Добірка наукової літератури з теми "Two phase flow combustion"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Two phase flow combustion".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Two phase flow combustion":

1

Tolpadi, A. K. "Calculation of Two-Phase Flow in Gas Turbine Combustors." Journal of Engineering for Gas Turbines and Power 117, no. 4 (October 1, 1995): 695–703. http://dx.doi.org/10.1115/1.2815455.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A method is presented for computing steady two-phase turbulent combusting flow in a gas turbine combustor. The gas phase equations are solved in an Eulerian frame of reference. The two-phase calculations are performed by using a liquid droplet spray combustion model and treating the motion of the evaporating fuel droplets in a Lagrangian frame of reference. The numerical algorithm employs nonorthogonal curvilinear coordinates, a multigrid iterative solution procedure, the standard k-ε turbulence model, and a combustion model comprising an assumed shape probability density function and the conserved scalar formulation. The trajectory computation of the fuel provides the source terms for all the gas phase equations. This two-phase model was applied to a real piece of combustion hardware in the form of a modern GE/SNECMA single annular CFM56 turbofan engine combustor. For the purposes of comparison, calculations were also performed by treating the fuel as a single gaseous phase. The effect on the solution of two extreme situations of the fuel as a gas and initially as a liquid was examined. The distribution of the velocity field and the conserved scalar within the combustor, as well as the distribution of the temperature field in the reaction zone and in the exhaust, were all predicted with the combustor operating both at high-power and low-power (ground idle) conditions. The calculated exit gas temperature was compared with test rig measurements. Under both low and high-power conditions, the temperature appeared to show an improved agreement with the measured data when the calculations were performed with the spray model as compared to a single-phase calculation.
2

Klose, G., R. Schmehl, R. Meier, G. Maier, R. Koch, S. Wittig, M. Hettel, W. Leuckel, and N. Zarzalis. "Evaluation of Advanced Two-Phase Flow and Combustion Models for Predicting Low Emission Combustors." Journal of Engineering for Gas Turbines and Power 123, no. 4 (October 1, 2000): 817–23. http://dx.doi.org/10.1115/1.1377010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The development of low-emission aero-engine combustors strongly depends on the availability of accurate and efficient numerical models. The prediction of the interaction between two-phase flow and chemical combustion is one of the major objectives of the simulation of combustor flows. In this paper, predictions of a swirl stabilized model combustor are compared to experimental data. The computational method is based on an Eulerian two-phase model in conjunction with an eddy dissipation (ED) and a presumed-shape-PDF (JPDF) combustion model. The combination of an Eulerian two-phase model with a JPDF combustion model is a novelty. It was found to give good agreement to the experimental data.
3

Som, S. K., and N. Y. Sharma. "Energy and Exergy Balance in the Process of Spray Combustion in a Gas Turbine Combustor." Journal of Heat Transfer 124, no. 5 (September 11, 2002): 828–36. http://dx.doi.org/10.1115/1.1484393.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A theoretical model of exergy balance based on availability transfer and flow availability in the process of spray combustion in a gas turbine combustor has been developed to evaluate the total thermodynamic irreversibility and second law efficiency of the process at various operating conditions, for fuels with different volatilities. The velocity, temperature and concentration fields in the combustor, required for the evaluation of the flow availabilities and process irreversibilities, have been computed numerically from a two phase separated flow model of spray combustion. The total thermodynamic irreversibility in the process of spray combustion has been determined from the difference in the flow availability at inlet and outlet of the combustor. The irreversibility caused by the gas phase processes in the combustor has been obtained from the entropy transport equation, while that due to the inter-phase transport processes has been obtained as a difference of gas phase irreversibilities from the total irreversibility. A comparative picture of the variations of combustion efficiency and second law efficiency at different operating conditions for fuels with different volatilities has been made to throw light on the trade off between the effectiveness of combustion and the lost work in the process of spray combustion in a gas turbine combustor.
4

Lin, Jih Lung. "Two-phase flow effect on hybrid rocket combustion." Acta Astronautica 65, no. 7-8 (October 2009): 1042–57. http://dx.doi.org/10.1016/j.actaastro.2009.03.020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhang, Qun, Hua Sheng Xu, Tao Gui, Shun Li Sun, Yue Wu, and Dong Bo Yan. "Investigation on Reaction Flow Field of Low Emission TAPS Combustors." Applied Mechanics and Materials 694 (November 2014): 45–48. http://dx.doi.org/10.4028/www.scientific.net/amm.694.45.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A twin annular premixing swirler (TAPS) combustor model of low emissions was developed in this study. And computational studies on combustion process in the combustor model were carried out. Standard k-ε Turbulence Model, PDF non-premixed combustion model, Zeldovich thermal NOx formation model and DPM two-phase model were employed. The distributions of some key performance parameters such as gas temperature, flow velocity, concentrations of NOx and CO emissions were obtained and analyzed. At the same time, combustion mechanics inside the TAPS combustor model were investigated. The computational results indicated that the TAPS combustor employed in this study does a better job of improving key combustion performances such as combustion efficiency, total pressure recovery and outlet temperature distribution factor, and reducing NOx and CO emissions at the same time.
6

Chan, S. H., and M. M. M. Abou-Ellail. "A Two-Fluid Model for Reacting Turbulent Two-Phase Flows." Journal of Heat Transfer 116, no. 2 (May 1, 1994): 427–35. http://dx.doi.org/10.1115/1.2911415.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A reacting two-fluid model, based on the solution of separate transport equations for reacting gas-liquid two-phase flow, is presented. New time-mean transport equations for two-phase mixture fraction f and its variance g are derived. The new two-fluid transport equations for f and g are useful for two-phase reacting flows in which phases strongly interact. They are applicable to both submerged and nonsubmerged combustion. A pdf approach to the reaction process is adopted. The mixture fraction pdf assumes the shape of a beta function while the instantaneous thermochemical properties are computed from an equilibrium model. The proposed two-fluid model is verified by predicting turbulent flow structures of an n-pentane spray flame and a nonreacting bubbly jet flow for which experimental data exist. Good agreement is found between the predictions and the corresponding experimental data.
7

