Добірка наукової літератури з теми "Topology"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Topology".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Topology"

1

Widodo, Charles, Marchellius Yana, and Halim Agung. "IMPLEMENTASI TOPOLOGI HYBRID UNTUK PENGOPTIMALAN APLIKASI EDMS PADA PROJECT OFFICE PT PHE ONWJ." JURNAL TEKNIK INFORMATIKA 11, no. 1 (May 4, 2018): 19–30. http://dx.doi.org/10.15408/jti.v11i1.6472.

Повний текст джерела
Анотація:
ABSTRAK Penggunaan aplikasi EDMS di project office PT PHE ONWJ dinilai masih belum optimal karena masih lambat dalam pengunaan aplikasi EDMS. Oleh karena itu dilakukanlah penelitian ini dengan tujuan untuk mengoptimalkan jaringan yang digunakan untuk mengakses aplikasi EDMS pada project office PT PHE ONWJ. Pengoptimalan jaringan yang dimaksud adalah dengan membangun topologi di project office PT PHE ONWJ dan menerapkan metro sebagai perantara topologi star di project office dan topologi star dikantor pusat sehingga menciptakan topologi hybrid. Topologi hybrid yang dimaksud adalah penggabungan antara topologi star yang ada di jaringan pusat, metro sebagai perantara kantor pusat dengan project office PT PHE ONWJ dan topologi star yang akan dibangun di project office PT ONWJ. Diharapkan setelah menerapkan topologi yang telah dirancang dapat mengoptimalkan penggunaan aplikasi EDMS. Topologi star di project office PT ONWJ dan metro sebagai perantara 2 topologi kantor pusat dan project office menghasilkan topologi hybrid. Kesimpulan dari penelitian ini adalah penerapan topologi dalam jaringan dapat memberikan optimalisasi dibandingkan dengan tanpa menerapkan topologi. Hasil rata-rata ping saat pengaksesan aplikasi EDMS sebelum menerapkan topologi hybrid mendapatkan hasil sebesar 392,98 ms dan setelah menerapkan topologi hybrid mendapatkan hasil sebesar 143,50 ms, sehingga disimpulkan bahwa penerapan topologi hybrid lebih baik dalam menjalankan aplikasi EDMS. ABSTRACT The use of EDMS application in PT PHE ONWJ project office is considered not optimal because it is still slow in the use of EDMS applications. Therefore this study was conducted with the aim to optimize the network used to access the EDMS application on the PT PHE ONWJ project office. Network optimization in question is to build a topology in the project office of PT PHE ONWJ and apply the metro as an intermediate star topology in the project office and star topology at the headquarters so as to create a hybrid topology. Hybrid topology in question is a merger between the star topology in the central network, metro as an intermediary head office with PT PHE ONWJ project office and star topology to be built at PT ONWJ project office. It is expected that after applying the topology that has been designed to optimize the use of EDMS applications. Star topology in PT ONWJ project office and metro as intermediary 2 topology headquarters and project office produce hybrid topology. The conclusion of this research is application of topology in network can give optimization compared with without applying topology. The average result of ping when accessing EDMS application before applying hybrid topology got 392.98 ms result and after applying hybrid topology get result of 143,50 ms, so it is concluded that application of hybrid topology is better in running EDMS application. How To Cite : Widodo, C. Yana, M. Agung, H. (2018). IMPLEMENTASI TOPOLOGI HYBRID UNTUK PENGOPTIMALAN APLIKASI EDMS PADA PROJECT OFFICE PT PHE ONWJ. Jurnal Teknik Informatika, 11(1), 19-30. doi 10.15408/jti.v11i1.6472 Permalink/DOI: http://dx.doi.org/10.15408/jti.v11i1.6472
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sukriyah, Dewi. "MATRIKS KETERHUBUNGAN LANGSUNG TOPOLOGI HINGGA." JEDMA Jurnal Edukasi Matematika 1, no. 1 (July 30, 2020): 37–43. http://dx.doi.org/10.51836/jedma.v1i1.125.

