Добірка наукової літератури з теми "Tumor genomic"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Tumor genomic".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Tumor genomic"
Schmandt, R., and G. B. Mills. "Genomic components of carcinogenesis." Clinical Chemistry 39, no. 11 (November 1, 1993): 2375–85. http://dx.doi.org/10.1093/clinchem/39.11.2375.
Повний текст джерелаEllsworth, Rachel E., Jeffrey A. Hooke, Craig D. Shriver, and Darrell L. Ellsworth. "Genomic Heterogeneity of Breast Tumor Pathogenesis." Clinical medicine. Oncology 3 (January 2009): CMO.S2946. http://dx.doi.org/10.4137/cmo.s2946.
Повний текст джерелаBrastianos, Priscilla Kaliopi, Peleg Horowitz, Sandro Santagata, Robert T. Jones, Aaron McKenna, Keith Ligon, Emanuele Palescandolo, et al. "Genomic characterization of meningiomas." Journal of Clinical Oncology 30, no. 15_suppl (May 20, 2012): 2020. http://dx.doi.org/10.1200/jco.2012.30.15_suppl.2020.
Повний текст джерелаGarraway, Levi A. "Genomics-Driven Oncology: Framework for an Emerging Paradigm." Journal of Clinical Oncology 31, no. 15 (May 20, 2013): 1806–14. http://dx.doi.org/10.1200/jco.2012.46.8934.
Повний текст джерелаChen, Mingjiu, Haitao Ma, Haoda Yu, Chen Chen, Pingping Dai, Zhiyi He, Pengcheng Li, et al. "Genomic heterogeneity of multifocal NSCLC." Journal of Clinical Oncology 38, no. 15_suppl (May 20, 2020): e21595-e21595. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.e21595.
Повний текст джерелаPawloski, Jacob A., Hassan A. Fadel, Yi-Wen Huang, and Ian Y. Lee. "Genomic Biomarkers of Meningioma: A Focused Review." International Journal of Molecular Sciences 22, no. 19 (September 23, 2021): 10222. http://dx.doi.org/10.3390/ijms221910222.
Повний текст джерелаMacConaill, Laura E. "Existing and Emerging Technologies for Tumor Genomic Profiling." Journal of Clinical Oncology 31, no. 15 (May 20, 2013): 1815–24. http://dx.doi.org/10.1200/jco.2012.46.5948.
Повний текст джерелаde Moor, Janet S., Stacy W. Gray, Sandra A. Mitchell, Carrie N. Klabunde, and Andrew N. Freedman. "Oncologist Confidence in Genomic Testing and Implications for Using Multimarker Tumor Panel Tests in Practice." JCO Precision Oncology, no. 4 (September 2020): 620–31. http://dx.doi.org/10.1200/po.19.00338.
Повний текст джерелаStarr, Jason Scott, Kabir Mody, Ali Roberts, and Pashtoon Murtaza Kasi. "Circulating tumor DNA analysis of neuroendocrine tumors." Journal of Clinical Oncology 37, no. 15_suppl (May 20, 2019): e15698-e15698. http://dx.doi.org/10.1200/jco.2019.37.15_suppl.e15698.
Повний текст джерелаSurrey, Lea F., Minjie Luo, Fengqi Chang, and Marilyn M. Li. "The Genomic Era of Clinical Oncology: Integrated Genomic Analysis for Precision Cancer Care." Cytogenetic and Genome Research 150, no. 3-4 (2016): 162–75. http://dx.doi.org/10.1159/000454655.
Повний текст джерелаДисертації з теми "Tumor genomic"
Qiao, Yi. "Tumor subclone structure reconstruction with genomic variation data." Thesis, Boston College, 2014. http://hdl.handle.net/2345/bc-ir:104182.