Som, S. K., S. S. Mondal, and S. K. Dash. "Energy and Exergy Balance in the Process of Pulverized Coal Combustion in a Tubular Combustor." Journal of Heat Transfer 127, no. 12 (July 25, 2005): 1322–33. http://dx.doi.org/10.1115/1.2101860.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A theoretical model of exergy balance, based on availability transfer and flow availability, in the process of pulverized coal combustion in a tubular air-coal combustor has been developed to evaluate the total thermodynamic irreversibility and second law efficiency of the process at various operating conditions. The velocity, temperature, and concentration fields required for the evaluation of flow availability have been computed numerically from a two-phase separated flow model on a Eulerian-Lagrangian frame in the process of combustion of pulverized coal particles in air. The total thermodynamic irreversibility in the process has been determined from the difference in the flow availability at the inlet and outlet of the combustor. A comparative picture of the variations of combustion efficiency and second law efficiency at different operating conditions, such as inlet pressure and temperature of air, total air flow rate and inlet air swirl, initial mean particle diameter, and length of the combustor, has been provided to shed light on the trade-off between the effectiveness of combustion and the lost work in the process of pulverized coal combustion in a tubular combustor.
8

Zhang, Xiang Yu, Guo Qiang He, Pei Jin Liu, and Jiang Li. "Heat Flux Measurement Method of Two-Phase Flow in SRM." Applied Mechanics and Materials 152-154 (January 2012): 883–88. http://dx.doi.org/10.4028/www.scientific.net/amm.152-154.883.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Accurate information on heat transfer data of combustion products in the solid rocket motor chamber is a crucial prerequisite for the engine thermal protection. A measurement technique was well developed to acquire steady-state heat flux data of two-phase flow and was used successfully in the hostile environment. Experimental heat flux measurement has been obtained with an innovative designed instrument by simulating the flow field of complex charging configuration. The total heat flux of combustion products in the chamber was brought away by the coolant and calculated by its enthalpy rise in this device. The data could be used to analyze the heat transfer phenomena in SRMs and provide boundary condition for establishing insulation erosion model.
9

Hsiao Tzu, Chang, Hourng Lih Wu, and Lai Chen Chien. "Nonequilibrium hydrogen combustion in one- and two-phase supersonic flow." International Communications in Heat and Mass Transfer 24, no. 3 (May 1997): 323–35. http://dx.doi.org/10.1016/s0735-1933(97)00018-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ahmad Fuad Abdul Rasid and Yang Zhang. "Combustion Phases of Evaporating Neat Fuel Droplet." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 96, no. 1 (July 6, 2022): 60–69. http://dx.doi.org/10.37934/arfmts.96.1.6069.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The combustion characteristics of fuel spray can be examined at a basic level by a fuel droplet combustion study. Evaporation processes of a fuel droplet involves few combustion phases mainly heating, boiling and disruptive phase. The transition of phases is found to be caused by two transient combustion process; mainly droplet heating and fuel vapour accumulation. The duration of combustion phases of tested neat fuel droplet in the present work is found to be consistent for each fuel. High volatility fuel is found to have the shortest duration of droplet heating and fuel vapour accumulation. Longer duration of boiling phase provides wider range of measureable burning rate to be done on tested fuel droplet. With precise quantitative measurement method conducted in the present work, high measurement repeatability is assured thus enabling the determination of droplet combustion stability categorization with clear definition throughout the lifetime of evaporating neat fuel droplet. Additionally, this paper summarises the common combustion phases involved during the evaporation of a neat fuel droplet.

Дисертації з теми "Two phase flow combustion":

1

Carabateas, Nicolas. "Two phase flow and combustion in S.I. engines." Thesis, Imperial College London, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265853.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sankaran, Vaidyanathan. "Sub-grid Combustion Modeling for Compressible Two-Phase Flows." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/5274.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A generic formulation for modeling the sub-grid combustion in compressible, high Reynolds number, two-phase, reacting flows has been developed and validated. A sub-grid mixing/combustion model called Linear Eddy Mixing (LEM) model has been extended to compressible flows and used inside the framework of Large Eddy Simulation (LES) in this LES-LEM approach. The LES-LEM approach is based on the proposition that the basic mechanistic distinction between the convective and the molecular effects should be preserved for accurate prediction of the complex flow-fields such as those encountered in many combustion systems. In LES-LEM, all the physical processes such as molecular diffusion, small and large scale turbulent convection and chemical reaction are modeled separately but concurrently at their respective time scales. This multi-scale phenomena is solved using a two-scale numerical approach, wherein molecular diffusion, small scale turbulent convection and chemical reaction are grouped as small scale processes and the convection at the (LES grid) resolved scales are deemed as the large scale processes. Small-scale processes are solved using a hybrid finite-difference Monte-carlo type approach in a one-dimensional domain. Large-scale advection on the three-dimensional LES grid is modeled in a Lagrangian manner that conserves mass. Liquid droplets (represented by computational parcels) are tracked using the Lagrangian approach wherein the Newton's equation of motion for the discrete particles are integrated explicitly in the Eulerian gas field. Drag effects due to the droplets on the gas phase and the heat transfer between the gas and the liquid phase are explicitly included. Thus, full coupling is achieved between the two phases in the simulation. Validation of the compressible LES-LEM approach is conducted by simulating the flow-field in an operational General Electric Power Systems' combustor (LM6000). The results predicted using the proposed approach compares well with the experiments and a conventional (G-equation) thin-flame model. Particle tracking algorithms used in the present study are validated by simulating droplet laden temporal mixing layers. Comparison of the energy growth in the fundamental and sub-harmonic mode in the presence and absence of the droplets shows excellent agreement with spectral DNS. Finally, to test the ability of the present two-phase LES-LEM in simulating partially premixed combustion, a LES of freely propagating partially premixed flame in a droplet-laden isotropic turbulent field is conducted. LES-LEM along with the spray models correctly captures the flame structure in the partially premixed flames. It was found that most of the fuel droplets completely vaporize before reaching the flame, and hence provides a continuous supply of reactants, which results in an intense reaction zone similar to a premixed flame. Some of the droplets that did not evaporate completely, traverse through the flame and vaporize suddenly in the post flame zone. Due to the strong spatial variation of equivalence ratio a broad flame similar to a premixed flame is realized. Triple flame structure are also observed in the flow-field due to the equivalence ratio fluctuations.
3

