Зміст
Добірка наукової літератури з теми "Transport intracellulaire des protéines"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Transport intracellulaire des protéines".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Transport intracellulaire des protéines"
Morin, Morgane, Hadia Moindjie, and Clara Nahmias. "Le transport mitochondrial." médecine/sciences 38, no. 6-7 (June 2022): 585–93. http://dx.doi.org/10.1051/medsci/2022085.
Повний текст джерелаBourdoulous, S., Albert Bensaïd, Dominique Martinez, O. Durieu Trautmann, A. D. Strosberg, and P. O. Couraud. "Induction de molécules de classe II du CMH après infection de cellules endothéliales de cerveau de bovin par Cowdria ruminantium." Revue d’élevage et de médecine vétérinaire des pays tropicaux 46, no. 1-2 (January 1, 1993): 203. http://dx.doi.org/10.19182/remvt.9362.
Повний текст джерелаJanin, Alexandre, Véronique Manel, Gilles Millat, and Nathalie Streichenberger. "Un cas de myopathie myofibrillaire infantile dû à une mutation dans le gène FLNC." Les Cahiers de Myologie, no. 17 (June 2018): 15–18. http://dx.doi.org/10.1051/myolog/201817004.
Повний текст джерелаHanson, Julien. "Les protéines G : les transducteurs privilégiés des récepteurs à sept domaines transmembranaires." Biologie Aujourd’hui 215, no. 3-4 (2021): 95–106. http://dx.doi.org/10.1051/jbio/2021011.
Повний текст джерелаIsmail, Sadek, Véronique Gigoux, and Daniel Fourmy. "Signalisation endosomale du récepteur du peptide insulinotrope dépendant du glucose (GIP)." Biologie Aujourd'hui 212, no. 1-2 (2018): 13–19. http://dx.doi.org/10.1051/jbio/2018018.
Повний текст джерелаNazih, F., and C. Delbart. "Transmission du signal intracellulaire par les protéines ancrées par un glycosyl-phosphatidylinositol." médecine/sciences 14, no. 3 (1998): 275. http://dx.doi.org/10.4267/10608/1030.
Повний текст джерелаBonnerot, C., and C. Hivroz. "Signalisation et transport intracellulaire des immunorécepteurs." médecine/sciences 15, no. 8-9 (1999): 923. http://dx.doi.org/10.4267/10608/1461.
Повний текст джерелаReboud-Ravaux, Michèle. "Dégradation induite des protéines par des molécules PROTAC et stratégies apparentées : développements à visée thérapeutique." Biologie Aujourd’hui 215, no. 1-2 (2021): 25–43. http://dx.doi.org/10.1051/jbio/2021007.
Повний текст джерелаAmigorena, S. "Transport intracellulaire des molécules de classe II du CMH." médecine/sciences 11, no. 5 (1995): 661. http://dx.doi.org/10.4267/10608/2263.
Повний текст джерелаBensaude, O. "Protéines de choc thermique, transport des protéines dans le noyau et oncogenèse." médecine/sciences 8, no. 7 (1992): 710. http://dx.doi.org/10.4267/10608/3207.
Повний текст джерелаДисертації з теми "Transport intracellulaire des protéines"
Fayadat, Laurence. "Maturation et transport intracellulaire de la thyropéroxydase humaine." Aix-Marseille 2, 1999. http://theses.univ-amu.fr.lama.univ-amu.fr/1999AIX20662.pdf.
Повний текст джерелаParent, Audrey. "Découverte de nouveaux complexes protéiques impliqués dans la synthèse et le transport intracellulaire des récepteurs couplés aux protéines G." Thèse, Université de Sherbrooke, 2010. http://savoirs.usherbrooke.ca/handle/11143/4304.
Повний текст джерелаDesfarges, Sébastien. "Transport intracellulaire et intégration du VIH-1 : implication de l'intégrase rétrovirale." Bordeaux 2, 2007. http://www.theses.fr/2007BOR21485.
Повний текст джерелаHIV-1 integrase (IN) is the key enzyme catalyzing the proviral DNA integration step. In this study, we have shown that HIV-1 IN expressed as the sole retroviral protein in budding yeast S. Cerevisiae was sufficient to catalyze the complete integration of a DNA containing two viral LTRs into the nuclear genome. IUsing this model, we demonstrated the RAD51 dependent pathway of homologous recombination (HR) down regulates the integration activities catalyzed by IN both in vitro and in yeast. Moreover, the molecular bases of the HIV-1 retrotranscription complex (RTC) intracellular trafficking are still poorly understood. We report in yeast that IN accumulates at the Microtubule Organization Center (MTOC) before being imported into the nucleus A kinetic of IN movement in cells revealed that IN and Stu2p, a microtubule associated protein, co-migrated towards the nuclear periphery followed its nuclear import. Microtubules depolymerisation by nocodazole or IN expression in a Dyn2p deficient strain (dynein light chain 2, homologue to human LC8) prevented accumulation of IN near the nuclear envelope, inhibited its transport into the nucleus thereby blocking integration activity. Then, we confirmed that the transport mechanism of IN in human T cells, an HIV-1 permissive cell line, and yeast are very similar. Further these findings suggest that IN may play a role in the intracellular translocation of the RTC. To verify the obtained results in the viral context, we infected CD4-expressing HeLa cells with fluorescently labelled HIV pseudo-viruses. We used HIV pseudo-viruses either with wt IN or with mutated IN. Comparing the transport of the RTC toward the nuclear periphery we showed that IN mediated this translocation
Chabrillat, Marion. "Etude du mouvement des mélanosomes sur les filaments d' actine : rôle des protéines Rab8 et myosine VI." Paris 6, 2005. http://www.theses.fr/2005PA066391.
Повний текст джерелаEcard, Jason. "Mécanismes de tri et voies de transport intracellulaire des protéines de la membrane du lysosome." Electronic Thesis or Diss., Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2019SORUS094.pdf.
Повний текст джерелаMore than sixty different proteins are inserted into the membrane of the lysosome, participating in the various functions of this organelle. But the intracellular trafficking pathways that lead lysosomal membrane proteins (LMPs) to this organelle are not well understood. Interestingly, some LMPs exhibit abnormal intracellular localisations in some cancers. This is the case of the glycoprotein LAMP1 which is overexpressed at the cell surface in several cancers, from where it plays several roles in tumour aggressiveness. Thanks to the Retention Using Selective Hooks (RUSH) system, allowing the synchronisation of the transport along the secretory pathway, we have shown that neosynthesized LAMP1 reaches the plasma membrane before entering endosomes. Comparing the routes followed by different LMPs also revealed that LAMP1 and LIMP2 are sorted at the Golgi apparatus, LIMP2 being concentrated in characteristic vesicular and clathrin-free structures. We have also shown that, surprisingly, this sorting at the level of the Golgi apparatus is independent of clathrin adapters recruitment signals carried in the C-terminal tails of these two LMPs. To investigate what mechanisms might be involved in the overexposure of LAMP1 at the cell surface of certain cancers, we also performed a gene knock-out screen based on CRISPR-Cas9 technology. We selected genes whose inactivation affected LAMP1 levels at the surface and obtained many candidate genes that are under study
Dauloudet, Olivier. "Étude théorique des phénomènes de transport intracellulaire hors-équilibre thermodynamique : rôle du couplage entre transport actif et diffusif en volume confiné." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS166/document.
Повний текст джерелаHow cells constantly remodel their intracellular space is one of the most astonishing self-organized phenomena in Nature. In order to do that, eukaryotic cells exploit the Brownian diffusion of macromolecules or organelles on small scales combined with active transport phenomena along cytoskeletal filament driven by motor proteins. Despite the important effort in the physico-mathematical community working on these biological issues, it is still very difficult to rationalize the motion of organelles (and in general of matter) inside the cell. In this thesis, we approach this problem by generalizing the theoretical analysis of a paradigmatic physico-mathematical model of non-equilibrium transport of motor proteins (called TASEP) to study the impact that a finite volume and a finite concentration of transporters have on their distribution in the cytosol and along the cytoskeleton. In particular, this requires inventing a new methodology in order to solve the problem where diffusive motion or transporters in the cytoplasm is coupled with directed collective transport along one or many cytoskeletal filaments. New interesting phenomena and regimes appear with respect to recent studies in literature. Moreover, the methodology developed so far, allow a fast and efficient investigation of complex systems behaviors for which numerical simulation can result very time consuming.The thesis is organized as follows. The first chapter is dedicated to an introduction on the topic and to the definition of biological and physical notions necessary for the research work presented. The second chapter tackles an approximate solution for the case of directed transport on a single cytoskeletal filament embedded in the cytosol, where the finite volume and the finite concentration of particles modify qualitatively and quantitatively the phase diagrams describing the average density and flux of transporters along the filament. We then discuss the physical conditions for which this approximated solution is no more valid. In order to overcome this difficulty, in chapter three we describe a novel method, inspired by the “images-method” to compute solutions of the Poisson equation in electrostatics, which allows for the first time (at our knowledge) to compute analytically the distribution of transporters in volume, i.e. the cytosol, without any approximated assumption. Importantly, the method can be easily generalized to any kind distribution or network of filaments and to other mechanisms of collective transport along the filaments. This makes possible to explore stationary regimes and new phenomena that can be hardly studied by stochastic simulations due to the complexity of the processes and the spatial extension of the system. Chapter four focuses on the innovative methodology of computation. Chapter five discusses miscellanea of problems and openings related to the topic studied. We end this thesis with general conclusions focusing on physical, biophysical and biological implications.The various results obtained have an impact on our general understanding on complex, collective and non-linear transport processes in situations and phenomena where transporters can move in spaces with different physical dimensions with interesting implications for biology, non-equilibrium statistical mechanics and the physico-mathematical theory of traffic and logistics
Gomord, Véronique. "Contrôle de l'adressage de la sporamine dans la cellule végétale." Rouen, 1994. http://www.theses.fr/1994ROUES054.
Повний текст джерелаPoisson, Nicolas. "Les protéines issues du gène de la phosphoprotéine rabique : étude du trafic intracellulaire et identification de partenaires cellulaires." Paris 6, 2003. http://www.theses.fr/2003PA066261.
Повний текст джерелаSaint-Jean, Bruno. "Etude de la voie de transport assurée par le récepteur d’adressage vacuolaire BP80." Rouen, 2006. http://www.theses.fr/2006ROUES037.
Повний текст джерелаBP80 is a vacuolar receptor responsible for sorting proaleurain from the trans-Golgi network. The complex receptor-ligand is packed into shuttle vesicles that are directed and fused to a prevacuolar compartment where the lower pH induces the dissociation between the receptor and the proaleurain. This latter matured and released in the lytic vacuole. Beside the fact that BP80 uses clathrin coated vesicles for its traffic, we have no other indication on the signals in the cytoplasmic tail used by BP80 traffic. In an attempt to identify trafficking signals, we fused the GFP to the transmembrane and the cytosolic domains of BP80 and called the resulting fusion protein GFP-PS1. Like the native vacuolar receptor, GFP-PS1 accumulates and cycles in the same cell compartment. We then introduced single or two mutation(s) in the cytosolic portion of GFP-PS1. Using this approach, we identify two important sorting signals, which participates to recycling and endocytic events of BP80
Blot, Guillaume. "Caractérisation de deux nouveaux partenaires du domaine cytoplasmique de la glycoprotéine d'enveloppe du VIH-1 : tIP47 et Luman." Paris 7, 2003. http://www.theses.fr/2003PA077202.
Повний текст джерелаКниги з теми "Transport intracellulaire des protéines"
E, Rothman James, ed. Reconstitution of intracellular transport. San Diego: Academic Press, 1992.
Знайти повний текст джерелаBernard, Rossignol, ed. Biochimie et biophysique des membranes: Aspects structuraux et fonctionnels. 2nd ed. Paris: Dunod, 2004.
Знайти повний текст джерелаShechter, Emanuel. Biochimie et biophysique des membranes: Aspects structuraux et fonctionnels. 2nd ed. Paris: Masson, 1997.
Знайти повний текст джерелаJohn Innes Symposium (8th 1988 Norwich, England). Protein targeting: Proceedings of the eighth John Innes Symposium, Norwich, 1988. Cambridge [Eng.]: Company of Biologists, 1989.
Знайти повний текст джерелаS, Bendall D., ed. Protein electron transfer. Oxford, UK: Bios Scientific Publishers, 1996.
Знайти повний текст джерелаA, Reith Maarten E., ed. Neurotransmitter transporters: Structure, function, and regulation. Totowa, N.J: Humana Press, 1997.
Знайти повний текст джерелаA, Reith Maarten E., ed. Neurotransmitter transporters: Structure, function, and regulation. 2nd ed. Totowa, NJ: Humana Press, 2002.
Знайти повний текст джерелаA, Reith Maarten E., ed. Neurotransmitter transporters: Structure, function, and regulation. 2nd ed. Totowa, NJ: Humana Press, 2002.
Знайти повний текст джерела1940-, Reuss Luis, Russell John M. 1942-, and Jennings M. L, eds. Molecular biology and function of carrier proteins: Society of General Physiologists, 46th Annual Symposium, Marine Biological Laboratory, Woods Hole, Massachusetts, 10-13 September 1992. New York: Rockefeller University Press, 1993.
Знайти повний текст джерелаSociety of General Physiologists. (46th 1992 Marine Biological Laboratory). Molecular biology and function of carrier proteins. New York: Rockerfeller University Press, 1992.
Знайти повний текст джерела