Повний текст джерелаUnlike normal tissue cells, which contain identical copies of the same genome, tumors are composed of genetically divergent cell subpopulations, or subclones. The abilities to identify the number of subclones, their frequencies within the tumor mass, and the evolutionary relationships among them are crucial in understanding the basis of tumorigenesis, drug response, relapse, and metastasis. It is also essential information for informed, personalized therapeutic decisions. Studies have attempted to reconstruct subclone structure by identifying distinct allele frequency distribution modes at a handful of somatic single nucleotide variant loci, but this question was not adequately addressed with computational means at the start of this dissertation work, and recent efforts either enforce certain assumptions or resort to statistical procedure which cannot guarantee the complete landscape of solution space. This dissertation present a computational framework that examines somatic variation events, such as copy number changes, loss of heterozygosity, or point mutations, in order to identify the underlying subclone structure. Chapter 2 discuss the presence of intra-tumoral heterogeneity, and for historical interest, a method to reconstruct the parsimonious solution based on simplifying assumptions in tumor micro-evolution process. Analysis results on clinical datasets concerning Ovarian Serious Carcinoma and Intracranal Germ Cell Tumor based on this method, which confirmed the genomic complexity, are also presented. Due to the reason that the linkage information i.e. whether two mutations are co-localizing in the same cancer cell is lost during tissue homogenization and DNA fragmentation, common sample preparation steps used in whole genome profiling techniques, often there are more than one subclone model capable of explaining the observation. Chapter 3 describes an extended method that is able to search for all models consistent with the observation. Consequently, the solution to a specific input dataset is then a set of possible subclone structures. The method then trim this solution space in the case that more than one sample from the same patient are available, such as the primary and relapse tumor pairs. Furthermore, a statistical framework is developed that, when further trimming is not possible, predicts whether two mutations are co-localizing in the same subclone. The formal definition on the problem of subclone structure reconstruction, as well as techniques to pre-process various types of genomic variation data are given given here as well. Results on the analysis of published and novel datasets, ranging from cancer types including Acute Myeloid Leukemia, Sinonasal Undifferenciated Carcinoma and Ovarian Serious Carcinoma, and data types including whole genome sequencing, copy number array, single nucleotide polymorphism array and single nucleotide variant calls with deep sequencing are also included. They show that the method is applicable to these wide range of cancer and data types, able to independently replicate the published conclusion based on manual reasoning, and gain novel insights into the pattern of tumor recurrence and chemoresistance. It also shows that the method can be valuable in prioritizing variants for function study
Thesis (PhD) — Boston College, 2014
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Biology
Srinivasan, Seetha V. "Loss of the RB tumor suppressor contributes to genomic instability." Cincinnati, Ohio : University of Cincinnati, 2002. http://rave.ohiolink.edu/etdc/view.cgi?acc_num=ucin1212166350.
Повний текст джерелаAdvisor: Erik S. Knudsen. Title from electronic thesis title page (viewed Sep. 8, 2008). Keywords: RB; cell cycle; DNA replication; mitosis; p53; ploidy; genome integrity. Includes abstract. Includes bibliographical references.
SRINIVASAN, SEETHA V. "Loss of the RB tumor suppressor contributes to genomic instability." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1212166350.
Повний текст джерелаBarbee, Bonnie. "Genomic Heterogeneity of Glioblastoma: A Comparison of the Enhancing Tumor Core and the Brain Around the Tumor." Thesis, The University of Arizona, 2016. http://hdl.handle.net/10150/603560.
Повний текст джерелаHolcomb, Ilona Noelani. "Genomic profiling of prostate cancer within and beyond the primary tumor /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/10282.
Повний текст джерелаRooney, Michael Steven. "Integrative genomic approaches to dissecting host-tumor and host-pathogen immune processes." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98722.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 243-263).
Two parallel research efforts were pursued. First, we conducted a systematic exploration of how the genomic landscape of cancer shapes and is shaped by anti-tumor immunity. Using large-scale genomic data sets of solid tissue tumor biopsies, we quantified the cytolytic activity of the local immune infiltrate and identified associated properties across 18 tumor types. The number of predicted MHC Class I-associated neoantigens was correlated with cytolytic activity and was lower than expected in colorectal and other tumors, suggesting immune-mediated elimination. We identified recurrently mutated genes that showed positive association with cytolytic activity, including beta-2- microglobulin (B2M), HLA-A, -B and -C and Caspase 8 (CASP8), highlighting loss of antigen presentation and blockade of extrinsic apoptosis as key strategies of resistance to cytolytic activity. Genetic amplifications were also associated with high cytolytic activity, including immunosuppressive factors such as PDL1/2 and ALOX12B/15B. Our genetic findings thus provide evidence for immunoediting in tumors and uncover mechanisms of tumor-intrinsic resistance to cytolytic activity. Second, we combined measurements of protein production and degradation and mRNA dynamics so as to build a quantitative genomic model of the differential regulation of gene expression in lipopolysaccharide-stimulated mouse dendritic cells. Changes in mRNA abundance play a dominant role in determining most dynamic fold changes in protein levels. Conversely, the preexisting proteome of proteins performing basic cellular functions is remodeled primarily through changes in protein production or degradation, accounting for more than half of the absolute change in protein molecules in the cell. Thus, the proteome is regulated by transcriptional induction for newly activated cellular functions and by protein lifecycle changes for remodeling of preexisting functions.
by Michael Steven Rooney.
Ph. D.
Fishler, Kristen B. S. "“It’s the Wild, Wild West Out There” Experiences of a Multidisciplinary Genomic Breast Cancer Tumor Board Implementing Tumor Sequencing in Clinical Care." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1525169475571341.
Повний текст джерелаO'Connor, Brian Daniel. "Analysis of high level patterns in genomic data from protein thermostability to tumor biology /." Diss., Restricted to subscribing institutions, 2007. http://proquest.umi.com/pqdweb?did=1383484301&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Повний текст джерелаPereira, Carolina Ruivo 1986. "Genomic profile of tumorgrafts identifies B2M as a novel tumor suppressor gene in lung cancer." Doctoral thesis, Universitat Pompeu Fabra, 2016. http://hdl.handle.net/10803/482055.
Повний текст джерелаLung cancer is the deadliest form of cancer worldwide. Recently, the large-scale genomic profiling of human tumors has fueled the development of efficient anticancer agents that target the activity of mutated genes. Given that directed therapies are still very scarce, the discovery of novel lung cancer-related genes with potential relevance within the clinical context is imperative. Thus, this project consisted on coupling high-throughput sequencing strategies (exomes and transcriptomes) with the use of lung tumorgrafts. The high tumor purity achieved through the engraftment was crucial, particularly to identify homozygous deletions and gene amplifications. The B2M gene (β2-microglobulin), found to be mutated in 5% of lung tumors, was characterized. Its genetic loss was correlated to lower cytotoxic T-cell intratumoral infiltration, probably impairing the immune-mediated tumor eradication. Moreover, β2-microglobulin was associated with survival in patients treated with anti-PD-1/PD-L1 agents, highlighting a potential role in predicting response to immunologically-based therapies in lung cancer.
Patrick, James Lambert. "Computer Aided Analysis of Restriction Landmark Genomic Scanning Images from Tumor and Cell Line Models." University of Toledo Health Science Campus / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=mco1196365469.
Повний текст джерелаКниги з теми "Tumor genomic"
Simon, Richard M. Genomic clinical trials and predictive medicine. Cambridge: Cambridge University Press, 2012.
Знайти повний текст джерелаCancer genome and tumor microenvironment. New York: Springer, 2010.
Знайти повний текст джерелаThomas-Tikhonenko, Andrei, ed. Cancer Genome and Tumor Microenvironment. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-0711-0.
Повний текст джерелаThomas-Tikhonenko, Andrei. Cancer genome and tumor microenvironment. New York: Springer, 2010.
Знайти повний текст джерелаZhang, Xuewu. Omics technologies in cancer biomarker discovery. Austin, Tex: Landes Bioscience, 2011.
Знайти повний текст джерелаParker, James N., and Philip M. Parker. Von Hippel-Lindau syndrome: A bibliography and dictionary for physicians, patients, and genome researchers [to internet references]. San Diego, CA: ICON Health Publications, 2007.
Знайти повний текст джерелаYosef, Shiloh, and SpringerLink (Online service), eds. The DNA Damage Response: Implications on Cancer Formation and Treatment. Dordrecht: Springer Netherlands, 2009.
Знайти повний текст джерелаYegnasubramanian, Srinivasan. Modern Molecular Biology: Approaches for Unbiased Discovery in Cancer Research. New York, NY: Springer Science+Business Media, LLC, 2010.
Знайти повний текст джерелаMaher, Christopher J., and Elaine R. Mardis. Genomic Landscape of Cancer. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190238667.003.0004.
Повний текст джерелаSherman, Mark E., Melissa A. Troester, Katherine A. Hoadley, and William F. Anderson. Morphological and Molecular Classification of Human Cancer. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190238667.003.0003.
Повний текст джерелаЧастини книг з теми "Tumor genomic"
Rassekh, Shahrad Rod, and Evica Rajcan-Separovic. "Comparative Genomic Hybridization of Wilms’ tumor." In Methods in Molecular Biology, 249–65. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-281-0_16.
Повний текст джерелаKendal, Wayne S., and Philip Frost. "Genomic Instability, Tumor Heterogeneity and Progression." In Advances in Experimental Medicine and Biology, 1–4. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-5037-6_1.
Повний текст джерелаEl-Ashry, Dorraya, Marija Balic, and Richard J. Cote. "Circulating Tumor Cells: Enrichment and Genomic Applications." In Genomic Applications in Pathology, 73–87. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96830-8_6.
Повний текст джерелаBalic, Marija, and Richard J. Cote. "Circulating Tumor Cells: Enrichment and Genomic Applications." In Genomic Applications in Pathology, 71–84. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0727-4_5.
Повний текст джерелаWatson, Geoffrey Alan, Kirsty Taylor, and Lillian L. Siu. "Innovation and Advances in Precision Medicine in Head and Neck Cancer." In Critical Issues in Head and Neck Oncology, 355–73. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63234-2_24.
Повний текст джерелаGasch, Christin, Klaus Pantel, and Sabine Riethdorf. "Whole Genome Amplification in Genomic Analysis of Single Circulating Tumor Cells." In Whole Genome Amplification, 221–32. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2990-0_15.
Повний текст джерелаGiaretti, Walter. "Aneuploidy and Heterogeneity Mechanisms in Human Colorectal Tumor Progression." In Genomic Instability and Immortality in Cancer, 53–68. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5365-6_4.
Повний текст джерелаCardiff, Robert D. "The Tumor Pathology of Genetically Engineered Mice: Genomic Pathology." In Genetically Engineered Mice for Cancer Research, 133–80. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-0-387-69805-2_7.
Повний текст джерелаNoiville, Christine, and Florence Bellivier. "Biological Sample Collection in the Era of Genomic Medicine: A New Example of a Public Commons?" In Public Regulation of Tumor Banks, 211–21. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90563-1_18.
Повний текст джерелаRiaz, Ramish, Shah Rukh Abbas, and Maria Shabbir. "Adapting the Foreign Soil: Factors Promoting Tumor Metastasis." In 'Essentials of Cancer Genomic, Computational Approaches and Precision Medicine, 171–96. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1067-0_8.
Повний текст джерелаТези доповідей конференцій з теми "Tumor genomic"
Apple, Annie, Kevin Neuzil, Hannah Phelps, and Harold N. Lovvorn. "Race Disparities in Genomic Alterations Within Wilms Tumor Specimens." In AAP National Conference & Exhibition Meeting Abstracts. American Academy of Pediatrics, 2021. http://dx.doi.org/10.1542/peds.147.3_meetingabstract.950.
Повний текст джерелаLorber, Thomas, Tanja Dietsche, Joël Gsponer, Alexander Rufle, Michael Barret, Lukas Sommer, Katharina Glatz, Christian Ruiz, and Lukas Bubendorf. "Abstract 3167: Deciphering the genomic heterogeneity in malignant melanoma by genomic profiling of clonal tumor populations." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-3167.
Повний текст джерелаYang, Chieh-Hsiang, Elke A. Jarboe, Jason Gertz, Katherine E. Varley, C. Matthew Peterson, and Margit M. Janát-Amsbury. "Abstract 648: Integrated genomic characterization of endometrial cancer tumor grafts: a step toward genomic-guided treatment." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-648.
Повний текст джерелаChokshi, Chirayu, David Tieu, Kevin Brown, Chitra Venugopal, Lina Liu, Laura Kuhlman, Katherine Chan, et al. "Abstract PR009: The functional genomic landscape of recurrent glioblastoma." In Abstracts: AACR Virtual Special Conference: Tumor Immunology and Immunotherapy; October 19-20, 2020. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/2326-6074.tumimm20-pr009.
Повний текст джерелаSubramanian, Ayshwarya, Stanley Shackney, and Russell Schwartz. "Inference of tumor phylogenies from genomic assays on heterogeneous samples." In the 2nd ACM Conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2147805.2147824.
Повний текст джерелаCatalanotti, Claudia, Sarah Garcia, Kamila Belhocine, Vijay Kumar, Zeljko Dzakula, Andrew Price, Shamoni Maheshwar, et al. "Abstract 3400: Characterizing genomic variation and tumor heterogeneity in cancer." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-3400.
Повний текст джерелаWhite, Chris, Lysa-Anne Volpe, Luping Chen, Anupreet Bal, Michael Jackson, John Foulke, and Fang Tian. "Abstract 1571: Tumor cell panels: New tools in genomic era." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-1571.
Повний текст джерелаRoman, Theodore, Brenda Xiao, and Russell Schwartz. "Abstract 974: Automating deconvolution of heterogeneous bulk tumor genomic data." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-974.
Повний текст джерелаRoman, Theodore, Lu Xie, and Russell Schwartz. "Abstract 849: Improved geometric deconvolution of bulk tumor genomic data." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-849.
Повний текст джерелаLorber, Thomas, Tanja Dietsche, Valeria Perrina, Michael Barret, Kathrin Glatz, Christian Ruiz, and Lukas Bubendorf. "Abstract 3424: Deciphering the genomic heterogeneity and evolution in malignant melanoma by genomic profiling of clonal tumor populations." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3424.
Повний текст джерелаЗвіти організацій з теми "Tumor genomic"
Wagle, Nikhil. Tumor Genomic Profiling in Breast Cancer Patients Using Targeted Massively Parallel Sequencing. Fort Belvoir, VA: Defense Technical Information Center, January 2014. http://dx.doi.org/10.21236/ada598724.
Повний текст джерелаPark, Jae-Hyun. Influence of the Tumor Microenvironment on Genomic Changes Conferring Chemoresistance in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, April 2013. http://dx.doi.org/10.21236/ada580419.
Повний текст джерелаMoritz, Robert. Development of Advanced Technologies for Complete Genomic and Proteomic Characterization of Quantized Human Tumor Cells. Fort Belvoir, VA: Defense Technical Information Center, July 2014. http://dx.doi.org/10.21236/ada614224.
Повний текст джерелаMoritz, Robert. Development of Advanced Technologies for Complete Genomic and Proteomic Characterization of Quantized Human Tumor Cells. Fort Belvoir, VA: Defense Technical Information Center, July 2013. http://dx.doi.org/10.21236/ada583585.
Повний текст джерелаFoltz, Gregory. Development of Advanced Technologies for Complete Genomic and Proteomic Characterization of Quantized Human Tumor Cells. Fort Belvoir, VA: Defense Technical Information Center, July 2013. http://dx.doi.org/10.21236/ada583639.
Повний текст джерелаFoltz, Gregory. Development of Advanced Technologies for Complete Genomic and Proteomic Characterization of Quantized Human Tumor Cells. Fort Belvoir, VA: Defense Technical Information Center, July 2012. http://dx.doi.org/10.21236/ada574964.
Повний текст джерелаVan Drogen, Audrey, and Charles H. Spruck. The Role of hCDC4 as a Tumor Suppressor Gene in Genomic Instability Underlying Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, November 2006. http://dx.doi.org/10.21236/ada463404.
Повний текст джерелаMoritz, Robert. Development of Advanced Technologies for Complete Genomic and Proteomic Characterization of Quantized Human Tumor Cells. Fort Belvoir, VA: Defense Technical Information Center, July 2012. http://dx.doi.org/10.21236/ada573716.
Повний текст джерелаCobbs, Charles. Development of Advanced Technologies for Complete Genomic and Proteomic Characterization of Quantized Human Tumor Cells. Fort Belvoir, VA: Defense Technical Information Center, September 2015. http://dx.doi.org/10.21236/ada622404.
Повний текст джерелаCollins, Colin C. A Genomics Approach to Tumor Gemome Analysis. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada410900.
Повний текст джерела