Rochette, Bastien. "Modeling and simulation of two-phase flow turbulent combustion in aeronautical engines." Thesis, Toulouse, INPT, 2019. http://www.theses.fr/2019INPT0059.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
De nos jours, plus de 80% de l'énergie consommée sur Terre provient de la combustion de combustibles fossiles. Des solutions alternatives à la combustion sont en cours de développement mais les contraintes spécifiques liées au transport aérien ne permettent pas actuellement d'alimenter des moteurs sans introduire de rupture technologique. Ces résultats expliquent les activités de recherche visant à améliorer les connaissances et le contrôle des processus de combustion afin de concevoir des moteurs aéronautiques plus propres et plus efficaces. Dans ce cadre, les Simulations aux Grandes Echelles ("Large Eddy Simulation" LES) sont devenues un outil puissant pour mieux comprendre les processus de combustion et les émissions de polluants. Cette thèse s'inscrit dans ce contexte et se focalise sur les modèles et stratégies de calcul afin de simuler avec plus de précision les écoulements réactifs turbulents gazeux et diphasiques dans la chambre de combustion des moteurs aéronautiques. Tout d'abord, une méthode générique et automatique pour la détection et l'épaississement du front de flamme a été développée pour le modèle TFLES, et validée pour plusieurs configurations académiques de complexité croissante. Cette approche générique est ensuite évaluée dans une simulation LES d'un brûleur de laboratoire et comparée à la méthode d'épaississement classique. Les résultats montrent un épaississement plus précis dans les régions post-flammes. Dans un second temps, à partir de l'analyse de flammes laminaires 1D diphasiques homogènes où la phase dispersée a une vitesse relative comparée à la phase porteuse, deux formulations analytiques pour la vitesse de propagation de ces flammes ont été proposées et validées. La concordance entre les vitesses de flammes mesurées et estimées démontre que le modèle et ses paramètres prennent correctement en compte les principaux mécanismes physiques contrôlant ces flammes diphasiques. Enfin, les modèles TFLES les plus récents ont été testés sur des configurations de flamme turbulente gazeuse/diphasique complexes. Les avantages et les inconvénients de ces modèles ont été étudiés afin de contribuer à la compréhension des mécanismes liés à la combustion turbulente et de proposer une stratégie de modélisation par LES pour améliorer la fidélité des simulations réactives
Nowadays, more than 80% of the energy consumed on Earth is produced by burning fossil fuels. Alternative solutions to combustion are being developed but the specific constraints related to air transport do not make it possible to currently power engines without introducing a technological breakthrough. These findings explain the research activity to improve the knowledge and the control of combustion processes to design cleaner, and more efficient aeronautical engines. In this framework, Large Eddy Simulations (LES) have become a powerful tool to better understand combustion processes and pollutant emissions. This PhD thesis is part of this context and focuses on the models and numerical strategies to simulate with more accuracy turbulent gaseous and two-phase reacting flows in the combustion chamber of aeronautical engines. First, a generic and self-adapting method for flame front detection and thickening has been developed for the TFLES model, and validated on several academic configurations of increasing complexity. This generic approach is then evaluated in the LES of a laboratory-scale burner and compared to the classical thickening method. Results show a more accurate thickening in post-flame regions. Second, from the analysis of 1-D homogeneous laminar spray flames where the dispersed phase has a relative velocity compared to the carrier phase, two analytical formulations for the spray flame propagation speed have been proposed and validated. The agreement between the overall trend of both the measured/estimated spray flame speeds demonstrates that the model and its parameters correctly take into account the main physical mechanisms controlling laminar spray flames. Finally, the state-of-the-art TFLES models were tested on complex turbulent gaseous and two-phase reacting configurations. The pros and cons of these models were investigated to contribute to the understanding of the mechanisms related to turbulent combustion, and to propose a LES modeling strategy to improve the fidelity of reactive simulations
4

Collin, Félix. "Modeling and numerical simulations of two-phase ignition in gas turbine." Thesis, Toulouse, INPT, 2019. http://www.theses.fr/2019INPT0053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Afin de répondre aux nouvelles réglementations environnementales internationales tout en maintenant une forte compétitivité économique, des technologies innovantes de chambres de combustion aéronautiques sont développées. Ces technologies doivent garantir un rallumage rapide en cas d’extinction, qui est un des aspects les plus critiques et complexes de la conception moteur. La maîtrise de cette phase implique une compréhension approfondie des phénomènes physiques mis en jeu. Dans cette thèse la séquence d’allumage diphasique de moteur aéronautique a été étudiée dans son intégralité, du claquage de la bougie à la propagation de la flamme dans le moteur complet. Dans cet objectif, des Simulations aux Grandes Échelles (SGE) utilisant une description détaillée de la phase liquide (formalisme Euler-Lagrange) et du processus de combustion (Chimie Analytiquement Réduite) ont été réalisées. Les résultats ont également permis de développer un modèle simplifié pour la prédiction de carte de probabilité d’allumage, particulièrement utile pour le dimensionnement et la conception des chambres de combustion
In order to meet the new international environmental regulations while maintaining a strong economic competitiveness, innovative technologies of aeronautical combustion chambers are developed. These technologies must guarantee fast relight in case of extinction, which is one of the most critical and complex aspects of engine design. Control of this phase involves a thorough understanding of the physical phenomena involved. In this thesis the full two-phase ignition sequence of an aeronautical engine has been studied, from the breakdown of the spark plug to thepropagation of the flame in the complete engine. For this purpose, Large-Eddy Simulations (LES) using a detailed description of the liquid phase (Euler-Lagrange formalism) and of the combustion process (Analytically Reduced Chemistry) were performed. The results also led to the development of a simplified model for the prediction of ignition probability map, which is particularly useful for the design of combustion chambers
5

Thawley, Scott. "Spatio-temporal Characteristics of a Spray from a Liquid Jet in Crossflow." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/31276.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A liquid jet in a crossflow is often used to as a fuel injection method for combustion systems. Parameters such as penetration and core trajectory are used as characterization for the spray and specification of design criteria for combustor geometry. In addition to penetration and core trajectory, mapping the mass flux in space and time is an important part of modeling evaporation and global equivalence ratio throughout the combustor. Accurate prediction of these spray characteristics allows for a stable and robust combustor design. The break up of a liquid jet in a crossflow is an extremely complex phenomenon in both combination of mechanisms and variability of possible paths progressing from a liquid column to a distribution of individual droplets. In each region separate governing forces control the behavior of the liquid phase. Accordingly, different measurement techniques and different factors must be considered in each region. Presented are the results of measurements using Phase Doppler Analyzer, PDA, and a time resolved, digital, particle imaging velocimetry system, TRDPIV. The measurements include instantaneous and time-averaged liquid phase velocity fields, spray penetration and core location in the near field and far field of the spray resulting from the liquid jet breakup. With the TRDPIV system, the holistic properties of all three segments of a jet in crossflow were acquired with a single measurement. This allowed for comparison of system characteristics across not only individual pieces of one segment of the jet, for example PDA measurements of many droplets in one point of the far field spray, but characteristics across the entire system including the liquid column, near field spray, and far field spray simultaneously in a fashion that allowed for direct comparison between the different segments.
Master of Science
6

Caceres, Marcos. "Impact of transverse acoustic modes on a linearly arranged two-phase flow swirling flames." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMIR01/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les besoins énergétiques de la population mondiale ne cessent d’augmenter. Les prévisions indiquent par exemple une forte croissance de la demande du secteur du transport aéronautique. La recherche de systèmes toujours plus performants et moins polluants est nécessaire. Des nouveaux concepts pour la combustion ont été mis au point et appliqués aux turbines à gaz. Parmi eux il existe ceux basés sur la combustion en prémélange pauvre ou en prémélange pauvre pré-vaporisé dans le cas où le carburant utilisé est liquide. Les nouveaux systèmes énergétiques basés sur la combustion en régime pauvre sont prometteurs pour satisfaire les futures normes d’émissions polluantes, mais ils sont plus sensibles aux instabilités de combustion qui limitent leur plage de fonctionnement et peuvent détériorer irréversiblement ces systèmes. Dans ce domaine il reste des questions à aborder. En particulier celle du comportement des flammes tourbillonnaires en combustion diphasique soumises à des perturbations acoustiques. La plupart des moteurs aéronautiques utilisent des flammes de ce type, cependant leur dynamique et leurs interactions mutuelles, quand elles subissent les effets d’une perturbation acoustique, sont loin d’être bien comprises. Ce travail aborde ces questions et apporte des éléments de compréhension sur les mécanismes pilotant la réponse de l’écoulement diphasique et de la flamme, ainsi que des éléments de validation des modèles de prédiction des points de fonctionnement instables. TACC-Spray est le banc expérimental utilisé pour ce travail. Il a été conçu et développé au sein du laboratoire CORIA lors de ce doctorat qui s’inscrit dans le cadre du projet ANR FASMIC. Le système d’injection qui équipe ce banc expérimental reçoit trois injecteurs tourbillonnaires alimentés en combustible liquide (ici n-heptane), développés par le laboratoire EM2C. Ils sont montés en lignes dans le banc, celui-ci représentant ainsi un secteur d’une chambre annulaire. Le montage étant complexe et nouveau, un travail de développement de solutions techniques a été fait pour rendre possible l’équipement du TACC-Spray avec des capteurs de pression, température, photomultiplicateur ainsi que des diagnostiques optiques performants (e.g. LDA, PDA, imagerie à haute cadence). Pour cette étude, le système énergétique, composé par l’écoulement diphasique et la flamme, a été soumis à l’impact d’un mode acoustique transverse excité dans la cavité acoustique. La réponse du système a été étudiée en fonction de son positionnement dans le champ acoustique. Trois bassins d’influence du champ acoustique sur le système énergétique ont été choisis, à savoir: (i) le ventre de pression acoustique caractérisé principalement par des fortes fluctuations de pression, (ii) le ventre d’intensité acoustique présentant de forts gradients de pression et vitesse acoustique, (iii) le ventre de vitesse acoustique avec de fortes fluctuations de vitesse où la fluctuation de pression est résiduelle. L’approche de cette étude a consisté à étudier en premier lieu le système de référence en absence de forçage acoustique, les résultats sont recueillis dans la Partie I de ce manuscrit. En deuxième lieu le système énergétique est placé à chacune des positions d’intérêt dans le champ acoustique et la réponse de l’écoulement d’air sans combustion, la réponse de l’écoulement diphasique avec combustion et finalement celle des flammes, sont étudiées systématiquement. Les résultats de l’étude avec forçage acoustique sont rassemblés dans la Partie II du manuscrit
The energy needs of population around the word are continuously increasing. For instance, forecasts indicates an important grow of the request of the aeronautic transportation sector. It is necessary to continue the research efforts to get more performants and less contaminating systems. New concepts for combustion have been developed and introduced to the gas turbine industry. Among these concepts it is found technologies based on lean-premixed combustion or lean-premixed prevaporized combustion when liquid fuels are employed. These novel energetic systems, making use of lean combustion, are promising to meet the future norms about pollutant emissions, but this make them more sensitive to combustion instabilities that limit their operating range and can lead to irreversible damage. In this domain, many questions still need to be considered. In particular that of the behavior of two-phase flow swirling flames subjected to acoustic perturbations. Indeed most of aero-engines operate with this type of flames, but the dynamics and mutual interaction of these flames, as they are submitted to acoustic perturbation, are not yet well understood. This work addresses these issues and gives some understanding elements for the mechanisms driving the response of the flow and of the flame to acoustic perturbations and delivers data to validate models predicting unstable operating points.The experimental bench employed for this work is TACC-Spray. It has been designed and developed in the CORIA laboratory during this PhD thesis which is inscribed in the framework of the ANR FASMIC project. The injections system that equips this bench is composed by three swirled injectors fed with a liquid fuel (here n-heptane), developed by the EM2C laboratory. They are linearly arranged in the bench such that this represents an unwrapped sector of an annular chamber. The setup, being new and complex, needed technical solutions developed during this work and applied then in order to equip TACC-Spray with pressure and temperature sensors, a photomultiplier as well as adequate optic diagnostics (LDA, PDA, high speed imaging systems). In this study, the energetic system, composed by the two-phase swirling flow and the spray flame, has been submitted to the impact of a transverse acoustic mode excited within the acoustic cavity. The system response has been studied as a function of its location in the acoustic field. Three basins of influence of the acoustic field on the energetic system have been chosen, namely: (i) the pressure antinode characterized mainly by strong pressure fluctuations, (ii) the intensity antinode where important acoustic pressure and velocity gradients are present, (iii) the velocity antinode with strong velocity fluctuations where the acoustic pressure is residual. The approach of the study presented here is to investigate in first place the energetic system free of acoustic forcing. The results concerning this first study are presented in the Part I of this manuscript. In second place, the energetic system is placed in each of the location of interest within the acoustic field and the response of the air flow without combustion, that of the two-phase flow with combustion and finally that of the spray flames, are systematically investigated. The results of the study under acoustic forcing are shown in Part II of the manuscript
7

Eyssartier, Alexandre. "LES of two-phase reacting flows : stationary and transient operating conditions." Thesis, Toulouse, INPT, 2012. http://www.theses.fr/2012INPT0011/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L'allumage et le réallumage de haute altitude présentent de grandes difficultés dans le cadre des chambres de combustion aéronautiques. Le succès d'un allumage dépend de multiples facteurs, des caractéristiques de l'allumeur à la taille des gouttes du spray en passant par le niveau de turbulence au point d'allumage. Déterminer la position optimale de l'allumeur ou le potentiel d'allumage d'une source d'énergie donnée à une position donnée sont ainsi des paramètres essentiels lors du design de chambre de combustion. Le but de ces travaux de thèse est d'étudier l'allumage forcé des chambres de combustion aéronautiques. Pour cela, des Simulation numériques aux Grandes Echelles (SGE) d'écoulements diphasiques réactifs sont utilisées et analysées. Afin de les valider, des données expérimentales issues du banc MERCATO installé à l'ONERA Fauga-Mauzac sont utilisées. Cela permet dans un premier temps de valider la méthodologie ainsi que les modèles utilisés pour les SGE diphasiques évaporantes avant leur utilisation dans d'autres conditions d'écoulement. Le cas diphasique réactif statistiquement stationnaire est ensuite comparé aux données disponibles pour évaluer les modèles en condition réactives. Ce cas est étudié plus en détail à travers l'analyse de caractéristiques de la flamme. Celle-ci semble être le théâtre de régimes de combustion très différents. On note aussi que la détermination de la méthode numérique la plus appropriée pour le calcul d'écoulements diphasiques n'est pas évidente. De plus, deux méthodes numériques différentes peuvent donner des résultats en bon accord avec l'expérience et pourtant avoir des modes de combustion différents. Les capacités de la SGE à correctement calculer un écoulement diphasique réactif étant validé, des SGE du phénomène transitoire d'allumage sont effectuées. La sensibilité observée expérimentalement de l'allumage aux conditions initiales, i.e. à l'instant de claquage, est retrouvé par les SGE. L'analyse met en évidence le rôle prépondérant de la dispersion du spray dans le développement initial du noyau de flamme. L'utilisation des SGE pour calculer les séquences d'allumage fournie de nombreuses informations sur le phénomène d'allumage, cependant d'un point de vue industriel, cela ne donne pas de résultat optimal, à moins de ne tester toutes les positions, ce qui rendrait le coût CPU déraisonnable. Des alternatives sont donc nécessaires et font l'objet de la dernière partie de ces travaux. On propose de dériver un critère local d'allumage, donnant la probabilité d'allumage à partir d'un écoulement diphasique (air et carburant) non réactif instationnaire. Ce modèle est basé sur des critères liés aux différentes phases menant à un allumage réussi, de la formation d'un premier noyau à la propagation de la flamme vers l'injecteur. Enfin, des comparaisons avec des données expérimentales sur des chambres aéronautiques sont présentées et sont en bon accord, indiquant que le critère d'allumage proposé, couplé avec une SGE d'écoulement diphasique non réactif, peut être utilisé pour optimiser la puissance et la position du système d'allumage
Ignition and altitude reignition are critical issues for aeronautical combustion chambers. The success of ignition depends on multiple factors, from the characteristics of the igniter to the spray droplet size or the level of turbulence at the ignition site. Finding the optimal location of the igniter or the potential of ignition success of a given energy source at a given location are therefore parameters of primary importance in the design of combustion chambers. The purpose of this thesis is to study forced ignition of aeronautical combustion chambers. To do so, Large Eddy Simulations (LES) of two-phase reacting flows are performed and analyzed. First, the equations of the Eulerian formalism used to describe the dispersed phase are presented. To validate the successive LES, experimental data from the MERCATO bench installed at ONERA Fauga-Mauzac are used. It allows to validate the two-phase evaporating flow LES methodology and models prior to its use to other flow conditions. The statistically stationary two-phase flow reacting case is then compared to available data to evaluate the model in reacting conditions. This case is more deeply studied through the analysis of the characteristics of the flame. This last one appears to experience very different combustion regimes. It is also seen that the determination of the most appropriate methodology to compute two-phase flow flame is not obvious. Furthermore, two different methodologies may both agree with the data and still have different burning modes. The ability of the LES to correctly compute burning two-phase flow being validated, LES of the transient ignition phenomena are performed. The experimentally observed sensitivity of ignition to initial conditions, i.e. to sparking time, is recovered with LES. The analysis highlights the major role played by the spray dispersion in the development of the initial flame kernel. The use of LES to compute ignition sequences provides a lot of information about the ignition phenomena, however from an industrial point of view, it does not give an optimal result, unless all locations are tested, which brings the CPU cost to unreasonable values. Alternatives are hence needed and are the objective of the last part of this work. It is proposed to derive a local ignition criterion, giving the probability of ignition from the knowledge of the unsteady non-reacting two-phase (air and fuel) flow. This model is based on criteria for the phases of a successful ignition process, from the first kernel formation to the flame propagation towards the injector. Then, comparisons with experimental data on aeronautical chambers are done and show good agreement, indicating that the proposed ignition criterion, coupled to a Large Eddy Simulation of the stationary evaporating two-phase non-reacting flow, can be used to optimize the igniter location and power
8

Nelson, Lauren May. "Rayleigh Flow of Two-Phase Nitrous Oxide as a Hybrid Rocket Nozzle Coolant." DigitalCommons@CalPoly, 2009. https://digitalcommons.calpoly.edu/theses/284.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Mechanical Engineering Department at California Polytechnic State University in San Luis Obispo currently maintains a lab-scale hybrid rocket motor for which nitrous oxide is utilized as the oxidizer in the combustion system. Because of its availability, the same two-phase (gas and liquid) nitrous oxide that is used in the combustion system is also routed around the throat of the hybrid rocket’s converging-diverging nozzle as a coolant. While this coolant system has proven effective empirically in previous tests, the physics behind the flow of the two-phase mixture is largely unexplained. This thesis provides a method for predicting some of its behavior by modeling it using the classic gas dynamics scenarios of Rayleigh and Fanno flows which refer to one-dimensional, compressible, inviscid flow in a constant area duct with heat addition and friction. The two-phase model produced utilizes a separated phase with interface exchange model for predicting whether or not dryout occurs. The Shah correlation is used to predict heat transfer coefficients in the nucleate boiling regime. The homogeneous flow model is utilized to predict pressure drop. It is proposed that a Dittus-Boelter based correlation much like that of Groeneveld be developed for modeling heat transfer coefficients upon the collection of sufficient data. Data was collected from a series of tests on the hybrid rocket nozzle to validate this model. The tests were first run for the simplified case of an ideal gas (helium) coolant to verify the experimental setup and promote confidence in subsequent two-phase experimental results. The results of these tests showed good agreement with a combined Rayleigh-Fanno model with a few exceptions including: (1) reduced experimental gas pressure and temperature in the annulus entrance and exit regions compared to the model and (2) reduced experimentally measured copper temperatures uniformly through the annulus. These discrepancies are likely explained by the geometry of the flowpath and location of the copper thermocouples respectively. Next, a series of two-phase cooled experiments were run. Similar trends were seen to the helium experiment with regards to entrance and exit regions. The two-phase Rayleigh homogeneous flow model underpredicted pressure drop presumably due to the inviscid assumption. Ambiguity was observed in the fluid temperature measurements but the trend seemed to suggest that mild thermal non-equilibrium existed. In both cases, the dryout model predicted that mist flow (a post-CHF regime) occurred over most of the annulus. Several modifications should be implemented in future endeavors. These include: (1) collecting more data to produce a heat transfer coefficient correlation specific to the nitrous oxide system of interest, (2) accounting for thermal non-equilibrium, (3) accounting for entrance and exit effects, and (4) developing a two-phase Fanno model.
9

Akritopoulos, Michail. "Combustion modelling of dispersed two-phase flows, applied in circulating fluidised beds." Thesis, Imperial College London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.414215.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Overbrüggen, Timo van [Verfasser], Wolfgang [Akademischer Betreuer] Schröder, and Reinhold [Akademischer Betreuer] Kneer. "Experimental analysis of the two-phase flow field in internal combustion engines / Timo van Overbrüggen ; Wolfgang Schröder, Reinhold Kneer." Aachen : Universitätsbibliothek der RWTH Aachen, 2016. http://d-nb.info/1125911573/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Two phase flow combustion":

1

Nguyen, Hung Lee. Two-dimensional analysis of two-phase reacting flow in a firing direct-injection diesel engine. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Center, Lewis Research, ed. Two-dimensional analysis of two-phase reacting flow in a firing direct-injection diesel engine. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Center, Lewis Research, ed. Two-dimensional analysis of two-phase reacting flow in a firing direct-injection diesel engine. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

I͡Arin, Leonid Petrovich. Osnovy teorii gorenii͡a dvukhfaznykh sred. Leningrad: Ėnergoatomizdat, Leningradskoe otd-nie, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Center, Lewis Research, ed. LSPRAY: A Lagrangian spray solver, user's manual : prepared under contract NAS3-27186. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

C, Roco M., ed. Particulate two-phase flow. Boston: Butterworth-Heinemann, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yarin, L. P., and G. Hetsroni. Combustion of Two-Phase Reactive Media. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06299-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yarin, L. P. Combustion of Two-Phase Reactive Media. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yarin, L. P. Combustion of two-phase reactive media. Berlin: Springer, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kakaç, Sadik, Arthur E. Bergles, and E. Oliveira Fernandes, eds. Two-Phase Flow Heat Exchangers. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2790-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Two phase flow combustion":

1

Poinsot, Thierry. "Two-Phase Flow Combustion." In Instabilities of Flows: With and Without Heat Transfer and Chemical Reaction, 267–85. Vienna: Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-7091-0127-8_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Coward, Adrian V., and Philip Hall. "On the Instability of Two-Phase Stagnation Point Flow." In Transition, Turbulence and Combustion, 181–89. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1032-7_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Durst, F., and T. Börner. "Dispersed Two-Phase Flows, its Experimental Investigation and Numerical Prediction." In Instrumentation for Combustion and Flow in Engines, 295–339. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2241-9_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tai, Lv, and Ting-ting Zhou. "Numerical Simulation of Two Phase Flow Characteristic in Dynamic-Static Separator." In Cleaner Combustion and Sustainable World, 1031–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30445-3_137.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dimitrova, D., M. Braun, J. Janicka, and A. Sadiki. "Large Eddy Simulation of Dispersed Two-Phase Flows and Premixed Combustion in IC-Engines." In Flow and Combustion in Advanced Gas Turbine Combustors, 415–44. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5320-4_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Diakoumakos, E., J. Anagnostopoulos, and G. Bergeles. "A Theoretical Study of Air-Solid Two-Phase Flows." In Mathematical Modeling in Combustion and Related Topics, 449–59. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2770-4_30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Marchesin, Dan, Jesus da Mota, and Aparecido de Souza. "Riemann Solutions for a Model of Combustion in Two-Phase Flow in Porous Media." In Hyperbolic Problems: Theory, Numerics, Applications, 683–92. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8372-6_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

de Vicente, S., G. Galiano, J. Velasco, and J. M. Aróstegui. "Mathematical Description of the Hydrodynamic Regimes of an Asymptotic Model for Two-Phase Flow Arising in PFBC Boilers." In Proceedings of the 20th International Conference on Fluidized Bed Combustion, 870–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02682-9_135.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nguyen, Van Bo, Li Jiun-Ming, Teo Chiang Juay, and Boo-Cheong Khoo. "Numerical Simulation of Combustion Process for Two-Phase Fuel Flows Related to Pulse Detonation Engines." In 30th International Symposium on Shock Waves 1, 397–403. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-46213-4_67.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bourgeat, Alain. "Two-Phase Flow." In Interdisciplinary Applied Mathematics, 95–127. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1920-0_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Two phase flow combustion":

1

Hebrard, P., J. Courquet, and G. Lavergne. "Numerical Simulation of Two-Phase Flow in Combustion Chambers." In ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/91-gt-112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The purpose of this paper is to describe a new approach in which one uses different kinds of post processing to obtain, from 2D or 3D computation codes, the representation of internal flow inside a combustion chamber as an association of elementary reactors (well stirred, plug flow…) To reach this goal and, in order to test this method, different computation codes are used for the gas phase description: mean flow computation or unsteady codes like “R.V.M.” (Random Vortex Method) or “F.C.T.” (Flux corrected transport) - For the liquid phase behaviour, we use to kinds of Lagrangian transport schemes: one purely deterministic is linked to the mean gas flow computation, the second one provides individual instantaneous trajectories. These various approaches are used for two kinds of 2D geometries: the backward facing step and a simplified afterburner geometry. Examples of residence time computations are presented for the liquid and gas phases and the effect of unsteady flow and drop sizes are demonstrated by experimental comparisons.
2

Stowe, R., C. Dubois, P. Harris, A. Mayer, A. De Champlain, and S. Ringuette. "Two phase flow combustion modelling of a ducted rocket." In 37th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-3461.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mittal, M., and T. Rozmajzl. "Numerical simulation of two-phase fluid flow for combustion." In 34th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-708.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Klose, G., R. Schmehl, R. Meier, G. Meier, R. Koch, S. Wittig, M. Hettel, W. Leuckel, and N. Zarzalis. "Evaluation of Advanced Two-Phase Flow and Combustion Models for Predicting Low Emission Combustors." In ASME Turbo Expo 2000: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/2000-gt-0133.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The development of low emission aero engine combustors strongly depends on the availability of accurate and efficient numerical models. The prediction of the interaction between two-phase flow and chemical combustion is one of the major objectives of the simulation of combustor flows. In this paper, predictions of a swirl stabilized model combustor are compared to experimental data. The computational method is based on an Eulerian two-phase model in conjunction with an Eddy Dissipation (ED) and a presumed-shape-PDF (JPDF) combustion model. The combination of an Eulerian two-phase model with a JPDF combustion model is a novelty. It was found to give good agreement to the experimental data.
5

Saha, Kaushik, and Xianguo Li. "Assessment of Different Cavitation Models in Mixture and Eulerian Framework for Two-Phase Flow in Diesel Injectors." In ASME 2013 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icef2013-19201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A comparative study using different cavitation models in mixture and Eulerian framework is carried out for the analysis of two-phase flows in diesel injectors. Three different cavitation models are investigated here: recently developed modified single-fluid, Schnerr-Sauer and Zwart-Gerber-Belamri models. The last two models have been implemented in both mixture and Eulerian framework. The numerical predictions are compared both qualitatively and quantitatively with experimental results available in the literature. Qualitative assessments have been carried out with experimental images of two-phase flow in an optically accessible nozzle. Quantitative comparisons have been done with measured mass flow rates and velocity profiles. It appears that at low pressure differentials there can be considerable discrepancy in the predictions of the vapour distribution from the three models considered. The modified single-fluid approach turns out to be comparatively better with respect to the other two models. Implementation in mixture and Eulerian framework yields noticeable differences in the results because of the relative velocity of the two phases. Numerical experiments have been carried out with different two-phase turbulence modelling approaches, pressure-velocity coupling algorithms, gradient calculation methods and under-relaxation factors to assess the robustness of the models. Additionally comparisons have been carried out for conditions under high inlet pressure in an axisymmetric nozzle to understand the performance of the models under realistic operating conditions.
6

Li, Zhaorui, Murat Yaldizli, and Farhad A. Jaberi. "Numerical Simulations of Two-Phase Turbulent Combustion in Spray Burners." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35433.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The complex interactions among turbulence, combustion and spray in liquid-fuel burners are modeled and simulated via a new two-phase Lagrangian-Eulerian-Lagrangian large eddy simulation (LES) methodology. In this methodology, the spray is modeled with a Lagrangian mathematical/computational method which allows two-way mass, momentum and energy coupling between phases. The subgrid gas-liquid combustion is based on the two-phase filtered mass density function (FMDF) that has several advantages over “conventional” two-phase combustion models. The LES/FMDF is employed in conjunction with non-equilibrium reaction and droplet models. Simulations of turbulent combustion in a spray-controlled double-swirl burner are conducted via LES/FMDF. The generated results are used for better understanding of spray combustion in realistic turbulent flow configurations. The effects of spray angle, mass loading ratio, fuel type, droplet size distribution, wall and inflow/outflow conditions on the flow and combustion are investigated. The LES/FMDF predictions are shown to be consistent with the experimental results.
7

von Langenthal, Thomas, Nikolaos Zarzalis, and Alexandra Loukou. "Experimental Two-Phase Flow Analysis Inside a Laboratory Scale Jet-Engine Combustion Chamber Using PIV." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-14476.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The characterization of the two-phase kerosene/air flow near the nozzle of an aero engine combustor is important in order to understand the combustion characteristics of the burner. Typically, Particle Image Velocimetry (PIV) or Laser Doppler Velocimetry (LDV) is used to measure velocities inside aero engine combustors. However, these measurement techniques rely on tracer particles to visualize the flow field and are usually only able to measure the velocity field of one phase at a time. In the case of PIV measurements both the flow tracers and the kerosene droplets scatter the laser light and thus, appear on the PIV recordings. Depending on droplet size and flow velocity, these kerosene droplets do not necessarily follow the airflow leading to errors in the derived velocity field. This work presents a method on how to separate kerosene droplets from flow tracers depending on their optical characteristics in the PIV recording. This phase separation enables the independent measurement of the flow fields of both the gaseous and liquid phase at the same time using a standard PIV setup. The method is demonstrated on a laboratory scale aero engine combustor operated at atmospheric conditions. The test rig features liquid kerosene combustion with realistic inlet temperatures and pressure drop as well as good access for optical measurement techniques. The phases are separated by filtering the images with noise reduction filters for suppressing the signal of the flow tracers, and edge detection filters to detect the kerosene droplets. The detected kerosene droplets are removed from the PIV pictures and the pictures are evaluated using standard PIV cross-correlation. Afterwards the liquid phase images are evaluated using Particle Tracking Velocimetry (PTV). This phase separation can lead to errors in the derived velocity fields because of incorrect and incomplete particle detection or due to errors in the cross correlation at the edges of detected particles. These errors in the phase separation are quantified by evaluating artificial two-phase flow PIV pictures with similar optical properties to the actual two-phase PIV pictures, and comparing the derived velocity fields to the results calculated using the original, unaltered pictures. The obtained results show, that in the setup under investigation, gaseous and liquid phase can have significantly different flow fields with kerosene droplets moving in the opposite direction of the recirculating airflow. The influence of essential parameters like seeding and spray density are discussed and at positions with a sufficient data rate, the instantaneous slip velocity between droplets and gaseous flow is calculated. Generally, the presented method appears to be suitable for studying combustion with liquid kerosene injection.
8

YU, F. "Hydraulic analogy application in the study of a two-phase mixture combustion flow." In 28th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-451.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dong, Ming, Maozhao Xie, and Hong Liu. "Numerical Study on Turbulent Two-Phase Flow in a Porous Media Combustion Chamber." In 2008 SAE International Powertrains, Fuels and Lubricants Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2008. http://dx.doi.org/10.4271/2008-01-1592.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Srinivasan, Navneeth, Hongyuan Zhang, and Suo Yang. "A VLE-Based Reacting Flow Solver for High-Pressure Transcritical Two-Phase Combustion." In AIAA SCITECH 2023 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2023. http://dx.doi.org/10.2514/6.2023-1858.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Two phase flow combustion":

1

Luke, Gary, Mark Eagar, Michael Sears, Scott Felt, and Bob Prozan. Status of Advanced Two-Phase Flow Model Development for SRM Chamber Flow Field and Combustion Modeling. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada427829.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cizmas, Paul, and Antonio Palacios. A REDUCED ORDER MODEL OF TWO-PHASE FLOW, HEAT TRANSFER AND COMBUSTION IN CIRCULATING FLUIDIZED-BEDS. Office of Scientific and Technical Information (OSTI), December 2001. http://dx.doi.org/10.2172/792073.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Paul Cizmas. A REDUCED ORDER MODEL OF TWO-PHASE FLOW, HEAT TRANSFER AND COMBUSTION IN CIRCULATING FLUIDIZED-BEDS. Office of Scientific and Technical Information (OSTI), December 2003. http://dx.doi.org/10.2172/827038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Paul Cizmas. A REDUCED ORDER MODEL OF TWO-PHASE FLOW, HEAT TRANSFER AND COMBUSTION IN CIRCULATING FLUIDIZED-BEDS. Office of Scientific and Technical Information (OSTI), December 2002. http://dx.doi.org/10.2172/813624.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chapman and Toema. PR-266-07209-R01 Phase 2 - Assessment of the Robustness and Transportability of the Gas Turbine Model. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 2010. http://dx.doi.org/10.55274/r0010719.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This report presents the modeling study of a gas turbine combustor based on first engineering principles to fully characterize the nitrogen oxides (NOx) and carbon monoxide emissions (CO). The model is mainly focused on the emissions from the widely used lean-premixed, dry low-NOx combustor. The combustor is divided into several zones where each zone can be considered as a plug-flow reactor. Each of these zones is assumed to have a uniform pressure, temperature and perfect mixing between combustion species. The temperature of each zone is calculated using mass and energy balances along with heat transfer through the combustor liner. The emissions are calculated using well-know pollutant reaction schemes such as the Zeldovich mechanism in addition to other well-established semi-empirical correlations.
6

Wallis, G. B. Two phase potential flow. Office of Scientific and Technical Information (OSTI), June 1991. http://dx.doi.org/10.2172/6213215.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Maeder, P. F., and J. Kestin. Two-phase flow in geothermal systems. Office of Scientific and Technical Information (OSTI), August 1987. http://dx.doi.org/10.2172/5984665.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Farwagi, S. M. Computer Modelling of Two-Phase Flow. Fort Belvoir, VA: Defense Technical Information Center, October 1986. http://dx.doi.org/10.21236/ada175048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wallis, G. B. Two-Phase Potential Flow. Final report. Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/761114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Theilacker, Jay, and C. Rode. An Investigation Into Flow Regimes for Two Phase Helium Flow. Office of Scientific and Technical Information (OSTI), October 1987. http://dx.doi.org/10.2172/1151469.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії