Добірка наукової літератури з теми "ULTRA LOW POWER DIODE"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "ULTRA LOW POWER DIODE".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "ULTRA LOW POWER DIODE"

1

Liu, Hai Rui, and Jun Sheng Yu. "Characterization of Metal-Semiconductor Schottky Diodes and Application on THz Detection." Advanced Materials Research 683 (April 2013): 729–32. http://dx.doi.org/10.4028/www.scientific.net/amr.683.729.

Повний текст джерела
Анотація:
This paper presents a kind of air-bridged GaAs Schottky diodes which offer ultra low parasitic capacitance and series resistance in millimeter and THz wavelength. The Schottky barrier diodes have several advantages when used as millimeter wave and terahertz video, or power detectors. These include their fast time response, room temperature operation, simple structure and low cost. This paper describes the characterization of the metal-semiconductor Schottky diodes including principle, diode structure, non-linear voltage-current characteristic and signal-rectifying performance. For application, a quasi-optical THz detector was made by using the proposed Schottky diodes. It utilized a hyper hemispherical silicon lens to coupleand THz radiation to the diodes by integrating on a broadband planar bow-tie antenna. The measurement results of the Schottky diode based detector show a good room temperature performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Levacq, David, Vincent Dessard, and Denis Flandre. "Low Leakage SOI CMOS Static Memory Cell With Ultra-Low Power Diode." IEEE Journal of Solid-State Circuits 42, no. 3 (March 2007): 689–702. http://dx.doi.org/10.1109/jssc.2006.891494.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Schwarz, Mike, Alexander Kloes, and Denis Flandre. "Temperature-dependent performance of Schottky-Barrier FET ultra-low-power diode." Solid-State Electronics 184 (October 2021): 108124. http://dx.doi.org/10.1016/j.sse.2021.108124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lin, Ling, Zhong Tang, Nianxiong Tan, and Xiaohui Xiao. "Power Management in Low-Power MCUs for Energy IoT Applications." Journal of Sensors 2020 (December 14, 2020): 1–12. http://dx.doi.org/10.1155/2020/8819236.

Повний текст джерела
Анотація:
In this paper, we identify and address the problems of designing effective power management schemes in low-power MCU design. Firstly, this paper proposes an application-based multipower domain architecture along with a variety of working modes to effectively realize the hierarchical control of power consumption. Furthermore, devices in energy IoT (eIoT) do not always work under the main power supply. When the main power supply is unavailable, the standby power supply (usually the battery) needs to maintain the operation and save the data. In order to ensure the complete isolation between these two power sources, it is always necessary to insert a diode in both select-conduction paths, respectively. In this paper, we built a stable and smooth power switching circuit into the chip, which can effectively avoid the diode voltage loss and reduce the BoM cost. In addition, in the sleep mode, considering the relaxed output voltage range and a limited driving capability requirement, an ultra-low-power standby power circuit is proposed, which can autonomously replace the internal LDO when in sleep, further reducing the sleep power consumption under the main power supply. Fabricated in a standard 0.11 μm CMOS process, our comparative analysis demonstrates substantial reduction in power consumption from 1 μA to 0.1 μA.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Azevedo, Eduardo, Andressa Silva, Raquel Martins, Monica L. Andersen, Sergio Tufik, and Gilberto M. Manzano. "Activation of C-fiber nociceptors by low-power diode laser." Arquivos de Neuro-Psiquiatria 74, no. 3 (March 2016): 223–27. http://dx.doi.org/10.1590/0004-282x20160018.

Повний текст джерела
Анотація:
ABSTRACT Objective The evaluation of selective activation of C-fibers to record evoked potentials using the association of low-power diode laser (810 nm), tiny-area stimulation and skin-blackening. Method Laser-evoked potentials (LEPs) were obtained from 20 healthy young subjects. An aluminum plate with one thin hole was attached to the laser probe to provide tiny-area stimulation of the hand dorsum and the stimulated area was covered with black ink. Results The mean intensity used for eliciting the ultra-late laser-evoked potential (ULEP) was 70 ± 32 mW. All subjects showed a clear biphasic potential that comprised a negative peak (806 ± 61 ms) and a positive deflection (1033 ± 60 ms), corresponding to the ULEP related to C-fiber activation. Conclusion C-fiber-evoked responses can be obtained using a very low-power diode laser when stimulation is applied to tiny areas of darkened skin. This strategy offers a non-invasive and easy methodology that minimizes damage to the tissue.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fernandes, Ricardo Dias, João Nuno Matos, and Nuno Borges Carvalho. "Low‐power ultra‐wide band pulse generator based on a PIN diode." IET Microwaves, Antennas & Propagation 9, no. 11 (August 2015): 1230–32. http://dx.doi.org/10.1049/iet-map.2014.0491.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Khindria, Ishita, Kashika Hingorani, and Vandana Niranjan. "Low Power ALU using Wave Shaping Diode Adiabatic Logic." Indian Journal of VLSI Design 2, no. 2 (September 30, 2022): 1–4. http://dx.doi.org/10.54105/ijvlsid.d1209.091422.

Повний текст джерела
Анотація:
The evolution of portable electronic devices and their widespread application has led to an increased focus on power dissipation as one of the critical parameters. An increase in functionality requirement and design complexity on a single chip has resulted in increased power dissipation. High power dissipation has motivated study and innovation on low power circuit design techniques. Adiabatic logic has been studied as one of the design techniques to reduce power dissipation by reusing the power that was getting dissipated in conventional designs. This paper presents the application of Wave Shaping Diode Adiabatic Logic (WSDAL) to implement an ALU and analyse the improvement in power dissipation as compared to the conventional CMOS design. The WSDAL design uses a slow and time-fluctuating 2-phase sinusoidal Power Clock (PC), which supplies power as well as a clock to the designs. WSDAL uses an Ultra-Low Power Diode (ULPD) structure that operates as a wave shaping device and reduces glitches at the output. The design has been implemented in OrCAD Capture and simulated using Pspice in TSMC 180nm technology. The simulations were performed at 200MHz PC frequency and power dissipation was studied over a range of voltages from 1.4V to 2.2V. The simulations show that WSDAL ALU dissipates less power than the CMOS design. This study indicates that WSDAL-based designs have the potential to be deployed for power dissipation reduction in portable devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chang, Yi Tsun, Yu Da Shiau, Po Chun Wu, Ren Hao Xue, and Po Yu Cheng. "LDO of High Power Supply Rejection with Two-Stage Error Amplifiers and Buffer Compensation." Advanced Materials Research 989-994 (July 2014): 3236–39. http://dx.doi.org/10.4028/www.scientific.net/amr.989-994.3236.

Повний текст джерела
Анотація:
This study develops a low dropout regulator linear regulator, characterized by a high power supply rejection ratio using ultra-low output resistance buffer and two-stage error amplifiers. The high power supply rejection is based on a closed-loop LDO regulator. The ultra-low output resistance buffer achieves ultra-low output impedance with dual shunt feedback loops, subsequently improving load and line regulations, as well as the transient response for low voltage applications. The proposed LDO regulator linear regulator functions under an input voltage of 1.8~3V, and the output voltage can be maintained at around 1.27V. Moreover, its output voltage is independent of input voltage. The proposed regulator is applicable to light-emitting diode driver integrated circuits. The layout chip area of the LDO linear regulator is 21.5μm × 42.6μm.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Matys, Maciej, Kazuki Kitagawa, Tetsuo Narita, Tsutomu Uesugi, Jun Suda, and Tetsu Kachi. "Mg-implanted vertical GaN junction barrier Schottky rectifiers with low on resistance, low turn-on voltage, and nearly ideal nondestructive breakdown voltage." Applied Physics Letters 121, no. 20 (November 14, 2022): 203507. http://dx.doi.org/10.1063/5.0106321.

Повний текст джерела
Анотація:
Vertical GaN junction barrier Schottky (JBS) diodes with superior electrical characteristics and nondestructive breakdown were realized using selective-area p-type doping via Mg ion implantation and subsequent ultra-high-pressure annealing. Mg-ion implantation was performed into a 10 μm thick Si-doped GaN drift layer grown on a free-standing n-type GaN substrate. We fabricated the JBS diodes with different n-type GaN channel widths Ln = 1 and 1.5 μm. The JBS diodes, depending on Ln, exhibited on-resistance ( RON) between 0.57 and 0.67 mΩ cm2, which is a record low value for vertical GaN Schottky barrier diodes (SBDs) and high breakdown (BV) between 660 and 675 V (84.4% of the ideal parallel plane BV). The obtained low RON of JBS diodes can be well explained in terms of the RON model, which includes n-type GaN channel resistance, spreading current effect, and substrate resistance. The reverse leakage current in JBS diodes was relatively low 103–104 times lower than in GaN SBDs. In addition, the JBS diode with lower Ln exhibited the leakage current significantly smaller (up to reverse bias 300 V) than in the JBS diode with large Ln, which was explained in terms of the reduced electric field near the Schottky interface. Furthermore, the JBS diodes showed a very high current density of 5.5 kA/cm2, a low turn-on voltage of 0.74 V, and no destruction against the rapid increase in the reverse current approximately by two orders of magnitude. This work demonstrated that GaN JBS diodes can be strong candidates for low loss power switching applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wang, Yunzhen, Shengxi Diao, Fujiang Lin, and Haiquan Yuan. "An Ultra-Low Power Subthreshold CMOS RSSI for Wake-Up Receiver." Journal of Circuits, Systems and Computers 25, no. 08 (May 17, 2016): 1650090. http://dx.doi.org/10.1142/s0218126616500900.

Повний текст джерела
Анотація:
This paper reports an ultra-low power received signal strength indicator (RSSI) for low frequency (LF) wake-up receiver. Topology theory analysis and subthreshold operation are performed to lower power consumption. Each gain stage of the subthreshold limiting amplifier (LA) employs cascade diode-connected loads to obtain high output impedance while maintaining low power. An offset cancelation circuit with different tail currents, which also operates in the subthreshold region, is employed to reduce the DC offset voltage. Unbalanced source-coupled pairs of subthreshold devices adopted in the full-wave rectification are optimized. A 45[Formula: see text]dB input dynamic range and [Formula: see text][Formula: see text]dB indicating error are achieved at 125[Formula: see text]KHz frequency. The prototype occupies an active area of 0.39[Formula: see text][Formula: see text][Formula: see text]0.28[Formula: see text]mm using CSMC 0.153-[Formula: see text]m complementary metal-oxide-semiconductor (CMOS) technology. With a 1.8[Formula: see text]V supply voltage, the overall current consumption is only 6[Formula: see text][Formula: see text]A.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "ULTRA LOW POWER DIODE"

1

Wu, Wei. "MICRO-CIRCUIT DIODE FOR ULTRA-LOW-POWER ENERGY HARVESTING." OpenSIUC, 2017. https://opensiuc.lib.siu.edu/dissertations/1415.

Повний текст джерела
Анотація:
Harvesting energy from ultra-low-power vibration energy sources typically employs a rectifier circuit as the first power conditioning stage. The Schottky diode has a 0.15 V - 0.2 V threshold voltage and can not extract energy efficiently at low voltage. Other technologies such as MOSFET bridge or active diode are designed to minimize the voltage drop to reduce the conduction loss. However, these designs require either additional power supplies to operate comparators or have a larger threshold turn-on voltage than Schottky. Therefore, most rectifiers have an unresponsive or significant low-efficiency zone when the input power is low. This dissertation will elaborate on a backward diode based self-powered micro-circuit diode that will operate in the extremely weak or low alternating source applications, where the existing approaches offer poor outcomes. This proposed micro-circuit diode was compared to a Schottky diode in several experiment setup. The micro-circuit based half-wave rectifier circuit harvested 3.1 mV DC at a 239.5 Ohm load when the input magnitude is 50 mV while the Schottky diode was unable to convert this ultra-low AC power. This dissertation also provides the analysis of two alternating sources, the oscillatory electromagnetic generator and the piezoelectric energy harvester, to conduct experiments in a more realistic context. The micro-circuit diode shows excellent advantages in electromagnetic generator experiment, the micro-circuit based half-wave rectifier circuit harvested 5.16 mV DC at a 0.5 kOhm load when the input magnitude is 40 mV. However, due to the large leakage current in negative resistance region, this micro-circuit is unable to show advantages in piezoelectric energy harvester applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Davidova, Rebeka. "Ultra-Low Power Electronics for Autonomous Micro-Sensor Applications." Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/3063.

Повний текст джерела
Анотація:
This thesis presented the research, design and fabrication associated with a unique application of rectenna technology combined with lock-in amplification. An extremely low-power harmonic transponder is conjoined with an interrogator base-station, and utilizing coherent demodulation the Remote Lock-In Amplifier (RLIA) concept is realized. Utilizing harmonic re-radiation with very low-power input, the 1st generation transponder detects a transmitted interrogation signal and responds by retransmitting the second harmonic of the signal. The 1st generation transponder performs this task while using no additional power besides that which accompanies the wireless signal. Demonstration of the first complete configuration provided proof of concept for the RLIA and feasibility of processing relevant information under "zero" power operating conditions with a remote transponder. Design and fabrication of a new transponder where the existing zero-bias transponder was modified to include a DC bias to the diode-based frequency doubler is presented. Applied bias voltage directly changed the impedance match between the receiving 1.3 GHz antenna and the diode causing a change in conversion loss. Testing demonstrated that a change in conversion loss induces an amplitude modulation on the retransmission of the signal from the transponder. A test of bias sweep at the optimal operating frequency was performed on the 2nd generation transponder and it was seen that a change of ~ 0.1 V in either a positive or negative bias configuration induced an approximate 15 dB change in transponder output power. A diode-integrated radar detector is designed to sense microwaves occurring at a certain frequency within its local environment and transform the microwave energy to a DC voltage proportional the strength of the signal impinging on its receiving antenna. The output of the radar detector could then be redirected to the bias input of the 2nd generation transponder, where this DC voltage input would cause a change in conversion loss and modulate the retransmitted interrogation signal from the transponder to the base station. When the base station receives the modulated interrogation signal the information sensed by the radar detector is extracted. Simulations and testing results of the fabricated radar detector demonstrate capability of sensing a signal of approximately -53.3 dBm, and accordingly producing a rectified DC voltage output of 0.05 mV. A comparison is made between these findings and the transponder measurements to demonstrate feasibility of pairing the radar detector and the 2nd generation transponder together at the remote sensor node to perform modulation of interrogation signals.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Eriksson, Gustav. "Towards Long-Range Backscatter Communication with Tunnel Diode Reflection Amplifiers." Thesis, Uppsala universitet, Fasta tillståndets elektronik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-354901.

Повний текст джерела
Анотація:
Backscatter communication enables wireless communication at a power consumption orders of magnitude lower than conventional wireless communication. Instead of generating new RF-signals backscatter communication leverages ambient signals, such as WiFi-, Bluetooth- or TV-signals, and reflects them by changing the impedance of the antenna. Backscatter communication is known as a short-range communication technique achieving ranges in the order of meters. To improve the communication range, we explore the use of a tunnel diode as an amplifier of the backscattered RF-signal. We developed the amplifier on a PCB-board together with a matching network tuned to give maximum gain at 868 MHz. Our work demonstrates that the 1N3712 tunnel diode can achieve gains up to 35 dB compared to a tag without amplification while having a peak power consumption of 48 μW. With this amplifier the communication distance can be increased by up to two orders of magnitude.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Guttman, Jeremy. "Polymer-based Tunnel Diodes Fabricated using Ultra-thin, ALD Deposited, Interfacial Films." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1469125487.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Forestiere, Giuseppe. "Ultra-low power circuits for power management." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-143812.

Повний текст джерела
Анотація:
Recent developments in energy harvesting techniques allowed implementation of completely autonomous biosensor nodes. However, an energy harvesting device generally demands a customized power management unit (PMU) in order to provide the adequate voltage supply for the biosensor. One of the key blocks within this PMU is a regulation DC-DC converter. In this Master Thesis, the most relevant switched-capacitor DC-DC converter topologies that are suitable for biosensors are compared. The topology that can achieve the best efficiency and has the minimum area is chosen and designed. In order to maintain the supply voltage of the biosensor constant when the input voltage and the output current vary, a traditional Pulse-Frequency-Modulation (PFM) control is employed. An ultra-low-power PFM control circuit is designed to operate in weak inversion region. The post-layout simulations show that the designed DC-DC converter can provide an output voltage of 900mV when the output current varies between 5μA and 40μA. Additionally, the post layout simulations of the entire system, which includes the DC-DC converter and PFM control, show that the selected topology can achieve 87% peak efficiency, when the control losses are included. The main advantages of the proposed topology are its smaller chip area and its high efficiency during processing ultra-low power levels.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dancy, Abram P. (Abram Paul). "Power supplies for ultra low power applications." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/10069.

Повний текст джерела
Анотація:
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.
Includes bibliographical references (p. 101-103).
by Abram P. Dancy.
M.Eng.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Vashisth, Abhishek. "LOW DEVICE COUNT ULTRA LOW POWER NEMS FPGA." Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1383618426.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

El-Damak, Dina Reda. "Power management circuits for ultra-low power systems." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99821.

Повний текст джерела
Анотація:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 137-145).
Power management circuits perform a wide range of vital tasks for electronic systems including DC-DC conversion, energy harvesting, battery charging and protection as well as dynamic voltage scaling. The impact of the efficiency of the power management circuits is highly profound for ultra-low power systems such as implantable, ingestible or wearable devices. Typically the size of the system for such applications does not allow the integration of a large energy storage device. Therefore, extreme energy efficiency of the power management circuits is critical for extended operation time. In addition, flexibility and small form factor are desirable to conform to the human body and reduce the system's over all size. Thus, this thesis presents highly efficient and miniature power converters for multiple applications using architecture and circuit level optimization as well as emerging technologies. The first part presents a power management IC (PMIC) featuring an integrated reconfigurable switched capacitor DC-DC converter using on-chip ferroelectric caps in 130 nm CMOS process. Digital pulse frequency modulation and gain selection circuits allow for efficient output voltage regulation. The converter utilizes four gain settings (1, 2/3, 1/2, 1/3) to support an output voltage of 0.4 V to 1.1 V from 1.5 V input while delivering load current of 20 [mu]A to 1 mA. The PMIC occupies 0.366 mm² and achieves a peak efficiency of 93% including the control circuit overhead at a load current of 500 [mu]A. The second part presents a solar energy harvesting system with 3.2 nW overall quiescent power. The chip integrates self-startup, battery management, supplies 1 V regulated rail with a single inductor and supports power range of 10 nW to 1 [mu]W. The control circuit is designed in an asynchronous fashion that scales the effective switching frequency of the converter with the level of the power transferred. The ontime of the converter switches adapts dynamically to the input and output voltages for peak-current control and zero-current switching. The system has been implemented in 180 nm CMOS process. For input power of 500 nW, the proposed system achieves an efficiency of 82%, including the control circuit overhead, while charging a battery at 3 V from 0.5 V input. The third part focuses on developing an energy harvesting system for an ingestible device using gastric acid. An integrated switched capacitor DC-DC converter is designed to efficiently power sensors and RF transmitter with a 2.5 V regulated voltage rail. A reconfigurable Dickson topology with four gain settings (3, 4, 6, 10) is used to support a wide input voltage range from 0.3 V to 1.1 V. The converter is designed in 65 nm CMOS process and achieves a peak efficiency of 80% in simulation for output power of 2 [mu]W. The last part focuses on flexible circuit design using Molybdenum Disulfide (MoS₂), one of the emerging 2D materials. A computer-aided design flow is developed for MoS₂-based circuits supporting device modeling, circuit simulation and parametric cell-based layout - which paves the road for the realization of large-scale flexible MoS₂ systems.
by Dina Reda El-Damak.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sirigiri, Vijay Krishna. "Ultra-Low Power Ultra-Fast Hybrid CNEMS-CMOS FPGAs." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1291259866.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kaps, Jens-Peter E. "Cryptography for ultra-low power devices." Link to electronic dissertation, 2006. http://www.wpi.edu/Pubs/ETD/Available/etd-050406-152129/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "ULTRA LOW POWER DIODE"

1

Haddad, Sandro A. P., and Wouter A. Serdijn. Ultra Low-Power Biomedical Signal Processing. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9073-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mercier, Patrick P., and Anantha P. Chandrakasan, eds. Ultra-Low-Power Short-Range Radios. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14714-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tan, Nianxiong Nick, Dongmei Li, and Zhihua Wang, eds. Ultra-Low Power Integrated Circuit Design. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-9973-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Macii, Enrico, ed. Ultra Low-Power Electronics and Design. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/b117171.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bracke, Wouter, Robert Puers, and Chris Van Hoof. Ultra Low Power Capacitive Sensor Interfaces. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6232-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Enrico, Macii, ed. Ultra low-power electronics and design. Boston: Kluwer Academic Publishers, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

author, Wang Xiao, and Dokania Rajeev author, eds. Design of ultra-low power impulse radios. New York: Springer, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Fanet, Hervé. Ultra Low Power Electronics and Adiabatic Solutions. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119006541.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Apsel, Alyssa, Xiao Wang, and Rajeev Dokania. Design of Ultra-Low Power Impulse Radios. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-1845-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lin, Zhicheng, Pui-In Mak, and Rui Paulo Martins. Ultra-Low-Power and Ultra-Low-Cost Short-Range Wireless Receivers in Nanoscale CMOS. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21524-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "ULTRA LOW POWER DIODE"

1

Nouet, Pascal, Norbert Dumas, Laurent Latorre, and Frédérick Mailly. "Ultra-Low-Power Sensors." In Energy Autonomous Micro and Nano Systems, 207–39. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118561836.ch8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhong, Shupeng, and Nianxiong Nick Tan. "Low Noise Low Power Amplifiers." In Ultra-Low Power Integrated Circuit Design, 15–29. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9973-3_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bertacchini, Alessandro, Marco Lasagni, and Gabriele Sereni. "Ultra-Low Power Displacement Sensor." In Lecture Notes in Electrical Engineering, 251–57. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37277-4_29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jiang, Hanjun, Nanjian Wu, Baoyong Chi, Fule Li, Lingwei Zhang, and Zhihua Wang. "Ultra-Low Power Transceiver Design." In Ultra-Low Power Integrated Circuit Design, 107–43. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9973-3_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Haddad, Sandro A. P., and Wouter A. Serdijn. "Ultra Low-Power Integrator Designs." In Ultra Low-Power Biomedical Signal Processing, 95–130. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9073-8_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rabaey, Jan. "Ultra Low Power/Voltage Design." In Integrated Circuits and Systems, 289–316. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-71713-5_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Masuch, Jens, and Manuel Delgado-Restituto. "Low Power Strategies." In Ultra Low Power Transceiver for Wireless Body Area Networks, 13–21. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00098-5_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yang, Kun, Shupeng Zhong, Quan Kong, Changyou Men, and Nianxiong Nick Tan. "Low Power Energy Metering Chip." In Ultra-Low Power Integrated Circuit Design, 145–68. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9973-3_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kopta, Vladimir, and Christian Enz. "Low Power Wireless Communications." In Ultra-Low Power FM-UWB Transceivers for IoT, 9–37. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003339908-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Roberts, Nathan E., and David D. Wentzloff. "Ultra-Low Power Wake-Up Radios." In Integrated Circuits and Systems, 137–62. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14714-7_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "ULTRA LOW POWER DIODE"

1

Schwarz, Mike, Alexander Kloes, and Denis Flandre. "Schottky-Barrier FET Ultra-Low-Power Diode." In 2020 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS). IEEE, 2020. http://dx.doi.org/10.1109/eurosoi-ulis49407.2020.9365540.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Farzami, Farhad, Seiran Khaledian, Besma Smida, and Danilo Erricolo. "Ultra-low power reflection amplifier using tunnel diode for RFID applications." In 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2017. http://dx.doi.org/10.1109/apusncursinrsm.2017.8073298.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

van Leeuwen, R., B. Xu, L. S. Watkins, Q. Wang, and C. Ghosh. "Low noise high power ultra-stable diode pumped Er-Yb phosphate glass laser." In SPIE Defense and Security Symposium, edited by Michael J. Hayduk, Peter J. Delfyett, Jr., Andrew R. Pirich, and Eric J. Donkor. SPIE, 2008. http://dx.doi.org/10.1117/12.782202.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Matsumoto, Kaori, Tetsuya Hirose, Hiroki Asano, Yuto Tsuji, Yuichiro Nakazawa, Nobutaka Kuroki, and Masahiro Numa. "An ultra-low power active diode using a hysteresis common gate comparator for low-voltage and low-power energy harvesting systems." In 2018 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC). IEEE, 2018. http://dx.doi.org/10.1109/vlsi-soc.2018.8644968.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

de Souza, M., R. T. Doria, R. D. Trevisoli, and M. A. Pavanello. "Ultra-low-power diodes using junctionless nanowire transistors." In 2015 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS). IEEE, 2015. http://dx.doi.org/10.1109/ulis.2015.7063836.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Li, Ping, Moufu Kong, and Xingbi Chen. "A novel diode-clamped CSTBT with ultra-low on-state voltage and saturation current." In 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD). IEEE, 2016. http://dx.doi.org/10.1109/ispsd.2016.7520839.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Woods, Lawrence, Mark Crowley, Prabhu Thiagarajan, E. Ruben, John Goings, Takashi Hosoda, Maximillian Rowe, B. Liu, Brian Caliva, and Neil Crapo. "Ultra-high peak power laser diode arrays with 1kA-class low-SWaP drive electronics." In Components and Packaging for Laser Systems VII, edited by Alexei L. Glebov and Paul O. Leisher. SPIE, 2021. http://dx.doi.org/10.1117/12.2575948.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Priyanka, Alok Kumar Singh, and Neeta Pandey. "Implementation of Ultra Low Power Diode load based Gilbert cell mixer for wireless applications." In 2015 Annual IEEE India Conference (INDICON). IEEE, 2015. http://dx.doi.org/10.1109/indicon.2015.7443242.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yamashita, Yusuke, Satoru Machida, Jun Saito, and Masaru Senoo. "Novel Diode Structure for Ultra-Law-Loss RC-IGBTs." In 2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD). IEEE, 2023. http://dx.doi.org/10.1109/ispsd57135.2023.10147707.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Costa, Fernando J., Renan Trevisoli, and Rodrigo T. Doria. "Ultra-Low-Power Diodes Composed by SOI UTBB Transistors." In 2022 IEEE Latin American Electron Devices Conference (LAEDC). IEEE, 2022. http://dx.doi.org/10.1109/laedc54796.2022.9908183.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "ULTRA LOW POWER DIODE"

1

Mason, John Jeffrey, Richard C. Ormesher, and Vivian Guzman Kammler. Novel methods for ultra-compact ultra-low-power communications. Office of Scientific and Technical Information (OSTI), March 2004. http://dx.doi.org/10.2172/888572.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rowland, Jason, Albert Ryu, Sam Chieh, Henry Ngo, Aaron Clawson, Gert Cauwenberghs, and Sohmyung Ha. Ultra-Low Power Transmitter Test Results. Fort Belvoir, VA: Defense Technical Information Center, December 2014. http://dx.doi.org/10.21236/ada616407.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wojciechowski, Kenneth E., Roy H. Olsson III, and Michael Sean Baker. Ultra-Thin, Temperature Stable, Low Power Frequency References. Office of Scientific and Technical Information (OSTI), November 2013. http://dx.doi.org/10.2172/1504209.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Baca, A. G., V. M. Hietala, D. Greenway, L. R. Sloan, R. J. Shul, G. P. Muyshondt, and D. F. Dubbert. Ultra-low power microwave CHFET integrated circuit development. Office of Scientific and Technical Information (OSTI), April 1998. http://dx.doi.org/10.2172/654155.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Doyle, Barney Lee, Paolo Rossi, Marcelino G. Armendariz, John Patrick Sullivan, Robert J. Foltynowicz, and Fred J. Zutavern. A low power ultra-fast current transient measuring device. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/919652.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Moule, Eric, and Mark Bocko. Ultra-low Power Sentry for Ambient Powered Smart Sensors. Fort Belvoir, VA: Defense Technical Information Center, May 2005. http://dx.doi.org/10.21236/ada433896.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lance L. Smith. ULTRA LOW NOx CATALYTIC COMBUSTION FOR IGCC POWER PLANTS. Office of Scientific and Technical Information (OSTI), March 2004. http://dx.doi.org/10.2172/837618.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Smith, Brian. Autonomous Distributed Systems - Application of Ultra Low Power Technology. Fort Belvoir, VA: Defense Technical Information Center, November 2002. http://dx.doi.org/10.21236/ada410355.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Shahrokh Etemad, Benjamin Baird, Sandeep Alavandi, and William Pfefferle. Ultra Low NOx Catalytic Combustion for IGCC Power Plants. Office of Scientific and Technical Information (OSTI), March 2008. http://dx.doi.org/10.2172/972087.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sarpeshkar, Rahul. An Electronic System for Ultra-low Power Hearing Implants. Fort Belvoir, VA: Defense Technical Information Center, February 2013. http://dx.doi.org/10.21236/ada583722.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії