_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yuan, Xin’an, Wei Li, Jianming Zhao, Xiaokang Yin, Xiao Li, and Jianchao Zhao. "High Sensitivity Rotating Alternating Current Field Measurement for Arbitrary-Angle Underwater Cracks." In Recent Development of Alternating Current Field Measurement Combine with New Technology, 1–20. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-4224-0_1.

Повний текст джерела
Анотація:
AbstractAlternating current field measurement (ACFM) technology has been used for sizing underwater structure cracks. However, conventional ACFM is more sensitive to cracks perpendicular to the induced current than cracks with other angles. In this paper, a rotating alternating current field measurement (RACFM) method and underwater test system are present for the detection of arbitrary-angle cracks with high sensitivity. The RACFM is proved by simulations and experiments. Arbitrary-angle cracks detection results obtained from ACFM and RACFM have shown that the RACFM method overcomes the limitation of directional detection of ACFM and effectively achieves high detection sensitivity for arbitrary-angle cracks on underwater structures.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Berthelot, Yves H., and Ilene J. Busch-Vishniac. "Optical Generation of Sound: Experiments with a Moving Thermoacoustic Source. The Problem of Oblique Incidence of the Laser Beam." In Progress in Underwater Acoustics, 603–10. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1871-2_71.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Detweiler, Carrick, Elizabeth Basha, Marek Doniec, and Daniela Rus. "Underwater Networks with Limited Mobility: Algorithms, Systems, and Experiments." In Mobile Ad Hoc Networking, 769–803. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118511305.ch22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, Xin, Zhendong Luan, and Zengfeng Du. "In Situ Detection and Seafloor Observation of the Site F Cold Seep." In South China Sea Seeps, 235–53. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1494-4_14.

Повний текст джерела
Анотація:
AbstractThe in situ detection and seafloor observation of the Site F cold seep began after its discovery. Research on deep−sea cold seep systems often begins with descriptions of topography and geomorphology. The earliest platform for topographic and geomorphologic exploration was the scientific expedition vessel. With the development of underwater vehicles, autonomous underwater vehicles (AUVs) and remote operated vehicles (ROVs) have become platforms for geophysical exploration of the seafloor. Thus, the spatial resolution of exploration has also been enhanced to the centimeter level. At the same time, sampling and in situ detection technology have gradually become the main research methods for cold seep systems. Based on the obtained samples and in situ data, research on the geochemistry and bioecology of cold seep systems has been carried out. Many technologies have been developed and may be used to promote the limit of detection of spectral−based methods to broaden the application range. Long−term detection for in situ experiments with specific scientific targets under natural cold seep environments is another trend for detection and observation in cold seep areas.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hundley, Allen, Stewart A. L. Glegg, Juan I. Arvelo, and Herbert Uberall. "Numerical Modelling and Laboratory Experiments on Underwater Sound Propagation Over a Shear Supporting Bottom." In Shear Waves in Marine Sediments, 75–81. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3568-9_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Underwater Experiments"

1

Viegas, Rúben S., Friedrich Zabel, João Gomes, and António Silva. "Spiral Beacon Calibration and Experiments for Underwater Localization." In OCEANS 2024 - SINGAPORE, 1–9. IEEE, 2024. http://dx.doi.org/10.1109/oceans51537.2024.10682258.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Li, Guanhui, Fangjiong Chen, Xing Zhang, Hua Yu, and Lijun Xu. "Field Experiments of OTFS Based Underwater Acoustic Communication in Shallow Water." In 2024 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), 1–4. IEEE, 2024. https://doi.org/10.1109/icspcc62635.2024.10770503.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Du, Hongwei, Xianglong Zhang, Kai Wang, Guanghua Li, and Bingju Lu. "Improvements and experiments on defect detection of optical images of underwater structures." In 2024 5th International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), 232–37. IEEE, 2024. http://dx.doi.org/10.1109/icbase63199.2024.10762478.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Shan, Mingguang, Bei Hu, Zhi Zhong, Lei Liu, Yongqiang Xie, and Zhongbo Li. "Global estimation of underwater polarization imaging using image correlation." In Digital Holography and Three-Dimensional Imaging, W4A.32. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/dh.2024.w4a.32.

Повний текст джерела
Анотація:
A method for global estimation of underwater polarization imaging using image correlation is proposed and some experiments are carried out to verify the feasibility and effectiveness of this approach.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cosimo, Davide, Antonio Montanari, Daniele Sebino Terracciano, Lorenzo Bazzarello, Riccardo Costanzi, Filippo Campagnaro, and Michele Zorzi. "Comparative Analysis of Throughput Maximization Strategies in Underwater Acoustic Networks: Results from At-Sea Experiments." In 2024 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), 52–57. IEEE, 2024. https://doi.org/10.1109/metrosea62823.2024.10765664.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lin, Xichuan, Shuxiang Guo, Koujirou Tanaka, and Seji Hata. "Underwater experiments of a water-jet-based spherical underwater robot." In 2011 IEEE International Conference on Mechatronics and Automation (ICMA). IEEE, 2011. http://dx.doi.org/10.1109/icma.2011.5985753.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kirkwood, William J. "FOCE: The evolution of in situ Free Ocean CO2 Enrichment experiments." In 2015 IEEE Underwater Technology (UT). IEEE, 2015. http://dx.doi.org/10.1109/ut.2015.7108322.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kebkal, Veronika, Konstantin Kebkal, and Oleksiy Kebkal. "Experiments with network coding in dynamic underwater acoustic channel." In 2014 Underwater Communications and Networking (UComms). IEEE, 2014. http://dx.doi.org/10.1109/ucomms.2014.7017136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

POTTER, JR, and S. MILLER. "SOME RECENT EXPERIMENTS ON ACOUSTIC FLUCTUATIONS IN THE SEA." In Fluctuation Phenomena in Underwater Acoustics 1986. Institute of Acoustics, 2024. http://dx.doi.org/10.25144/22301.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chusov, Andrey A., Lubov Statsenko, and Yulia Mirgorodskaya. "Applying high-performance computing to conducting experiments on sound propagation." In 5th Pacific Rim Underwater Acoustics Conference. Acoustical Society of America, 2015. http://dx.doi.org/10.1121/2.0000129.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Underwater Experiments"

1

Leininger, L. Validation of Air-Backed Underwater Explosion Experiments with ALE3D. Office of Scientific and Technical Information (OSTI), February 2005. http://dx.doi.org/10.2172/917915.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Maxey. L51470 Experimental Evaluation of Fracture Propagation in an Underwater Gas Pipeline. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), February 1985. http://dx.doi.org/10.55274/r0011312.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jones, Theodore G., Jacob Grun, H. R. Burris, and Charles Manka. Feasibility Experiments for Underwater Shock and Bubble Generation with a High-Power Laser. Fort Belvoir, VA: Defense Technical Information Center, April 1999. http://dx.doi.org/10.21236/ada362880.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wolff, Patrick, Brett DeGregorio, and Aaron Rice. Demonstration of subsurface passive acoustic monitoring (SPAM) to survey for and estimate populations of imperiled underwater-calling frogs. Engineer Research and Development Center (U.S.), November 2021. http://dx.doi.org/10.21079/11681/42386.

Повний текст джерела
Анотація:
The management and recovery of threatened and endangered amphibians on Department of Defense (DoD) lands relies on an understanding of their distribution and abundance. Fortunately, most anuran species can be surveyed acoustically using vocalizations during the breeding season. This work demonstrated the use of subsurface passive acoustic monitoring (SPAM) to survey for rare underwater-calling, at-risk anuran species on DoD installations. We evaluated the performance of SPAM relative to traditional passive acoustic monitoring (PAM) (microphone) and human manual calling survey (MCS) methods. Results showed that SPAM outperformed PAM and MCS in validation experiments where calls were generated underwater; SPAM was less successful than PAM and MCS in the field demonstration. Most leopard frog calls were apparently produced in air despite previous reports of extensive underwater-calling behavior. This project highlights how acoustic information can help address a data gap in the ecology of at-risk species, which can help refine future survey methodology and management efforts. Ultimately, the utility of SPAM for underwater-calling species will depend on the focal species, the landscape where it occurs, and technological considerations available to the surveyor. SPAM is more expensive than traditional methods but, in some situations, may be the only way to effectively detect species.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kamegai, Minao, and J. W. White. Computer simulations of WIGWAM underwater experiment. Office of Scientific and Technical Information (OSTI), November 1993. http://dx.doi.org/10.2172/10110688.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Guigne, J. Y. Design and Experimental Development of An "Underwater Acoustic Drill". Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1987. http://dx.doi.org/10.4095/123302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mahmoud, Hussam, Guillermo Riveros, Lauren Hudak, and Emad Hassan. Experimental fatigue evaluation of underwater steel panels retrofitted with fiber polymers. Engineer Research and Development Center (U.S.), March 2023. http://dx.doi.org/10.21079/11681/46647.

Повний текст джерела
Анотація:
Many steel structures are susceptible to fatigue loading and damage that potentially threaten their integrity. Steel hydraulic structures (SHS) experience fatigue loading during operation and exposure to harsh environmental conditions that can further reduce fatigue life through stress corrosion cracking and corrosion fatigue, for example. Dewatering to complete inspections or repairs to SHS is time consuming and leads to economic losses, and current repair methods, such as rewelding, often cause new cracks to form after relatively few cycles, requiring repeated inspection and repair. The use of bonded carbon fiber–reinforced polymer (CFRP) to repair fatigue cracks in metallic structures has been successful in other industries; recent work suggests that this method offers a more reliable repair method for SHS. Studies regarding CFRP retrofits of SHS indicate that early bond failure often controls the degree of fatigue life extension provided by the repair. This study aims to extend previous studies and increase the fatigue life of repaired steel components by employing methods to improve CFRP bonding. Additionally, using basalt reinforced polymer (BFRP) instead of CFRP is proposed. BFRP is attractive for SHS because it does not react galvanically and has excellent resistance to chemically active environments.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

DILLON CONSULTING LIMITED CAMBRIDGE (CANADA). Determining the Properties and Capabilities of an Existing Experimental Large Loop EM61 Underwater UXO Detector. Fort Belvoir, VA: Defense Technical Information Center, December 2006. http://dx.doi.org/10.21236/ada469854.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Riedel, J. S. Shallow Water Stationkeeping of an Autonomous Underwater Vehicle: The Experimental Results of a Disturbance Compensation Controller. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada436011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pehme, Peeter. Determining the Properties and Capabilities of an Existing Experimental Large Loop EM 61 Underwater UXO Detector. Fort Belvoir, VA: Defense Technical Information Center, December 2006. http://dx.doi.org/10.21236/ada594402.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії