Добірка наукової літератури з теми "Tungstene carbide"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Tungstene carbide".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Tungstene carbide":

1

Idrees, Maria, Husnain Ahmad Chaudhary, Arslan Akbar, Abdeliazim Mustafa Mohamed, and Dina Fathi. "Effect of Silicon Carbide and Tungsten Carbide on Concrete Composite." Materials 15, no. 6 (March 10, 2022): 2061. http://dx.doi.org/10.3390/ma15062061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Flexural strength of concrete is an important property, especially for pavements. Concrete with higher flexural strength has fewer cracking and durability issues. Researchers use different materials, including fibers, polymers, and admixtures, to increase the flexural strength of concrete. Silicon carbide and tungsten carbide are some of the hardest materials on earth. In this research, the mechanical properties of carbide concrete composites were investigated. The silicon carbide and tungsten carbide at different percentages (1%, 2%, 3%, and 4%) by weight of cement along with hybrid silicon carbide and tungsten carbide (2% and 4%) were used to produce eleven mixes of concrete composites. The mechanical tests, including a compressive strength test and flexural strength test, along with the rapid chloride permeability test (RCPT), were conducted. It was concluded that mechanical properties were enhanced by increasing the percentages of both individual and hybrid carbides. The compressive strength was increased by 17% using 4% tungsten carbide, while flexural strength was increased by 39% at 4% tungsten carbide. The significant effect of carbides on flexural strength was also corroborated by ANOVA analysis. The improvement in flexural strength makes both carbides desirable for use in concrete pavement. Additionally, the permeability, the leading cause of durability issues, was reduced considerably by using tungsten carbide. It was concluded that both carbides provide promising results by enhancing the mechanical properties of concrete and are compatible with concrete to produce composites.
2

Zhong, Li Sheng, Yun Hua Xu, Peng Yu, Xiao Jie Liu, Fang Xia Ye, and Hong Hua Yan. "Microstructure and Abrasive Wear Characteristics of In Situ WC Bundles – Reinforced Iron Matrix Composites." Advanced Materials Research 284-286 (July 2011): 265–68. http://dx.doi.org/10.4028/www.scientific.net/amr.284-286.265.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
An in-situ synthesis process combining an infiltration casting with a subsequent heat treatment was applied to fabricate special tungsten carbide (WC) bundles-reinforced iron matrix composites in this work. The microstructure and wear-resistance of the tungsten carbide bundles reinforced iron matrix composites were studied by using scanning electron microscopy, X-ray diffraction and wear tester. Results showed that the tungsten carbide bundles distributed in the matrix with the center-to-center spacing 2.2 mm, and the diameter of each tungsten carbide bundle is about 1 mm. Most of the tungsten carbides agglomerated, but still there were tungsten carbide particles and the size of tungsten carbide particle was about 10—15 μm. The weight loss of the tungsten carbides bundle reinforced iron matrix composites increased with the increase of the loads and the weight loss of the composites is much less than those of the gray cast iron under the same condition. The wear mechanism of tungsten carbide bundles-reinforced iron matrix composites appears as: micro-cutting, micro-ploughing, broken tungsten carbide and broken particles re-embedded in the matrix.
3

Pu, Juan, Yu-Bo Sun, Lei Wu, Peng He, and Wei-Min Long. "Effect of CeO2 Content on Microstructure and Properties of Ni-Based Tungsten Carbide Layer by Plasma Arc Cladding." Coatings 12, no. 3 (March 6, 2022): 342. http://dx.doi.org/10.3390/coatings12030342.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A Ce-containing Ni-based tungsten carbide layer was prepared on the surface of Q345 steel by plasma arc cladding technology. The effect of CeO2 additions on the microstructure and properties of the Ni-based tungsten carbide cladding layer was investigated. The results showed that the Ni-based tungsten carbide cladding layer had no pores and cracks and that their microstructural composition remained unchanged with CeO2 in the powder. After adding CeO2 into the powder, Ce atoms were absorbed on the surface of tungsten carbide particles to promote their dissolution and spheroidization. The preferentially formed high-melting-point Ce2O3 acted as a nucleating agent to induce the formation and dispersion of carbides. The shape of carbide particles changed from an irregular shape to a spherical shape. When the content of CeO2 was less than 0.2 wt.%, with the increase of CeO2 additions, the microstructure was refined. Meanwhile, the hardness and wear resistance of Ni-based tungsten carbide cladding layer increased. When the content of CeO2 was 0.2 wt.%, the refinement effect of CeO2 on the microstructure reached an optimum value, and the hardness value reached the maximum of 1139 HV10. Moreover the wear resistance was the best. This was attributed to the dispersion strengthening of undissolved tungsten carbide particles, the solid solution strengthening of Ni-based solid solution, and the precipitation strengthening of carbides. However, as the content of CeO2 exceeded 0.2 wt.%, excessive CeO2 increased the viscosity of the solution, resulting in component segregation. Thus, the refinement and spheroidization action of CeO2 weakened, and irregular-shaped carbides appeared again. The hardness and wear resistance of the Ni-based tungsten carbide cladding layer obviously decreased. Ce-containing Ni-based tungsten carbide layer can be widely used in deep-sea mining and other fields due to its high hardness and wear resistance.
4

Novoselova, Inessa, Serhii Kuleshov, Anatoliy Omel’chuk, Valerii Bykov, and Olena Fesenko. "ELECTROREDUCTION OF DITUNGSTATE AND CARBONATE ANIONS IN CHLORIDE MELT." Ukrainian Chemistry Journal 87, no. 12 (January 21, 2022): 97–108. http://dx.doi.org/10.33609/2708-129x.87.12.2021.97-108.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Electrocatalysis is one of the actively developing fields of application of tungsten carbides. For the synthesis of catalytically active carbides (materials with a large specific surface area, small particle size and structural defects) a large number of different technologies are being developed in the world. The method of high-temperature electrochemical synthesis is promising one. For its successful realization, it is necessary to study in detail the electrochemical behavior of each carbide component (tungsten and carbon) and the features of their partial and joint discharge. The aim of this paper is a voltammetric study of the partial and joint electroreduction of Na2W2O7 and Li2CO3 in molten NaCl–KCl electrolyte under CO2 pressure at a temperature of 750 °C. As a result of research, it was found that in the system Na,K|Cl–Na2W2O7–Li2CO3–CO2 joint reduction of tungsten carbide synthesis components occurs from lithium complexes of tungstate (LixWO4)2-x and carbonate- (LixCO3)2-x anions at potentials -1.65 – -1.8 V. Introduction of СО2 into the system (creation of its excess pressure in the cell) is necessary for the binding of oxide anions O2-, released during the discharge of anionic complexes, into a carbonate complex. The released oxide anion in the near-electrode layer inhibits the cathodic process. Also, a necessary condition for the sustainability production of tungsten monocarbide WC is the presence of free carbon, which is formed during the decomposition of CO2. Nanosized composites of tungsten carbides with free carbon WC/C (5 wt%) were obtained by potentiostatic electrolysis at a potential of -1.8 V as a cathode product. The properties of the obtained compounds were analyzed by XRD, SEM, BET, and Raman spectroscopy. Tungsten carbide has a particle size of ~ 10 nm and consists of hollow spherical structures. The synthesized composite is mesoporous material with a specific surface area of ~ 140 m2/g. The properties of the synthesized compo­site, namely: structural defects, the presence of free carbon, spherical morphology, nanometer size and high specific surface area, make it possible to use it as an effective electrocatalyst, for example, in the reaction of hydrogen evolution in acidic aqueous solutions.
5

Gezerman, Ahmet Ozan, and Burcu Didem Çorbacıoğlu. "Effects of Mechanical Alloying on Sintering Behavior of Tungsten Carbide-Cobalt Hard Metal System." Advances in Materials Science and Engineering 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/8175034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
During the last few years, efforts have been made to improve the properties of tungsten carbides (WCs) by preparing composite materials. In this study, we prepared WC particles by mechanical alloying and investigated the effects of mechanical alloying conditions, such as mechanical alloying time and mechanically alloyed powder ratio, on the properties of 94WC-6Co. According to experimental studies, increasing the mechanical alloying time causes an increase in the density of tungsten carbide samples and a decrease of crystal sizes and inner strength of the prepared materials. With the increase of mechanical alloying time, fine particle concentrations of tungsten carbide samples have increased. It is observed that increasing the mechanical alloying time caused a decrease of the particle surface area of tungsten carbide samples. Besides, the amount of specific phases such as Co3W3C and Co6W6C increases with increasing mechanical alloying time. As another subject of this study, increasing the concentration of mechanically alloyed tungsten carbides caused an increase in the densities of final tungsten carbide materials. With the concentrations of mechanically alloyed materials, the occurrence of Co6W6C and Co3W3C phases and the increase of crystallization are observed.
6

Lu, Hao, Chong Zhao, Haibin Wang, Xuemei Liu, Rong Yu, and Xiaoyan Song. "Hardening tungsten carbide by alloying elements with high work function." Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 75, no. 6 (November 8, 2019): 994–1002. http://dx.doi.org/10.1107/s2052520619012277.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
There is intensive searching for superhard materials in both theoretical and experimental studies. Refractory and transition metal carbides are typical materials with high hardness. In this study, first-principles calculations were performed first to analyze the electronic structures and mechanical properties of the tungsten-carbide-based compounds. The results indicated that tungsten carbide could be hardened by alloying elements with high work functions to tailor the Fermi level and electron density. Guided by the calculations, a new type of tungsten carbide alloyed with Re was synthesized. The Young's modulus and hardness of the Re-alloyed tungsten carbide are increased by 31% and 44%, respectively, as compared with those of tungsten carbide. This study provides a new methodology to design superhard materials on a feasible electronic base using work function as a simple guiding parameter.
7

Tarraste, Marek, Jakob Kübarsepp, Arvo Mere, Kristjan Juhani, Märt Kolnes, and Mart Viljus. "Ultrafine Cemented Carbides with Cobalt and Iron Binders Prepared via Reactive In Situ Sintering." Solid State Phenomena 320 (June 30, 2021): 176–80. http://dx.doi.org/10.4028/www.scientific.net/ssp.320.176.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Reactive sintering of cemented carbides involves mechanical and thermal activation of precursor elemental powders, followed by in-situ synthesis of tungsten carbide. This approach promotes formation of ultrafine microstructure favored in many cemented carbide applications. Our study focuses on the effect of mechanical activation (high-energy milling) on the properties of powder and following thermal activation (sintering) on the microstructure characteristics and phase composition. Reactive sintering proved effective – an ultrafine grained microstructure of cemented carbides with Co and Fe binders was achieved. Formation of tungsten carbide grains was complete at low temperature during reactive spark plasma sintering, resulting in textured microstructure with anisotropic grain formation and growth.
8

Горленко, Александр, Aleksandr Gorlenko, Сергей Давыдов, and Sergey Davydov. "Material implantation techniques based on tungsten carbide to increase friction surface durability." Science intensive technologies in mechanical engineering 1, no. 9 (August 23, 2016): 3–9. http://dx.doi.org/10.12737/21233.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The modification of steel friction surface at the expense of the formation on it a surface layer implanted and compound strengthened with tungsten carbides together with the formation of a sub-layer consisting of cellular super-cooled austenite stabilized by tungsten and reinforced with tungsten carbide grid consisting of packaged nano-sized particles is considered. The influence of implanted tungsten carbides upon the formation in friction surfaces of wear-resistant structures formed during the realization of combined electro-mechanical working techniques is investigated. It is shown that at a thermo-power effect in the area of deformation takes place an intensive austenitizing of steel with the dilution of a tungsten carbide powder and further formation of composite nano-structures as a result of the dissociation of super-cooled austenite oversaturated with tungsten. There are shown results of tribotechnical tests of cylindrical samples by a normalized method.
9

Lima, Maria Jose S., M. V. M. Souto, A. S. Souza, M. M. Karimi, F. E. S. Silva, Uilame Umbelino Gomes, and Carlson P. de Souza. "Synthesis of Nanostructured Tungsten Carbide (WC) from Ammonia Paratungstate-APT and its Characterization by XRD and Rietveld Refinement." Materials Science Forum 899 (July 2017): 31–35. http://dx.doi.org/10.4028/www.scientific.net/msf.899.31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The carbides of refractory metals like tungsten carbide (WC), tantalum carbide (TaC) and niobium carbide (NbC), has been extensively studied due to their applications in several areas of industry, because of their specific properties; such as high melting point, high hardness, wear resistance, oxidation resistance and good electrical conductivity. The tungsten carbide, particularly, is generally used at hardmetal industries due to its high hardness and wear resistance. New synthesis techniques have been developed to reduce the synthesis temperature of refractory metal carbides using more reactive precursors and gas-solid reactions for carbon reduction. The result is producing pure carbides suitable properties for production of high quality cemented carbides and more selective catalysts. In this work, pure and nanostructured WC was obtained from the ammonium paratungstate hydrate (APT), at low temperature and short reaction time. Hydrogen (H2) and methane (CH4) were used as a reducing gas and carbon source, respectively. The precursor and obtained product were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results obtained by diffraction of X-rays showed that complete reduction and carburization of APT have been took place resulted in pure WC formation. The average crystallite size was in nanometer order reaching values of approximately 20.8 nm and a surface area (BET) of 26.9 m2/g.
10

Wu, Yung-Yi, and Dong-Yea Sheu. "Investigating Tungsten Carbide Micro-Hole Drilling Characteristics by Desktop Micro-ECM with NaOH Solution." Micromachines 9, no. 10 (October 11, 2018): 512. http://dx.doi.org/10.3390/mi9100512.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Due to their hardness and low tool wear, tungsten carbides are widely used in industrial applications, such as spray nozzles, wire drawing dies and spinning nozzles. However, there is no conventional machining process that is capable of fabricating micro-holes, slots and complicated shapes in tungsten carbide. In this study, a low-cost desktop micro electro-chemical machining (ECM) was developed to investigate the characteristics of tungsten carbide micro-hole drilling. The performance parameters of the machining conditions by desktop micro-ECM, such as the machining time, material removal rate, relative tool wear rate, surface quality and dimensional accuracy, were also investigated in this study. The experimental results demonstrate that the low-cost desktop micro-ECM could fabricate micro-holes in the tungsten cemented carbide (WC-Co) workpiece.

Дисертації з теми "Tungstene carbide":

1

Roure, Sophie. "Densification des mélanges de poudres WC-Co : de la compression au frittage." Grenoble INPG, 1996. http://www.theses.fr/1996INPG0222.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ce travail a pour objectif de prevoir le comportement des melanges wc-co lors du compactage et leur evolution au cours du frittage, en s'interessant particulierement a l'influence de la geometrie des microstructures sur la densification du materiau. Lors de l'etude macroscopique de la compression a froid, un test de compressibilite est etabli pour caracteriser l'aptitude de ces melanges a se comprimer selon les parametres de la poudre et les conditions de l'essai. Ce test fournit une loi de compressibilite intrinseque du melange et un coefficient relatif a la fluidite de la poudre et a son frottement aux parois. Les resultats des essais effectues sont interpretes a l'aide d'une analyse micromecanique du comportement d'empilements composites de particules. Au cours du frittage, l'etude macroscopique de la densification par dilatometrie determine l'evolution du retrait en fonction des parametres du procede, des caracteristiques du melange et de la densite a vert. Un interet particulier est porte a la part de densification realisee en phase solide. On montre que celle-ci est reliee a un rearrangement des grains wc qui se poursuit jusqu'a la formation d'un empilement stable de ces grains. En parallele, une etude microscopique quantitative par analyse d'images caracterise les etats comprime et fritte et l'evolution d'un etat a un autre. Elle permet d'etablir qu'en phase solide l'ecoulement du liant et le rearrangement des grains wc sont deux phenomenes simultanes. Finalement, une modelisation de la densification des melanges wc-co est proposee, qui integre les caracteristiques geometriques instantanees de l'empilement, propres au systeme etudie, au sein d'une approche cinetique globale simple
2

Harry, Emmanuelle. "Stabilité mécanique et modes d'endommagement de revêtements multicouches à base de tungstène et de tungstène-carbone élaborés par PVD." Grenoble INPG, 1998. http://www.theses.fr/1998INPG0071.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les revetements a base de tungstene et de tungstene-carbone sont utilises pour leurs proprietes de resistance a l'usure contre le frottement ou contre l'erosion par des particules solides. Ces revetements peuvent etre le siege de contraintes residuelles elevees. Seules ou associees a une sollicitation exterieure, elles peuvent etre a l'origine de nombreux mecanismes d'endommagement, alterant la fiabilite des revetements. L'objectif de notre travail est d'analyser la stabilite mecanique et les modes de rupture de ces revetements, en relation avec leurs proprietes microstructurales et mecaniques, afin d'optimiser leur architecture pour une application donnee. Les revetements ont ete elabores par pulverisation cathodique magnetron : monocouche w et w(c) (contenant 14 at. %c), revetement multicouches et revetement a gradient de concentration en carbone. La morphologie des couches evolue d'une structure colonnaire a une structure compacte par ajout de carbone dans le tungstene. La durete des depend majoritairement de la taille des grains. Les contraintes residuelles sont equivalentes quelques soit l'architecture du revetement. Les modules d'young ont ete determines par des essais de flexion trois points, et sont voisins du module du tungstene massif. Des essais micromecaniques (flexion trois points avec suivi acoustique, traction in situ dans un microscope electronique a balayage) ont permis de determiner leur contrainte critique de fissuration, leur densite de fissures transversales a saturation, dont sont deduites l'energie de fissuration en volume et la tenacite. Ces parametres, qui sont intrinseques au revetement, decrivent la stabilite mecanique du systeme revetement/substrat. Nous avons utilise un modele base sur la redistribution des contraintes dans un revetement fissure pour analyser son adherence au substrat. Par ailleurs, des essais de rayure (avec suivi acoustique, et analyse par microscopie optique et microscopie electronique a balayage) ont permis de degager les differents mecanismes d'endommagement des revetements (en volume, aux interfaces et en surface) en fonction de la charge appliquee et de caracteriser egalement leur adherence. L'ensemble des resultats montre l'influence determinante de l'architecture des revetements (epaisseur, morphologie, composition, sequence d'empilement des couches) et de la presence de defauts microstructuraux au sein des depots sur leur comportement mecanique. Ces facteurs de structure peuvent, suivant leur amplitude, modifier considerablement la tenue mecanique des revetements.
3

Lavergne, Olivier. "Mécanismes de dissolution et de précipitation dans les carbures cémentés WC/Co." Grenoble INPG, 1997. http://www.theses.fr/1997INPG0214.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les carbures cementes wc/co sont des cermets prepares par metallurgie des poudres. L'evolution microstructurale au cours du frittage avec phase liquide se caracterise par le grossissement moyen de l'ensemble des grains de wc (croissance normale) et par l'apparition de tres gros grains (croissance anormale). Les proprietes mecaniques etant optimisees par une microstructure fine, industriellement, des inhibiteurs de grossissement, entre autres cr#3c#2 et vc, sont ajoutes en faible quantite (<1pds%) dans le melange de poudres de depart. Pour tenter d'expliquer l'evolution microstructurale de ces materiaux, nous avons etudie : - les mecanismes de dissolution de wc dans co en phase solide, a 1200c, par la technique des couples de diffusion, et en phase liquide, a 1450c, par la methode du cylindre tournant. Les resultats montrent qu'au cours de la dissolution, l'equilibre est realise aux interfaces. Les elements cr et v ont le meme effet qu'un petit exces de w : ils favorisent la formation des phases (m#6c) et '(m#1#2c). Dans tous les cas, la cinetique de dissolution de wc dans co est rapide, controlee par diffusion. - les mecanismes de precipitation de wc a partir d'un liquide sursature en w et c. Pour cela, nous avons analyse experimentalement : * l'evolution microstructurale dans des echantillons frittes prepares a partir de poudres de wc submicroniques. Cette etude a permis de definir plus clairement les phenomenes associes aux notions de croissance normale, anormale et inhibee. Les resultats montrent notamment que cr#3c#2 n'a pas pour effet d'inhiber la croissance mais seulement de la retarder ou de la ralentir. * les microstructures de solidification obtenues a partir de liquides sursatures en w et c. Les resultats montrent d'une part que la germination de wc est tres difficile et d'autre part que la croissance peut etre rapide en condition de fortes sursaturations. D'apres les resultats, l'evolution microstructurale des frittes est limitee par l'etape de precipitation. Les differences de tailles observees s'expliquent par des differences de sursaturation locale dans la phase liquide conduisant a un ou plusieurs mecanismes de germination-croissance. L'effet des elements cr ou v pourrait etre relie a un diminution de l'activite de c dans les phases liquides quaternaires.
4

Lindahl, Bonnie. "Equilibrium Study of Chromium Containing Cemented Carbides : Solubility of chromium in tungsten carbide and η-phase". Thesis, KTH, Materialvetenskap, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-49974.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This project treats the W-C-Co-Cr quaternary system at low carbon contents. The main goals with this project were to find a four phase equilibrium between WC, Co-binder phase, η-phase (M6C) and a fourth unknown phase, to discover which the fourth phase is and to establish whether or not WC dissolves any chromium. In order to answer these questions a number of alloys were prepared, the compositions were chosen using thermodynamic calculations and observations from previous alloys. The samples were prepared using a powder metallurgical route and they were sintered at 1410oC. The samples were prepared for analysis via grinding and polishing and then analyzed using LOM, SEM, EDS, WDS and XRD. The results showed that no four phase equilibrium could be found in the analyzed spectra and therefore neither could the fourth phase. However other interesting phenomena were found. The η-phase showed a much higher solubility of chromium than previously thought. According to the current Sandvik-Seco database the η-phase should dissolve a maximum of 0.21 wt% and the maximum value detected using WDS was 8.42 wt%. The solubility of chromium in WC was found to be approximately 5 wt%. The most important conclusion that could be drawn from this project was that the Sandvik-Seco database for the W-C-Co-Cr system still needs to be improved, especially concerning the solubility of chromium in the η-phase.
5

Guiz, Robin. "Influence d’additions de titane/tungstène et de vanadium sur la précipitation de carbures secondaires au sein d’alliages modèles de type HP." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEM011/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les alliages de type HP constituent un matériau de choix pour l'élaboration des tubes de vaporeformage et de vapocraquage dans l'industrie pétrochimique. Exposés à des températures comprises entre 700°C et 1000°C sous des pressions gazeuses de plusieurs MPa, leur microstructure initiale associée à une fine précipitation secondaire, intervenant en cours de service, leur confèrent une excellente résistance aux mécanismes de fluage auxquels ils sont sujets. Néanmoins, à terme, la coalescence des précipités conduit à la dégradation rapide des tubes.Les effets de certains éléments d'alliages (V, Ti/W) sur la précipitation secondaire des carbures M23C6 et NbC ont été étudiés au travers de simulations via le logiciel TC-PRISMA. Sur la base de résultats prometteurs en termes d'optimisation des caractéristiques de la précipitation, deux alliages modèles ont été coulés au laboratoire et soumis à divers vieillissements dans la gamme de température correspondant aux conditions de service. Les microstructures de ces alliages ont d'abord été comparées à celle d'un alliage HP industriel de composition standard à l'état brut de coulée. La précipitation secondaire a par la suite été caractérisée au sein des trois alliages dans les différents états vieillis. Les investigations microstructurales ont permis de mettre en avant certains effets bénéfiques d'un ajout de vanadium et d'ajouts combinés de titane et de tungstène sur les caractéristiques de la précipitation secondaire
HP alloys are typically used as steam methane reforming tubes in the petrochemical industry. During service, they are exposed to temperatures between 700°C and 1000°C under gaz pressure of several MPa. Their as-cast microstructure, together with fine in-situ secondary precipitation, provide these alloys with an excellent resistance to creep deformation. Nevertheless, after long-time ageing, coarsening of secondary carbides leads to the weakening of the tubes and therefore to an accelerated damaging.The effects of some alloying elements (V, Ti/W) on secondary precipitation of M23C6 and NbC carbides were investigated through numerical simulations performed with TC-PRISMA software. On the basis of encouraging results in terms of precipitation optimization, two model HP-type alloys were cast at the laboratory and aged in the range of temperatures corresponding to service conditions. As-cast microstructures were first compared with an industrial "standard" alloy. Then, secondary precipitation were characterized for all the alloys and all ageing temperatures. Microstructural investigation highlighted the beneficial effect of vanadium and titanium/tungsten additions on secondary precipitation characteristics
6

Agode, Kofi Edoh. "Analyse et modélisation du comportement à l’usure des outils de coupe en carbure de tungstène pour différentes teneurs en cobalt lors de l’usinage de l’alliage de titane Ti-6Al-4V." Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0141.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
En raison de sa grande dureté et sa résistance à l'usure, le carbure de tungstène avec liant cobalt (WC-Co) est le matériau incontournable pour la fabrication des outils d’usinage, des outillages de découpe et de formage, ainsi que des pièces d'usure nécessitant une dureté importante et une grande précision. La modification de la microstructure du carbure de tungstène, et plus particulièrement sa teneur en cobalt suscite aujourd’hui le plus grand intérêt de la part des fabricants pour développer de nouvelles nuances plus performantes et ainsi gagner de nouveaux parts de marché. Cette thèse propose d’étudier l’effet de la teneur en cobalt des outils carbure sur les grandeurs mesurées et les mécanismes d’usure lors de l’usinage des superalliages durs à base de titane (Ti-6Al-4V). Le travail de recherche, à la fois expérimental et numérique, est consacré d’une part à la compréhension des mécanismes microscopiques d’endommagement conduisant à l’usure macroscopique du composite WC-Co, et d’autre part à l’influence de la teneur en cobalt sur le comportement du WC-Co en tenant compte du couplage mécanique-microstructure-endommagement. Sur la base d’une analyse expérimentale, l’identification des phénomènes physiques macroscopiques et microscopiques mis en jeu aux niveaux des interfaces de contact outil/copeau et outil/pièce a été conduite. A cet effet, des essais d’usinage ont été réalisés dans un premier temps sur le couple outil-matière WC-Co/Ti-6Al-4V avec différentes teneurs en cobalt pour les outils. Dans un deuxième temps, une caractérisation tribologique, du même couple outil-matière, a été menée afin d’évaluer l’influence de la teneur en cobalt et les conditions de contact (vitesse de glissement, effort appliqué) sur le coefficient de frottement et l’usure. Toutefois, l’inaccessibilité des zones de contact pendant l’usinage et les essais tribologiques n’ont pas permis une description complète des mécanismes d’usure observés qu’ils soient macroscopiques (collage, abrasion, déformation, ...), ou microscopique (fissuration, endommagement des phases WC, Co). La simulation numérique par éléments finis s’est avérée alors un outil complémentaire intéressant pour l’analyse de ces mécanismes d’usure. Notre stratégie de modélisation s’est intéressée à la réponse du WC-Co à l’échelle de la microstructure sous un chargement thermomécanique représentatif de l’usinage. Le modèle proposé tient compte du comportement des phases WC et Co séparément et celui des interfaces WC-WC et WC-Co. Cette stratégie a permis d’étudier et identifier les paramètres influant sur le comportement de la microstructure depuis la phase élastique jusqu’à l’initiation de l’endommagement. Un bon accord a été obtenu entre les résultats du comportement numérique à l’initiation de l’endommagement dans la microstructure et ceux des observations expérimentales en termes d’effets de la teneur en cobalt dans le carbure de tungstène et des conditions d’usinage appliquées
Due to their high hardness and wear resistance, cemented carbide (WC-Co) is the main material used to manufacture machining tools and forming tooling, as well as wear parts requiring high hardness and high precision. The modification of tungsten carbide microstructure, and more particularly its cobalt content, is currently attracting the greatest interest from manufacturers to develop new grades tools with high performance, and then expand new markets.This thesis aims to study the effect of the cobalt content of carbide tools on the measured values and wear mechanisms when machining hard superalloys such as the aeronautical titanium alloys Ti-6Al-4V. Both experimental and numerical research work are devoted on one hand to the understanding of the microscopic damage mechanisms leading to the macroscopic wear of the WC-Co composite and on the other hand, to the influence of the cobalt content on the behavior of the WC-Co taking into account the mechanical-microstructure-damage coupling.On the basis of an experimental analysis, the identification of the macroscopic and microscopic physical phenomena involved at the tool/chip and tool/workpiece contact interfaces was conducted. Machining tests were firstly carried out on the tool-material couple WC-Co/Ti-6Al-4V with different cobalt contents for the tools (from 6 to 15%). In a second step, a tribological characterization of the same tool-material couple was carried out to evaluate the influence of the cobalt content and the contact conditions (sliding speed, applied force) on the friction coefficient and wear. However, the inaccessibility of the contact zones during machining and the tribological tests did not allow a complete description of the wear mechanisms observed, whether macroscopic mechanisms (adhesion, abrasion, deformation, ...), or microscopic mechanisms (cracking, damage of the WC and Co phases). The numerical simulation using finite elements (FE) proved to be a very interesting complementary tool for the analysis of these wear mechanisms.Our modeling strategy focused on the response of WC-Co at the microstructure scale for the thermomechanical loading close to that obtained by machining. The proposed model takes into account the behavior of the WC and Co phases separately and that of the interfaces WC-WC and WC-Co of the composite. This strategy allowed to study and identify parameters influencing the behavior of the microstructure from the elastic stage to the damage initiation. A good agreement was obtained between the results of the numerical behavior at the initiation of damage in the microstructure and those of the experimental observations in terms of the effects of the cobalt content in the tungsten carbide and of the applied machining conditions
7

Gianni, Lorenzo. "Electrodialytic recovery of tungsten and cobalt from tungsten carbide scrap." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Critical raw materials (CRMs) are essential for a wide range of European industrial ecosystems. Access to critical resources is necessary for Europe’s ambition to achieve climate neutrality and deliver the Green Deal. However, supply of material from primary sources is putting extreme pressure on the planet through greenhouse gas emissions, biodiversity loss and water stress. In this scenario, promoting circular economy by obtaining resources from secondary sources is therefore essential to reduce the environmental burden posed by raw material primary extraction and to secure the supply chain of CRMs. This work is a preliminary assessment on the potential of the electrodialytic (ED) treatment in alkaline condition on a tungsten carbide scrap powder obtained from end-of-life cutting tools industry for the recovery of two CRMs: Tungsten (W) and Cobalt (Co). Modular ED reactors with 2 or 3 cell compartments have been used to perform eleven ED experiments (each lasting 24 h), with either NaOH or NH4OH and at 100, 150 or 200 mA to individuate the best reactor configuration, alkaline reagent, and current intensity. The alkaline reagents were placed at different concentrations in the anode compartment (in case of 2-compartments reactor) or in the central compartment (in case of a 3-compartments reactor) along with 450 mL of deionized water and the solid matrix with a solid:liquid ratio of 1/50. Inductively coupled plasma-atomic emission spectroscopy was used to quantify the amount of W and Co obtained in solution at the end of the experiments. The experiments showed that the 2-compartments ED cell setup at 100 mA and with NaOH 0.1 M resulted in the highest W dissolution ( 651 mg), and that the 3-compartments ED cell setup at 100 mA and with NaOH 0.01 M resulted in the highest Co dissolution ( 372 mg) and electromigration (85%). Further investigation is needed to optimize the operational parameters.
8

Deshpande, Pranav Kishore. "Infrared Processed Copper-Tungsten Carbide Composites." University of Cincinnati / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1025107651.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kelley, Andrew III. "Tungsten carbide-cobalt by Three Dimensional Printing." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/32316.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1998.
Includes bibliographical references (p. 69-70).
Three Dimensional Printing is an additive manufacturing process for rapid prototyping ceramic and metallic parts [Sachs, et al, 1990]. Green (not sintered) tungsten carbide-cobalt parts must have a density greater than 50% of the theoretical density, 14.9 g/cc, for proper sintering and post-processing. Two approaches were assessed for feasibility and robustness: printing slurry into tungsten carbide-cobalt spray dried powder and printing a solvent in spray dried tungsten carbide powder that readily dissolves. For slurry administered to a powder bed of solid, spherical particles, it has been found that the resulting packing primitive packing fraction increases almost linearly with the volume loading of the slurry over a range of powder size. The increase in density is approximately half what would be calculated by assuming that the slurry fills all the porosity in the powder bed. The maximum green density achieved by printing slurry into a spray dried tungsten carbide-cobalt bed was 41%, midway between the lower bound calculated by assuming the vehicle in the slurry infiltrates only the large pores between the spray dried power and the upper bound calculated by assuming that the vehicle of the slurry also infiltrates the find pores within a spray dried granule. A re-dispersible spray dried powder (38-53 micron size range) was fabricated using only the Duramax 3007 dispersant as the binder. This powder redisperses in water. Administering a drop of water to this powder resulted in primitives with 47% packing density, but which had significant quantities of 80 micron voids.
(cont.) Several lines of evidence pointed to the hypothesis that the voids were the result of trapped air. Two methods were successfully employed to nearly eliminate such voids. In one approach, the droplet of water wvas administered to the powder bed under a vacuum of between 25 and 40 torr and air was admitted to the chamber to 1 atmosphere after different intervals of time ranging from 30 seconds to 10 minutes. In another approach, the ability of water to absorb CO₂ was used to "getter" any trapped gas into the liquid. Water was administered to a powder bed under a CO₂ environment at room temperature. After a 2 minute period, intended to allow the spray dried powder to substantially re-disperse, the temperture of the powder bed was lowered to 0-5 degrees Centigrade in order to increase the amount of CO₂ which could be absorbed in the water and "switch on" the gettering of the trapped gas.Controls were run with the same procedure in air. The primitives made under CO₂ were nearly void free and had densities as high as 52%, while the controls were not significantly different than primitives made at room temperature in air.
by Andrew Kelley, III.
S.M.
10

Deshpande, Pranav K. "Copper-tungsten carbide composites with infrared processing." Cincinnati, Ohio : University of Cincinnati, 2002. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=ucin1025107651.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Tungstene carbide":

1

Kurlov, Alexey S., and Aleksandr I. Gusev. Tungsten Carbides. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00524-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Brookes, Kenneth J. A. World directory and handbookof hardmetals. 4th ed. East Barnet: International Carbide Data, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Brookes, Kenneth J. A. World directory and handbook of hardmetals. 4th ed. Barnet, Herts: International Carbide Data, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Liu, Kui. Tungsten carbide: Processing and applications. Rijeka, Croatia: InTech, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Upadhyaya, G. S., and Gopal S. Upadhyaya. Cemented tungsten carbides: Production, properties, and testing. Westwood, N.J: Noyes Publications, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Brookes, Kenneth J. A. World directory and handbook of hardmetals and hard materials. 6th ed. East Barnet: International Carbide Data, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Brookes, Kenneth J. A. World directory and handbook of hardmetals and hard materials. 5th ed. East Barnet: International Carbide Data, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Center, Langley Research, ed. Tensile behavior of tungsten and tungsten-alloy wires from 1300 to 1600 k. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

H, Titran Robert, and United States. National Aeronautics and Space Administration., eds. Tensile and stress-rupture behavior of hafnium carbide dispersed molybdenum and tungsten based alloy wires. [Washington, DC]: National Aeronautics and Space Administration, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

H, Titran Robert, and United States. National Aeronautics and Space Administration., eds. Tensile and stress-rupture behavior of hafnium carbide dispersed molybdenum and tungsten based alloy wires. [Washington, DC]: National Aeronautics and Space Administration, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Tungstene carbide":

1

Kurlov, Alexey S., and Aleksandr I. Gusev. "Nanocrystalline Tungsten Carbide." In Tungsten Carbides, 109–89. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00524-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kurlov, Alexey S., and Aleksandr I. Gusev. "Introduction." In Tungsten Carbides, 1–3. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00524-9_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kurlov, Alexey S., and Aleksandr I. Gusev. "Phases and Equilibria in the W–C and W–Co–C Systems." In Tungsten Carbides, 5–56. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00524-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kurlov, Alexey S., and Aleksandr I. Gusev. "Ordering of Tungsten Carbides." In Tungsten Carbides, 57–108. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00524-9_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kurlov, Alexey S., and Aleksandr I. Gusev. "Hardmetals WC–Co Based on Nanocrystalline Powders of Tungsten Carbide WC." In Tungsten Carbides, 191–237. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00524-9_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Storms, E. K. "Tungsten Carbides." In Inorganic Reactions and Methods, 314–15. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145265.ch122.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Shabalin, Igor L. "Tungsten Carbides." In Ultra-High Temperature Materials IV, 11–829. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07175-1_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ishizawa, Y., and T. Tanaka. "Fermi surface of hexagonal tungsten carbide." In The Chemistry of Transition Metal Carbides and Nitrides, 121–33. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-009-1565-7_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liu, Kui, Hao Wang, and Xinquan Zhang. "Ductile Mode Cutting of Tungsten Carbide." In Springer Series in Advanced Manufacturing, 149–77. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9836-1_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fischer, E. O., D. Wittmann, A. Mayr, and A. Mcdermott. "Carbyne Complexes of Tungsten." In Inorganic Syntheses, 40–43. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470132579.ch9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Tungstene carbide":

1

Wank, A., C. Schmengler, K. Müller-Roden, F. Beck, and T. Schläfer. "Aptitude of Different Types of Carbides for Production of Durable Rough Surfaces by Laser Dispersing." In ITSC2017, edited by A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen, and C. A. Widener. DVS Media GmbH, 2017. http://dx.doi.org/10.31399/asm.cp.itsc2017p0414.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Different types of tungsten carbide materials (fused tungsten carbide, nickel clad fused tungsten carbide, macrocrystalline WC and sintered and crushed WC/Co) are used for laser dispersing of construction steel surfaces. Surface roughness analyses and metallographic evaluation of cross sections concerning efficiency of carbide embedding as well as crack formation tendency are carried out. Generally, all types of tested carbides permit production of rough surfaces with metallurgical bonding to the metallic matrix, but only use of nickel clad fused tungsten carbide permits to prevent crack formation. The effectiveness of silicon and silicon carbide for production of durable rough surfaces on aluminium alloys is investigated. Both silicon and silicon carbide qualify for production of rough surfaces by laser dispersing. While silicon carbide particles show higher hardness, use of silicon does not include danger of embrittlement due to formation of aluminium carbide.
2

Prabin, A., K. S. Anvitha, and R. Sathish. "Corrosion Inhibition on Cemented Tungsten Carbides." In Euro Powder Metallurgy 2023 Congress & Exhibition. EPMA, 2023. http://dx.doi.org/10.59499/ep235763660.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cemented tungsten carbide (WC-Co) materials are made of tungsten-carbide grains embedded in a cobalt matrix and are used for making metal cutting and mining tools through powder metallurgical processes. Cobalt is known to be prone to corrosion in aqueous environments. Various surface preparation processes for cemented carbide exposes the cobalt phase in multiple aqueous environments where the corrosion mechanism is not well understood. Therefore, this study aims to understand the corrosion behavior of cemented carbides with different inhibitors in varying pH and temperature environments. The study also evaluates conditions where the corrosion inhibitor can be removed or reduced for different surface conditions for cemented carbide processes, and for alternate corrosion inhibitors with lesser health and environmental impacts. The results of this study will help improve cemented carbide tool performance in highly demanding service conditions and applications in oil and gas extraction in tetra-phasic conditions (seawater, sand, liquid, and gaseous hydrocarbons).
3

Fiala, P., R. Hepp, and A. Zikin. "Alloyed Carbides Beyond WC as a New Material Platform for Solving Challenges in Hardfacing." In ITSC2017, edited by A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen, and C. A. Widener. DVS Media GmbH, 2017. http://dx.doi.org/10.31399/asm.cp.itsc2017p0408.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Tungsten carbide in nickel based self-fluxing alloy overlays has been dominating hardfacing applications due to its excellent properties, namely extremely high wear resistance. Nevertheless, there are still applications and limits which tungsten carbide has not conquered. This study focuses on (TiW)C1-x which was deposited with several matrix materials and tested in wear, corrosion and impact resistance and benchmarked against tungsten carbide. Results for several other carbides such as (NbW)C1-x, (VW)C1-x, NbC1-x and TiC1-x overlays deposited by plasma transferred arc (PTA) and laser cladding (LC) will be presented and discussed. As a result of deposition trials and overlay testing, it was found that better thermodynamic stability of alloyed carbides allows them to be used in an iron based matrix and/or a matrix with a high chromium content, in applications requiring improved corrosion and oxidation resistance, better impact resistance and lower weight.
4

Lyphout, C., J. Kitamura, K. Sato, J. Yamada, and S. Dizdar. "Tungsten Carbide Deposition Processes for Hard Chrome Alternative: Preliminary Study of HVAF vs. HVOF Thermal Spray Processes." In ITSC2013, edited by R. S. Lima, A. Agarwal, M. M. Hyland, Y. C. Lau, G. Mauer, A. McDonald, and F. L. Toma. ASM International, 2013. http://dx.doi.org/10.31399/asm.cp.itsc2013p0506.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract This paper presents the results of a preliminary study comparing high-velocity oxyfuel and airfuel spraying for the deposition of tungsten carbide coatings as an alternative to electrolytic hard chrome plating. Two tungsten carbide powders with a Co matrix and two with a Co-Cr matrix were sprayed on steel substrates using commercial HVOF and HVAF equipment. The coatings obtained are evaluated by means of SEM and XRD analysis, microhardness and adhesion measurements, and corrosion and wear resistance testing. Detailed results are presented and discussed with emphasis on the role of carbide grain size, carbide contiguity, and binder mean free path. In general, HVOF coatings show significantly higher dry wear resistance, owing to the presence of coarser primary carbides from the initial coarser powder. HVAF coatings, on the other hand, exhibit lower porosity and finer well-distributed primary carbides, giving them an advantage in terms of sliding wear resistance.
5

Le Bastard, Avigae¨le, Re´mi Batisse, and Vincent Gaschignard. "Investigation of a Non-Destructive Method to Characterize Material Mechanical Properties of Pipelines in Service." In 2008 7th International Pipeline Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ipc2008-64267.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the frame of Pipelines Integrity Management, a better knowledge of actual materials properties of pipelines in service can save money by avoiding the cut and interruption of gas transit thanks to a more realistic defect assessment at failure. Different ways have to be explored to improve this knowledge on materials. One is based on the development of adapted correlations, well validated, to get from the poor material data available, the material properties which are required to analyse the defect behaviour. Another one is to use directly on field a non-destructive mechanical characterization tool. This paper focuses on non-destructive characterization by indenter method. This method is a succession of micro-indentations made by a spherical tungstene carbide indenter. From the ball displacement and stress applied during the load phase, tensile mechanical properties and toughness of the material are estimated. As the depth of the indenter displacement in steel is about 300 μm with no creation of micro-cracks, the test is considered as non-destructive. Hence, measurement can be made on operating pipelines without cut or interruption of gas transit. Gaz de France’s R&D Division has led laboratory and field-testing to evaluate the accuracy of the indenter tool and the ease and reliability to use it in-ditch conditions. Results on determination of actual tensile properties and toughness by indentation are presented, compared with results from destructive tests on standard specimens. Residual stresses and anisotropic effect on the indenter results are slightly investigated. Finally, all results are discussed to estimate the relevancy of this method for the Pipeline Integrity Management and some perspectives are given.
6

Vuoristo, P., J. Laurila, T. Mäntylä, K. Niemi, S. Rekola, and S. Ahmaniemi. "Surface Changes in Thermally Sprayed Hard Coatings by Wear of Different Abrasives." In ITSC2004, edited by Basil R. Marple and Christian Moreau. ASM International, 2004. http://dx.doi.org/10.31399/asm.cp.itsc2004p1046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Thermally sprayed hard coatings, including tungsten carbide and chromium carbide cermets and other hard metallic materials, were studied in two types of wear tests. Surfaces of the coatings were worn by coarse and hard quartz sand in a rubber-wheel dry abrasion wear test, and by fine and soft kaolin abrasive in a wet slurry abrasion wear test. The aim of the work was to study how the surfaces retain their high polished finish and gloss, and the type of wearing of different coatings and materials. The results showed that coatings with hard tungsten carbides were worn preferentially by removal of the the binder material. Cermet coatings with softer chromium carbides, and with another types of uniform microstructures showed more uniform wear and better retained their glossy finish.
7

Scrivani, A., A. Giorgetti, F. Bianchi, L. Campanini, L. Coppelletti, and H. Keller. "Thermal Spray Coatings for Application in Petrochemical Field: A Comparison of Tungsten Carbide, Chromium Carbide and Inconel 625." In ITSC 2012, edited by R. S. Lima, A. Agarwal, M. M. Hyland, Y. C. Lau, C. J. Li, A. McDonald, and F. L. Toma. ASM International, 2012. http://dx.doi.org/10.31399/asm.cp.itsc2012p0540.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract An important problem for the petrochemical industry is the behaviour of materials in aggressive environments, when hydrogen sulphide, carbon dioxide and sand, which contribute to corrosion erosion of the surface, are present. Generally, the use of hard materials such as thermal sprayed tungsten carbide and chromium carbide reduces this problem. Cemented carbides are quite suitable for this purpose: they are composite materials of pure carbides with binder metal alloys of low melting point and high ductility; the selection of the binder metals depends mostly on its ability to wet the surface of the carbide particles to ensure secure coating adhesion. Among the cemented carbides, namely tungsten carbide cobalt-chromium based (WC/CoCr) is considered as the standard for application to ball valve bodies and seats in the petrochemical field, while chromium carbide nickel-chromium based (Cr3C2/NiCr) is suitable for particular applications. Inconel 625 is also used in this field and usually applied by welding. This paper addresses the characterization of corrosion behavior of HVOF coated samples of WC/CoCr, Cr3C2/NiCr and Inconel 625 in aggressive environments, and in particular ferric chloride test according to standard ASTM G48-92 and H2S/CO2 test based on NACE standards has been carried out. According to the test results, WC/CoCr based coatings show the best behavior both in terms of corrosion, thus confirming to be very versatile and useful for the application in petrochemical field.
8

Gorlenko, Aleksandr, Sergey Davydov, and Mikhail Shevtsov. "STRENGTHENING OF CARBIDE STEEL SURFACE BY TUNGSTEN CARBIDE POWDER BY PLASTIC DEFORMATION." In PROBLEMS OF APPLIED MECHANICS. Bryansk State Technical University, 2020. http://dx.doi.org/10.30987/conferencearticle_5fd1ed04a82ac0.47164745.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The use of the technology of combined electromechanical processing, consisting of a high-temperature plastic deformation mode, when tungsten carbide powder is implanted into the surface of carbon steel, and a high-temperature thermal hardening mode, during which tungsten carbides are partially dissolved in the austenite of steel up to the limit of its saturation with tungsten, provided a gradient wear-resistant three-layer highly dispersed structure as a result of the decomposition of supercooled austenite oversaturated with tungsten. The results of tribotechnical tests of cylindrical specimens by the normalized method are presented.
9

Hirata, G. A., O. Contreras, M. H. Farías, and L. Cota-Araiza. "Stoichiometric tungsten carbide coatings." In The 8th Latin American congress on surface science: Surfaces , vacuum, and their applications. AIP, 1996. http://dx.doi.org/10.1063/1.51119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Srinivasan, Suresh, Jessica M. Marshall, Joe Gillham, and Gurdev Singh. "Tungsten carbide for radiation shielding: A comprehensive review." In Euro Powder Metallurgy 2023 Congress & Exhibition. EPMA, 2023. http://dx.doi.org/10.59499/ep235765427.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cemented tungsten carbides (cWC)s are attractive radiation shielding material candidates, from their high density, ease of manufacture and excellent mechanical properties. Recent research indicate that cWCs can have better radiation shielding behaviour compared to conventional candidate materials. The application of tungsten carbide as a radiation shielding material is not well understood due to the use of highly activating Co and Ni as the main binder alloys and are still lacking in the literature. cWCs are of particular interest since the mixture of high and low Z-elements offers effective shielding against gamma and neutron radiation, photons, and fast neutron capture/removal cross section. The presence of carbon in cWCs contributes to the moderation of fast neutrons flux, reducing their contribution to total dose rate. In this paper, tungsten carbide applications in nuclear power and nuclear medicine are reviewed. The key challenges and further research for the future direction are highlighted.

Звіти організацій з теми "Tungstene carbide":

1

Dandekar, Dattatraya P. Spall Strength of Tungsten Carbide. Fort Belvoir, VA: Defense Technical Information Center, September 2004. http://dx.doi.org/10.21236/ada427318.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gluth, Jeffrey Weston, Clint Allen Hall, Tracy John Vogler, and Dennis Edward Grady. Dynamic compaction of tungsten carbide powder. Office of Scientific and Technical Information (OSTI), April 2005. http://dx.doi.org/10.2172/922764.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

mazo, isacco, alberto molinari, and vincenzo sglavo. Electrical Resistance Flash Sintering of Tungsten Carbide. Peeref, September 2022. http://dx.doi.org/10.54985/peeref.2209p1889967.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Reinhart, William Dodd, Tom Finley, III Thornhill, Tracy John Vogler, and C. Scott Alexander. Expansion into vacuum of a shocked tungsten carbide-epoxy mixture. Office of Scientific and Technical Information (OSTI), March 2009. http://dx.doi.org/10.2172/983671.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Z. Zak Fang, H. Y. Sohn. Development of Bulk Nanocrystalline Cemented Tungsten Carbide for Industrial Applicaitons. Office of Scientific and Technical Information (OSTI), March 2009. http://dx.doi.org/10.2172/950043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Demaske, Brian. Mesoscale simulations of pressure-shear loading of granular tungsten carbide. Office of Scientific and Technical Information (OSTI), January 2022. http://dx.doi.org/10.2172/2002918.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chen, Tianju, Bipul Barua, Tianchen Hu, Mark Messner, and Tahany El-Wardany. An ICME Modeling Framework for Titanium/Tungsten-Carbide Metal Matrix Composites. Office of Scientific and Technical Information (OSTI), May 2023. http://dx.doi.org/10.2172/1985051.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kolopus, James A., and Lynn A. Boatner. Single-Crystal Tungsten Carbide in High-Temperature In-Situ Additive Manufacturing Characterization. Office of Scientific and Technical Information (OSTI), May 2017. http://dx.doi.org/10.2172/1361361.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Conrad, Hans, and Jay Narayan. Grain Size Hardening and Softening in Tungsten Carbide at Low Homologous Temperatures. Fort Belvoir, VA: Defense Technical Information Center, January 2003. http://dx.doi.org/10.21236/ada422872.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

David Moy, Jun Ma, Robert Hoch, Jim Leacock, Jason Willey, Asif Chishti, Fabio RIbeiro, et al. New Nanoscale Catalysts Based on Molybdenum and Tungsten Carbides and Oxycarbides. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/799250.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії