Добірка наукової літератури з теми "UGKS"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "UGKS".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "UGKS"
Liu, Chang, and Kun Xu. "A Unified Gas Kinetic Scheme for Continuum and Rarefied Flows V: Multiscale and Multi-Component Plasma Transport." Communications in Computational Physics 22, no. 5 (October 31, 2017): 1175–223. http://dx.doi.org/10.4208/cicp.oa-2017-0102.
Повний текст джерелаZhu, Yajun, Chengwen Zhong, and Kun Xu. "GKS and UGKS for High-Speed Flows." Aerospace 8, no. 5 (May 19, 2021): 141. http://dx.doi.org/10.3390/aerospace8050141.
Повний текст джерелаVenugopal, Vishnu, and Sharath S. Girimaji. "Unified Gas Kinetic Scheme and Direct Simulation Monte Carlo Computations of High-Speed Lid-Driven Microcavity Flows." Communications in Computational Physics 17, no. 5 (May 2015): 1127–50. http://dx.doi.org/10.4208/cicp.2014.m391.
Повний текст джерелаXu, Xiaocong, Yajun Zhu, Chang Liu, and Kun Xu. "UGKS-Based Implicit Iterative Method for Multiscale Nonequilibrium Flow Simulations." SIAM Journal on Scientific Computing 44, no. 4 (August 2022): B996—B1017. http://dx.doi.org/10.1137/21m1421398.
Повний текст джерелаWang, Yi, Guoxi Ni, and Xiao Xu. "A relativistic UGKS for stimulated Raman scattering in two dimension." Computers & Fluids 235 (March 2022): 105261. http://dx.doi.org/10.1016/j.compfluid.2021.105261.
Повний текст джерелаHuang, Juan-Chen, Kun Xu, and Pubing Yu. "A Unified Gas-Kinetic Scheme for Continuum and Rarefied Flows III: Microflow Simulations." Communications in Computational Physics 14, no. 5 (November 2013): 1147–73. http://dx.doi.org/10.4208/cicp.190912.080213a.
Повний текст джерелаSun, Wenjun, Song Jiang, and Kun Xu. "An Implicit Unified Gas Kinetic Scheme for Radiative Transfer with Equilibrium and Non-Equilibrium Diffusive Limits." Communications in Computational Physics 22, no. 4 (July 28, 2017): 889–912. http://dx.doi.org/10.4208/cicp.oa-2016-0261.
Повний текст джерелаXiao, Tianbai. "A Well-Balanced Unified Gas-Kinetic Scheme for Multicomponent Flows under External Force Field." Entropy 24, no. 8 (August 12, 2022): 1110. http://dx.doi.org/10.3390/e24081110.
Повний текст джерелаJiang, Dingwu, Pei Wang, Jin Li, and Meiliang Mao. "Nonlinear Modeling Study of Aerodynamic Characteristics of an X38-like Vehicle at Strong Viscous Interaction Regions." Entropy 24, no. 6 (June 17, 2022): 836. http://dx.doi.org/10.3390/e24060836.
Повний текст джерелаLi, Shi-Yi, and Qi-Bing Li. "Thermal non-equilibrium effect of small-scale structures in compressible turbulence." Modern Physics Letters B 32, no. 12n13 (May 10, 2018): 1840013. http://dx.doi.org/10.1142/s0217984918400134.
Повний текст джерелаДисертації з теми "UGKS"
Vigier, Thomas. "Méthodes numériques préservant l’asymptotique pour des modèles aux moments de la physique des plasmas." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0477.
Повний текст джерелаAs part of the research on energy production through inertial confinement fusion, the development of new numerical methods is crucial. Indeed, simulations not only allow to refine the understanding of complex physical phenomena occurring under the extreme thermodynamic conditions necessary for fusion but also permit to assist in the design of new experimental devices. Within numerical simulations for fusion, the calculation of the electron heat flux is a central issue. Due to the extreme conditions of matter, the conventional Spitzer-Härm theory becomes insufficient to describe thermal conduction. Thus, to capture kinetic effects at a lower computational cost, moment models at the mesoscopic scale are used instead to describe the electron behaviour. This thesis manuscript focuses on the numerical resolution of these moment models, first in the simplified framework of linear transport and then in the context of electronic transport. The multi-scale nature of these models complicates the development of numerical schemes, which must accurately resolve all regimes : to do this, a particular class of methods, known as asymptoticpreserving methods, has emerged. One of the most recent and promising one is the Unified Gas Kinetic Scheme (UGKS) : this finite volume scheme for relaxation-type kinetic equations relies on the integral solution obtained from the method of characteristics. In this manuscript, a method is proposed to derive asymptotic-preserving kinetic schemes for moment models based on UGKS. The main idea which is introduced is to apply a closure at the numerical scale in the UGKS fluxes. In the two studied application cases, this new method reveals to be particularly effective and continuing its development seems relevant in order to solve more complex physical models. Moreover, its generic nature and flexibility make it a pertinent alternative to conventional asymptotic-preserving schemes. Moreover, some stability results are also demonstrated for this new scheme, and an extension to unstructured meshes is proposed
Kim, Perry M. "UDP-glucuronosyltransferases (UGTS) in chemically-initiated toxicity." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0010/NQ41448.pdf.
Повний текст джерелаLind, Linus. "Deep learning navigation for UGVs on forests paths." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-224790.
Повний текст джерелаArtificiell intelligens och maskininlärning har gjort stora framsteg de senaste åren. I detta arbete tittar vi på tillämpningen av maskininlärning i visuella navigationssystem för obemannade fordon i naturliga miljöer. Tidigare verk har fokuserat på navigeringssystem med djupa ``convolutional neural networks'' (CNNs) för obemannade luftfarkoster. I detta arbete, utvärderar vi hur pass applicerbara och robusta dessa metoder är som navigationssystem för obemannade markfordon (UGVs). För att utvärdera hur pass applicerbara och robusta dessa maskininlärningsmetoder är för UGVs så utfördes två experiment. I det första experimentet utvärderas hur systemet reagerar på nya miljöer och kamerapositioner. Ett redan existerande dataset, med med foton från stigar i de schweiziska alperna, kompletterade med två nya dataset. Dessa två nya samlingar består av foton från svenska skogsstigar insamlade på två olika höjder. Dessa tre olika dataset användes för att träna tre olika olika modeller. Genom att korsutvärdera de tränade modellerna på de olika dataseten kan effekten av att förändrad kameraposition samt att byta miljö utvärderas. I det andra experimentet utrustades en UGV med ett navigationssystem byggt på dessa tränade modeller. Genom att utvärdering hur pass autonomt denna UGV kan följa en skogsstig så ges en förståelse för hur pass applicerbara dessa metoder är för UGVs generellt. Experimentet gav flera resultat. Korsutvärderingen visade att dessa metoder är känsliga för både kameraposition och miljö. Där byte av kameraposition har en större negativ påverkan på navigationsresultatet, än byte av miljö. Slutligen visade ett online-test att dessa metoder, i sin naiva form, inte är ett lämpligt alternativ för navigationssystem för UGVs i skogsmiljöer.
Lindefelt, Anna, and Anders Nordlund. "A Path Following Method with Obstacle Avoidance for UGVs." Thesis, Linköping University, Department of Electrical Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11242.
Повний текст джерелаThe goal of this thesis is to make an unmanned ground vehicle (UGV) follow a given reference trajectory, without colliding with obstacles in its way. This thesis will especially focus on modeling and controlling the UGV, which is based on the power wheelchair Trax from Permobil.
In order to make the UGV follow a given reference trajectory without colliding, it is crucial to know the position of the UGV at all times. Odometry is used to estimate the position of the UGV relative a starting point. For the odometry to work in a satisfying way, parameters such as wheel radii and wheel base have to be calibrated. Two control signals are used to control the motion of the UGV, one to control the speed and one to control the steering angles of the two front wheels. By modeling the motion of the UGV as a function of the control signals, the motion can be predicted. A path following algorithm is developed in order to make the UGV navigate by maps. The maps are given in advance and do not contain any obstacles. A method to handle obstacles that comes in the way is presented.
Edwards, Dustin L. Bevly David M. "Parameter estimation techniques for determining safe vehicle speeds in UGVs." Auburn, Ala., 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SPRING/Mechanical_Engineering/Thesis/Edwards_Dustin_24.pdf.
Повний текст джерелаUgus, Osman [Verfasser]. "Secure and Reliable Remote Programming in Wireless Sensor Networks / Osman Ugus." Hagen : Fernuniversität Hagen, 2013. http://d-nb.info/1033801496/34.
Повний текст джерелаGatti, Miriam. "Detoxification of mycotoxins as a source of resistance to Fusarium Head blight : from Brachypodium distachyon to Triticum aestivum." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS551.
Повний текст джерелаFusarium head blight (FHB) caused by fungi of the Fusarium genus is a widespread disease of wheat (Triticum aestivum) and other small-grain cereal crops. The main causal agent of FHB, Fusarium graminearum, can produce mycotoxins mainly belonging to type B trichothecenes, such as deoxynivalenol (DON) that can negatively affect humans, animals and plants. Several quantitative trait loci (QTLs) for resistance to FHB have been identified some of which have been correlated with efficient DON detoxification, mainly through the conjugation of DON into DON-3-O-glucose (D3G), a reaction catalyzedby UDP-glucosyltransferases (UGTs). Nevertheless, only few studies have conducted functional analyses to directly correlate DON glucosylation and resistance in planta and none were performed on wheat UGT gene(s). Our team, using the model cereal species Brachypodium distachyon, has recently demonstrated that the Bradi5g03300 UGT is able to confer tolerance to DON following glucosylation of DON into DON 3-O-glucose and is involved in the early establishment of quantitative resistance to FHB. In the present work, we transferred the functional analyses conducted on the model species Brachypodium distachyon to bread wheat. In a first approach the B. distachyon Bradi5g03300 gene has been introduced through biolistic-mediated transformation in the wheat variety Apogee, susceptible to FHB. The phenotypic analyses conducted on homozygous transgenic wheat constitutively expressing the Bradi5g03300 gene showed that they exhibit higher resistance to FHB as well as increased root tolerance to DON compared to the control line. In parallel, using a synteny approach between B. distachyon and bread wheat genomes we identified a wheat candidate gene orthologous to the B. distachyon Bradi5g03300 gene. This wheat gene after validation through gene expression pattern during wheat infection, was introduced by transformation into B. distachyon to rapidly determine its ability to conjugate DON into D3G in planta and its involvement in FHB resistance. In conclusion, this project contributes to increase the knowledge concerning the functional relationship between DON glucosylation and FHB resistance in wheat and provide candidate genes to include in selection processes
Sewe, Kwesi Babipina. "Assessing the prospects of digitisation at the University of Ghana Library System (UGLS)." Diss., University of Pretoria, 2016. http://hdl.handle.net/2263/63621.
Повний текст джерелаMini Dissertation (MIT)--University of Pretoria, 2016.
Information Science
MIT
Unrestricted
Adam, Alkayal. "Laser scanning of overbreak and deformation for crosscuts at Malmbergetmine : uGPS Rapid Mapper™." Thesis, Luleå tekniska universitet, Geoteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-82986.
Повний текст джерелаPaulusch, Stefan [Verfasser]. "The Role of microRNAs in the Regulation of Human UDP-glucuronosyltransferases (UGTs) / Stefan Paulusch." Bonn : Universitäts- und Landesbibliothek Bonn, 2021. http://d-nb.info/1239729871/34.
Повний текст джерелаКниги з теми "UGKS"
Kasabaġatur and Nei Menggu ren min chu ban she., eds. Mongġor kelen-u uges. [Kȯke-qota]: Ȯbȯr Mongġol-un Arad-un Keblel-u̇n Qoriy-a, 1986.
Знайти повний текст джерелаOoda and Nei Menggu ren min chu ban she., eds. Barġu aman ayalġun-u uges. [Kȯke Qota]: Ȯbȯr Mongġol-un Arad-un Keblel-u̇n Qoriy-a, 1985.
Знайти повний текст джерелаBogunov, Sergìj. Likvidaciâ UGKC: (1939-1946) : dokumenti radâns'kih organìv deržavnoï bezpeki. Kiïv: [s.n.], 2006.
Знайти повний текст джерелаRyzhikov, Sergey. Course work in professional educational institutions SPO. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/967870.
Повний текст джерелаJohn, Moody, and United States. Forest Service. Northeastern Research Station, eds. User's guide to UGRS: The ultimate grading and remanufacturing system (version 5.0). Radnor, PA: U.S. Dept. of Agriculture, Forest Service, Northeastern Research Station, 1998.
Знайти повний текст джерелаBokareva, M. M. Svet dalekiĭ ne ugas...: Materialy o novomuchenikakh, svi︠a︡shchennosluzhiteli︠a︡kh i podvizhnikakh Palekhskoĭ zemli nachala XX veka. Ivanovo: LISTOS, 2017.
Знайти повний текст джерелаEldredge, Sandra N. UGMS involvement with Paradox Basin repository siting: A review of UGMS activities associated with the Department of Energy's efforts to evaluate areas within the Paradox Basin as suitable for a high level nuclear waste repository. [Salt Lake City? Utah]: Utah Geological and Mineral Survey, Dept. of Natural Resources and Energy, State of Utah, 1985.
Знайти повний текст джерелаUGS mission flyer. Utah Geological Survey, 1995. http://dx.doi.org/10.34191/pi-30.
Повний текст джерелаDubreuil, Llorenç Ugas. 83.908 Passes. Llorenç Ugas Dubreuil. Ajuntament de Sabadell, 2021.
Знайти повний текст джерелаЧастини книг з теми "UGKS"
Shah, Rajiv, and Roger Zimmermann. "Soundtrack Recommendation for UGVs." In Multimodal Analysis of User-Generated Multimedia Content, 139–71. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61807-4_5.
Повний текст джерелаBuffoli, Maddalena, and Andrea Rebecchi. "The Proximity of Urban Green Spaces as Urban Health Strategy to Promote Active, Inclusive and Salutogenic Cities." In The Urban Book Series, 1017–27. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-29515-7_90.
Повний текст джерелаNilsson, Ulrik, Petter Ögren, and Johan Thunberg. "Towards Optimal Positioning of Surveillance UGVs." In Optimization and Cooperative Control Strategies, 221–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88063-9_14.
Повний текст джерелаWang, Xinwei, Jie Liu, and Haijun Peng. "Optimal Path Planning of UGS." In Intelligent Systems, Control and Automation: Science and Engineering, 131–44. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3438-6_9.
Повний текст джерелаSandson, Neil B. "Uridine 5′-diphospho-glucuronoslytransferases (UGTs): Conjugating Cousins." In A Case Approach to Perioperative Drug-Drug Interactions, 57–60. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-7495-1_12.
Повний текст джерелаZhou, Jin, and John O. Miners. "Enzyme Kinetics of Uridine Diphosphate Glucuronosyltransferases (UGTs)." In Methods in Molecular Biology, 203–28. Totowa, NJ: Humana Press, 2014. http://dx.doi.org/10.1007/978-1-62703-758-7_11.
Повний текст джерелаZhou, Jin, Upendra A. Argikar, and John O. Miners. "Enzyme Kinetics of Uridine Diphosphate Glucuronosyltransferases (UGTs)." In Methods in Molecular Biology, 301–38. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1554-6_12.
Повний текст джерелаSvenmarck, Peter, Dennis Andersson, Björn Lindahl, Johan Hedström, and Patrik Lif. "Tactical Reconnaissance Using Groups of Partly Autonomous UGVs." In Engineering Psychology and Cognitive Ergonomics, 326–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02728-4_35.
Повний текст джерелаNiu, Haoyu, and YangQuan Chen. "The Unmanned Ground Vehicles (UGVs) for Digital Agriculture." In Smart Big Data in Digital Agriculture Applications, 99–109. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-52645-9_5.
Повний текст джерелаAzin, Reza, and Amin Izadpanahi. "Gas Injection for Underground Gas Storage (UGS)." In Fundamentals and Practical Aspects of Gas Injection, 143–73. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77200-0_4.
Повний текст джерелаТези доповідей конференцій з теми "UGKS"
Mukherjee, Jyotirmoy, Giri M. Kumar, Hannah White, Andrea L’Afflitto, and Corina Sandu. "Terrain Topology-Informed Motion Planning for Tactical UGVs." In 2024 10th International Conference on Control, Decision and Information Technologies (CoDIT), 1649–54. IEEE, 2024. http://dx.doi.org/10.1109/codit62066.2024.10708154.
Повний текст джерелаChatzisavvas, Antonios, Theodora Sanida, Michael Dossis, and Minas Dasygenis. "Improving Efficiency in Agricultural UGVs Through Enhanced Pathfinding Techniques." In 2024 9th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM), 179–82. IEEE, 2024. http://dx.doi.org/10.1109/seeda-cecnsm63478.2024.00040.
Повний текст джерелаYang, L. M., C. Shu, and J. Wu. "Numerical Simulation of Microflows by a DOM With Streaming and Collision Processes." In ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/mnhmt2016-6494.
Повний текст джерелаJiang, Dingwu, Meiliang Mao, Jin Li, and Xiaogang Deng. "Numerical simulation of the jet and hypersonic flow interaction with UGKS." In 31ST INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS: RGD31. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5119531.
Повний текст джерелаJiang, Dingwu, Jin Li, Pei Wang, Meiliang Mao, and Haomin Li. "Numerical simulation of aerodynamic characteristics of a sharp-edged vehicle using NNW-UGKS." In 2ND INTERNATIONAL CONFERENCE ON ADVANCED EARTH SCIENCE AND FOUNDATION ENGINEERING (ICASF 2023): Advanced Earth Science and Foundation Engineering. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0187874.
Повний текст джерелаDai, Lianfu, and Huiying Wu. "A Study of Wall Temperature Jump Using UGKS Simulation With Diffuse-Specular Maxwell-Type Boundary." In ASME 2021 Heat Transfer Summer Conference collocated with the ASME 2021 15th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/ht2021-63683.
Повний текст джерелаKim, Hoyoung, Junghun Park, Seonghoon Park, and Jihoon Ryoo. "uGPS." In ACM MobiCom '22: The 28th Annual International Conference on Mobile Computing and Networking. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3495243.3560520.
Повний текст джерелаSpofford, John R., and Steve H. Munkeby. "Control of multiple UGVs." In Aerospace/Defense Sensing and Controls, edited by Scott A. Speigle. SPIE, 1996. http://dx.doi.org/10.1117/12.241075.
Повний текст джерелаFish, Scott. "UGVs in future combat systems." In Defense and Security, edited by Grant R. Gerhart, Chuck M. Shoemaker, and Douglas W. Gage. SPIE, 2004. http://dx.doi.org/10.1117/12.537966.
Повний текст джерелаMilton, Fenner, Gene A. Klager, and Thomas R. Bowman, Jr. "Low-cost sensors for UGVs." In AeroSense 2000, edited by Grant R. Gerhart, Robert W. Gunderson, and Chuck M. Shoemaker. SPIE, 2000. http://dx.doi.org/10.1117/12.391628.
Повний текст джерелаЗвіти організацій з теми "UGKS"
Grand-Clément, Sarah, and Theò Bajon. Uncrewed Ground Systems: A Primer. UNIDIR, October 2022. http://dx.doi.org/10.37559/caap/22/erc/11.
Повний текст джерелаPortele, Clemens, ed. OGC Web Services (OWS) 3 UGAS Tool. Open Geospatial Consortium, Inc., April 2006. http://dx.doi.org/10.62973/05-118.
Повний текст джерелаEchterhoff, Johannes, ed. UML-to-GML Application Schema Pilot (UGAS-2020) Engineering Report. Open Geospatial Consortium, Inc., January 2021. http://dx.doi.org/10.62973/20-012.
Повний текст джерелаPortele, Clemens, ed. OWS-9: UML-to-GML-Application-Schema (UGAS) Conversion Engineering Report. Open Geospatial Consortium, Inc., February 2013. http://dx.doi.org/10.62973/12-093.
Повний текст джерелаMoody, John, Charles J. Gatchell, Elizabeth S. Walker, and Powsiri Klinkhachorn. User's guide to UGRS: the Ultimate Grading and Remanufacturing System (version 5.0). Radnor, PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station, 1998. http://dx.doi.org/10.2737/ne-gtr-254.
Повний текст джерелаMoody, John, Charles J. Gatchell, Elizabeth S. Walker, and Powsiri Klinkhachorn. User's guide to UGRS: the Ultimate Grading and Remanufacturing System (version 5.0). Radnor, PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station, 1998. http://dx.doi.org/10.2737/ne-gtr-254.
Повний текст джерелаSadler, Laurel C., Robert Winkler, and Niranjan Suri. Anomaly Detection for Data Reduction in an Unattended Ground Sensor (UGS) Field. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada609445.
Повний текст джерелаCarney, Stephanie M., Michael D. Hylland, William R. Lund, and Robert Ressetar. Guide for the Preparation of Reports for the Utah Geological Survey, Fourth Edition. Utah Geological Survey, February 2024. http://dx.doi.org/10.34191/c-137.
Повний текст джерелаClark, Brian F., Brett E. Bagwell, and David Victor Wick. Radical advancement in multi-spectral imaging for autonomous vehicles (UAVs, UGVs, and UUVs) using active compensation. Office of Scientific and Technical Information (OSTI), January 2007. http://dx.doi.org/10.2172/902558.
Повний текст джерелаMcCoy-Sulentic, Miles, Diane Menuz, and Rebecca Lee. Central Basin and Range Ecoregion Wetland Assessment and Landscape Analysis. Utah Geological Survey, November 2021. http://dx.doi.org/10.34191/ofr-738.
Повний текст джерела