Повний текст джерела
Анотація:
Abtrak: Topologi merupakan cabang ilmu matematika yang mempelajari suatu struktur yang terdapat pada himpunan. Seperti halnya himpunan hingga yang memiliki kardinalitas, maka topologi hingga juga memiliki kardinalitas. Jika himpunan memiliki kardinalitas dan topologi pada S, maka kardinalitas dari yang dinotasikan dengan menyetakan banyaknya elemen dari . Jika topologi pada S, maka matriks keterhubungan langsung topologi adalah matriks berukuran yang dinotasikan dengan . Matriks merupakan matriks yang elemennya 0 atau 1. Kata Kunci: Himpunan, Kardinalitas, Matriks Keterhubungan Langsung, Topologi. Abstract: Topology is a branch of mathematics which study structures on a set. As a finite set, a finite topology have a cardinality. Let be a finite set with cardinality and let be a topology on S, then the cardinality of which denotes is the number of elements . If topology on S, then the corresponding matrix to a topology is a matrix which denoted by . is the matrix have element 0 or 1. Keywords: Cardinality, Set, The Corresponding Matrix, Topology,
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Parinyataramas, Jamreonta, Sakuntam Sanorpim, Chanchana Thanachayanont, Hiroyaki Yaguchi, and Misao Orihara. "TEM Analysis of Structural Phase Transition in MBE Grown Cubic InN on MgO (001) by MBE: Effect of Hexagonal Phase Inclusion in an C-Gan Nucleation Layer." Applied Mechanics and Materials 229-231 (November 2012): 219–22. http://dx.doi.org/10.4028/www.scientific.net/amm.229-231.219.

Повний текст джерела
Анотація:
In this paper, we introduced dbcube topology for Network-on Chips(NoC). We predicted the dbcube topology has high power and low latency comparing to other topologies, and in particular mesh topology. By using xmulator simulator,we compared power and latency of this topologyto mesh topology. Finally, it is demonstrated that the network has higher power and lower latency than the mesh topology.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mosafaie, Razieh, and Reza Sabbaghi-Nadooshan. "Using Dbcupe Topology for NoCs." Applied Mechanics and Materials 229-231 (November 2012): 2741–44. http://dx.doi.org/10.4028/www.scientific.net/amm.229-231.2741.

Повний текст джерела
Анотація:
In this paper, we introduced dbcube topology for Network-on Chips(NoC). We predicted the dbcube topology has high power and low latency comparing to other topologies, and in particular mesh topology. By using xmulator simulator,we compared power and latency of this topologyto mesh topology. Finally, it is demonstrated that the network has higher power and lower latency than the mesh topology.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ali, Iman Abbas, and Asmhan Flieh Hassan. "The Independent Incompatible Edges Topology on Di-graphs." Journal of Physics: Conference Series 2322, no. 1 (August 1, 2022): 012010. http://dx.doi.org/10.1088/1742-6596/2322/1/012010.

Повний текст джерела
Анотація:
Abstract This sheet offers a novel topology for di-graphs termed independent incompatible edges topology, which creates the topology from the edges set 𝕶 for whatever di-graph. On edges 𝕶, a family of sub-basis is used for build the independent incompatible edges topology. After that, we look at assorted properties; explore the Independent Incompatible Edge Topology on some types of di-graphs. In addition, this topology’s some initial results were studied. Our objective is to understand several aspects of any di-graph using it is corresponding independent incompatible edges topology, the topology that is discussed in this paper.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

EL-MONSEF, M. E. ABD, A. M. KOZAE, and A. A. ABO KHADRA. "CO-RS-COMPACT TOPOLOGIES." Tamkang Journal of Mathematics 24, no. 3 (September 1, 1993): 323–32. http://dx.doi.org/10.5556/j.tkjm.24.1993.4504.

Повний текст джерела
Анотація:
A topology $R(\tau)$ is contructed from a given topolgy $\tau$ on a set $X$ . $R(\tau)$ is coarser than $\tau$, and the following are some results based on this topology: 1. Continuity and RS-continuity are equivalent if the codomain is re­ topologized by $R(\tau)$. 2. The class of semi-open sets with respect to $R(\tau)$ is a topology. 3. $T_2$ and semi-$T_2$ properties are equivalent on a space whose topology is $R(\tau)$. 4. Minimal $R_0$-spaces are RS-compact:
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bendsoe, Martin P. "Multidisciplinary Topology Optimization." Proceedings of The Computational Mechanics Conference 2006.19 (2006): 1. http://dx.doi.org/10.1299/jsmecmd.2006.19.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

SUSANA, RATNA, FEBRIAN HADIATNA, and APRIANTI GUSMANTINI. "Sistem Multihop Jaringan Sensor Nirkabel pada Media Transmisi Wi-Fi." ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 9, no. 1 (January 22, 2021): 232. http://dx.doi.org/10.26760/elkomika.v9i1.232.

Повний текст джерела
Анотація:
ABSTRAKDengan menerapkan sistem multihop pada jaringan sensor nirkabel, pembacaan kondisi lingkungan dapat dilakukan pada lingkungan yang lebih luas. Pada penelitian ini, sistem multihop jaringan sensor nirkabel menggunakan platform IoT NodeMCU V3 yang memiliki modul Wi-Fi ESP8266. Jumlah sensor node yang digunakan merupakan batas maksimal client yang dapat terhubung kepada Wi-Fi ESP8266, yaitu 1 sink node dan 4 sensor node. Sensor node akan mengirimkan datanya kepada sink node, kemudian data tersebut akan dikirimkan kepada website untuk ditampilkan pada dashboard Adafruit.io. Pengiriman data diuji menggunakan 2 topologi yaitu bus dan tree. Berdasarkan hasil pengujian, jarak maksimal pengiriman data pada topologi bus tanpa penghalang adalah 72 meter dengan delay pengiriman 64 detik dan topologi tree adalah 108 meter dengan delay pengiriman 14 detik. Sistem multihop pada topologi bus dan tree dapat mengirim data dengan 2 penghalang yang memiliki ketebalan 15 cm dengan delay pengiriman 29 detik pada topologi bus dan 14 detik pada topologi tree.Kata kunci: jaringan sensor nirkabel, multihop, Wi-Fi, NodeMCU V3 ABSTRACTBy applying a multihop system on wireless sensor network, reading environment condition can be done in wider environment. In this study, multihop system in wireless sensor network uses IoT NodeMCU V3 platform which has a Wi-Fi ESP8266 module. The amount of node sensor is the maximum limit of client which can be linked to Wi-Fi access point in Wi-Fi ESP8266 module, i.e 1 sink node and 4 sink node. The node sensor will transfer the data to the sink node, then the data will be transfered to the website to be shown on Adafruit.io dashboard. The transmission data is tested using 2 topologies, i.e bus and tree. Based on the test, the maximum distance of data transmission in bus topology without barrier is 72 meters with delivery delay which takes 64 seconds and in tree topology is 108 seconds with delivery delay which takes 14 seconds. The multihop system in the bus topology and the tree topology can send the data with 2 barriers which has 15 cm width and delivery delay among the nodes which takes 29 seconds in bus topology and 14 seconds in tree topology.Keywords: wireless sensor network, multihop, Wi-Fi, NodeMCU V3
Стилі APA, Harvard, Vancouver, ISO та ін.
9

ARYANTA, DWI, ARSYAD RAMADHAN DARLIS, and DIMAS PRIYAMBODHO. "Analisis Kinerja EIGRP dan OSPF pada Topologi Ring dan Mesh." ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 2, no. 1 (January 1, 2014): 53. http://dx.doi.org/10.26760/elkomika.v2i1.53.

Повний текст джерела
Анотація:
ABSTRAKEIGRP (Enhanced Interior Gateway Routing Protocol) dan OSPF (Open Shortest Path Fisrt) adalah routing protokol yang banyak digunakan pada suatu jaringan komputer. EIGRP hanya dapat digunakan pada perangkat Merk CISCO, sedangkan OSPF dapat digunakan pada semua merk jaringan. Pada penelitian ini dibandingkan delay dan rute dari kedua routing protokol yang diimplementasikan pada topologi Ring dan Mesh. Cisco Packet Tracer 5.3 digunakan untuk mensimulasikan kedua routing protokol ini. Skenario pertama adalah perancangan jaringan kemudian dilakukan pengujian waktu delay 100 kali dalam 5 kasus. Skenario kedua dilakukan pengujian trace route untuk mengetahui jalur yang dilewati paket data lalu memutus link utama. Pada skenario kedua juga dilakukan perbandingan nilai metric dan cost hasil simulasi dengan perhitungan rumus. Skenario ketiga dilakukan pengujian waktu konvergensi untuk setiap routing protokol pada setiap topologi. Hasilnya EIGRP lebih cepat 386 µs daripada OSPF untuk topologi Ring sedangkan OSPF lebih cepat 453 µs daripada EIGRP untuk topologi Mesh. Hasil trace route menunjukan rute yang dipilih oleh routing protokol yaitu nilai metric dan cost yang terkecil. Waktu konvergensi rata-rata topologi Ring pada EIGRP sebesar 12,75 detik dan 34,5 detik pada OSPF sedangkan topologi Mesh di EIGRP sebesar 13 detik dan 35,25 detik di OSPF.Kata Kunci: EIGRP, OSPF, Packet Tracer 5.3, Ring, Mesh, KonvergensiABSTRACTEIGRP (Enhanced Interior Gateway Routing Protocol) and OSPF (Open Shortest Path Fisrt) is the routing protocol that is widely used in a computer network. EIGRP can only be used on devices Brand CISCO, while OSPF can be used on all brands of network. In this study comparison of both the delay and the routing protocol implemented on Ring and Mesh topology. Cisco Packet Tracer 5.3 is used to simulate both the routing protocol. The first scenario is the design of the network and then do the test of time delay 100 times in 5 cases. The second scenario tested trace route to determine the path of the data packet and then disconnect the main link. In the second scenario also conducted a cost comparison of metrics and the simulation results with the calculation formula. The third scenario testing time for each routing protocol convergence on any topology. The result EIGRP faster than 386 microseconds for a ring topology while OSPF OSPF 453 microseconds faster than EIGRP for Mesh topology. The results showed trace route chosen by the routing protocol metric value and cost is the smallest. Average convergence time in the EIGRP topology Ring of 12.75 seconds and 34.5 seconds, while the Mesh topology in an OSPF EIGRP for 13 seconds and 35.25 seconds in OSPF.Keywords: EIGRP,OSPF, Packet Tracer 5.3, Ring, Mesh, Convergence
Стилі APA, Harvard, Vancouver, ISO та ін.
10

ROY, MARIO, HIROKI SUMI, and MARIUSZ URBAŃSKI. "Lambda-topology versus pointwise topology." Ergodic Theory and Dynamical Systems 29, no. 2 (April 2009): 685–713. http://dx.doi.org/10.1017/s0143385708080292.

Повний текст джерела
Анотація:
AbstractThis paper deals with families of conformal iterated function systems (CIFSs). The space CIFS(X,I) of all CIFSs, with common seed space X and alphabet I, is successively endowed with the topology of pointwise convergence and the so-calledλ-topology. We show just how bad the topology of pointwise convergence is: although the Hausdorff dimension function is continuous on a dense Gδ-set, it is also discontinuous on a dense subset of CIFS(X,I). Moreover, all of the different types of systems (irregular, critically regular, etc.), have empty interior, have the whole space as boundary, and thus are dense in CIFS(X,I), which goes against intuition and conception of a natural topology on CIFS(X,I). We then prove how good the λ-topology is: Roy and Urbański [Regularity properties of Hausdorff dimension in infinite conformal IFSs. Ergod. Th. & Dynam. Sys.25(6) (2005), 1961–1983] have previously pointed out that the Hausdorff dimension function is then continuous everywhere on CIFS(X,I). We go further in this paper. We show that (almost) all of the different types of systems have natural topological properties. We also show that, despite not being metrizable (as it does not satisfy the first axiom of countability), the λ-topology makes the space CIFS(X,I) normal. Moreover, this space has no isolated points. We further prove that the conformal Gibbs measures and invariant Gibbs measures depend continuously on Φ∈CIFS(X,I) and on the parameter t of the potential and pressure functions. However, we demonstrate that the coding map and the closure of the limit set are discontinuous on an important subset of CIFS(X,I).
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Topology"

1

Melin, Erik. "Digitization in Khalimsky spaces /." Uppsala, 2004. http://www.math.uu.se/research/pub/Melin6.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dutra, Aline Cristina Bertoncelo [UNESP]. "Grupo topológico." Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/94331.

Повний текст джерела
Анотація:
Made available in DSpace on 2014-06-11T19:27:09Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-11-10Bitstream added on 2014-06-13T18:30:56Z : No. of bitstreams: 1 dutra_acb_me_rcla.pdf: 707752 bytes, checksum: 003487414f094d392a97a22a4efb885b (MD5)
Neste trabalho tratamos do objeto matemático Grupo Topológico. Para este desenvolvimento, abordamos elementos básicos de Grupo e Espaço Topológico
In this work we consider the mathematical object Topological Group. For this development, we discuss the basic elements of the Group and Topological Space
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Paul, Emmanuel. "Formes logarithmiques fermées à pôles sur un diviseur a croisements normaux et classification topologique des germes de formes logarithmiques génériques de C [exposant] n." Toulouse 3, 1987. http://www.theses.fr/1987TOU30107.

Повний текст джерела
Анотація:
Dans ce travail, on donne une description du feuilletage défini par une 1-forme logarithmique fermée, à poles sur un diviseur à croisements normaux. Le long de chaque strate du diviseur, il est localement trivial, ce qui nous permet de définir une notion de voisinage tubulaire adapté à cette forme. En exigeant de plus des conditions d'incidences entre ces différents voisinages tubulaires, nous obtenons une construction analogue à celle introduite par C. H. Clemens dans le cas des fonctions. Nous prouvons l'existence d'une telle "structure de Clemens adaptée" à la forme considérée, puis nous l'utilisons pour décrire la classification topologique des germes de formes logarithmiques génériques de c**(n). Nous nous ramenons à la situation considérée ci-dessus à l'aide d'une désingularisation des séparatrices de la forme.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dutra, Aline Cristina Bertoncelo. "Grupo topológico /." Rio Claro : [s.n.], 2011. http://hdl.handle.net/11449/94331.

Повний текст джерела
Анотація:
Orientador: Elíris Cristina Rizziolli
Banca: Edivaldo Lopes da Silva
Banca: João Peres Vieira
Resumo: Neste trabalho tratamos do objeto matemático Grupo Topológico. Para este desenvolvimento, abordamos elementos básicos de Grupo e Espaço Topológico
Abstract: In this work we consider the mathematical object Topological Group. For this development, we discuss the basic elements of the Group and Topological Space
Mestre
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Liu, Zhiyong Michael. "Mapping physical topology with logical topology using genetic algorithm." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ62245.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jin, Xing. "Topology inference and tree construction for topology-aware overlay streaming /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?CSED%202007%20JIN.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rajendra, Prasad Gunda, Kumar Thenmatam Ajay, and Rao Kurapati Srinivasa. "Reconfigurable Backplane Topology." Thesis, Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-289.

Повний текст джерела
Анотація:

In the field of embedded computer and communication systems, the demands for the

interconnection networks are increasing rapidly. To satisfy these demands much advancement has

been made at the chip level as well as at the system level and still the research works are going

on, to make the interconnection networks more flexible to satisfy the demands of the real-time

applications.

This thesis mainly focuses on the interconnection between the nodes in an embedded system via a

reconfigurable backplane. To satisfy the project goals, an algorithm is written for the

reconfigurable topology that changes according to the given traffic specification like throughput.

Initially the connections are established between pairs of nodes according to the given throughput

demands. By establishing all the connections, a topology is formed. Then a possible path is

chosen for traversing the data from source to destination nodes. Later the algorithm is

implemented by simulation and the results are shown in a tabular form. Through some application

examples, we both identify problems with the algorithm and propose an improvement to deal

with such problems.

Стилі APA, Harvard, Vancouver, ISO та ін.
8

Brekke, Birger. "Topology and Data." Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-10030.

Повний текст джерела
Анотація:

In the last years, there has been done research in using topology as a new tool for studying data sets, typically high dimensional data. These studies have brought new methods for qualitative analysis, simplification, and visualization of high dimensional data sets. One good example, where these methods are useful, is in the study of microarray data (DNA data). To be able to use these methods, one needs to acquire knowledge of different topics in topology. In this paper we introduce simplicial homology, persistent homology, Mapper, and some simplicial complex constructions.

Стилі APA, Harvard, Vancouver, ISO та ін.
9

Brekke, Øyvind. "Topology and Data." Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-10037.

Повний текст джерела
Анотація:

Today there is an immense production of data, and the need for better methods to analyze data is ever increasing. Topology has many features and good ideas which seem favourable in analyzing certain datasets where statistics is starting to have problems. For example, we see this in datasets originating from microarray experiments. However, topological methods cannot be directly applied on finite point sets coming from such data, or atleast it will not say anything interesting. So, we have to modify the data sets in some way such that we can work on them with the topological machinery. This way of applying topology may be viewed as a kind of discrete version of topology. In this thesis we present some ways to construct simplicial complexes from a finite point cloud, in an attempt to model the underlying space. Together with simplicial homology and persistent homology and barcodes, we obtain a tool to uncover topological features in finite point clouds. This theory is tested with a Java software package called JPlex, which is an implementation of these ideas. Lastly, a method called Mapper is covered. This is also a method for creating simplicial complexes from a finite point cloud. However, Mapper is mostly used to create low dimensional simplicial complexes that can be easily visualized, and structures are then detected this way. An implementation of the Mapper method is also tested on a self made data set.

Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chalcraft, David Adam. "Low-dimensional topology." Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386938.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Topology"

1

Hocking, John G. Topology. New York: Dover Publications, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kulpa, Władysław. Topologia a ekonomia: Topology and economics. Warszawa: Wydawnictwo Uniwersytetu Kardynała Stefana Wyszyńskiego, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Parthasarathy, K. Topology. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9484-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Waldmann, Stefan. Topology. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09680-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shick, Paul L. Topology. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9781118031582.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Manetti, Marco. Topology. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16958-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Munkres, James R. Topology. 2nd ed. Upper Saddle River, NJ: Prentice Hall/Pearson, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Munkres, James R. Topology. 2nd ed. New Delhi: Prentice-Hall of India, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Munkres, James R. Topology. 2nd ed. Upper Saddle River, NJ: Prentice Hall, Inc., 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Davis, Sheldon W. Topology. Boston: McGraw-Hill Higher Education, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Topology"

1

Berberian, Sterling K. "Topology." In Fundamentals of Real Analysis, 115–47. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0549-4_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Browder, Andrew. "Topology." In Mathematical Analysis, 123–54. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-0715-3_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Łojasiewicz, Stanisław. "Topology." In Introduction to Complex Analytic Geometry, 72–97. Basel: Birkhäuser Basel, 1991. http://dx.doi.org/10.1007/978-3-0348-7617-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pedersen, Steen. "Topology." In From Calculus to Analysis, 281–95. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13641-7_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Stillwell, John. "Topology." In Undergraduate Texts in Mathematics, 283–96. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55193-3_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bongaarts, Peter. "Topology." In Quantum Theory, 279–87. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09561-5_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Harte, Robin. "Topology." In SpringerBriefs in Mathematics, 27–38. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05648-7_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Janßen, Martin. "Topology." In Generated Dynamics of Markov and Quantum Processes, 127–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49696-1_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Smith, S. P. "Topology." In Mathematical Tools for Physicists, 587–617. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607773.ch17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Marathe, Kishore. "Topology." In Topics in Physical Mathematics, 33–71. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84882-939-8_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Topology"

1

Misra, P. R., and M. Rajagopalan. "Tennessee Topology Conference." In Tennessee Topology Conference. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789814529167.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dovermann, Karl Heinz. "Topology Hawaii." In Proceedings of the Topology Conference. WORLD SCIENTIFIC, 1992. http://dx.doi.org/10.1142/9789814538831.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Firmo, S., D. L. Gonçalves, and O. Saeki. "XI Brazilian Topology Meeting." In XI Brazilian Topology Meeting. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789814527255.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lin, Tsau Young, Guilong Liu, Mihir K. Chakraborty, and Dominik Slezak. "From topology to anti-reflexive topology." In 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2013. http://dx.doi.org/10.1109/fuzz-ieee.2013.6622580.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dagci, Fikriye Ince, and Huseyin Cakalli. "A new topology via a topology." In 10TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0115543.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Morita, Shigeyuki. "Structure of the mapping class groups of surfaces: a survey and a prospect." In Low Dimensional Topology -- The Kirbyfest. Mathematical Sciences Publishers, 1999. http://dx.doi.org/10.2140/gtm.1999.2.349.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cantwell, John, and Lawrence Conlon. "Foliation cones." In Low Dimensional Topology -- The Kirbyfest. Mathematical Sciences Publishers, 1999. http://dx.doi.org/10.2140/gtm.1999.2.35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Quinn, Frank. "Group categories and their field theories." In Low Dimensional Topology -- The Kirbyfest. Mathematical Sciences Publishers, 1999. http://dx.doi.org/10.2140/gtm.1999.2.407.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rourke, Colin, and Brian Sanderson. "Homology stratifications and intersection homology." In Low Dimensional Topology -- The Kirbyfest. Mathematical Sciences Publishers, 1999. http://dx.doi.org/10.2140/gtm.1999.2.455.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ruberman, Daniel. "A polynomial invariant of diffeomorphisms of 4–manifolds." In Low Dimensional Topology -- The Kirbyfest. Mathematical Sciences Publishers, 1999. http://dx.doi.org/10.2140/gtm.1999.2.473.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Topology"

1

Bierman, A., and K. Jones. Physical Topology MIB. RFC Editor, September 2000. http://dx.doi.org/10.17487/rfc2922.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kalb, Jeffrey L., and David S. Lee. Network topology analysis. Office of Scientific and Technical Information (OSTI), January 2008. http://dx.doi.org/10.2172/1028919.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Guillen, Donna Post, and Lisa E. Mitchell. Cold Cap Bubble Topology. Office of Scientific and Technical Information (OSTI), April 2016. http://dx.doi.org/10.2172/1490045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chen, H., R. Li, A. Retana, Y. Yang, and Z. Liu. OSPF Topology-Transparent Zone. RFC Editor, February 2017. http://dx.doi.org/10.17487/rfc8099.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Manning, William. Topology Based Domain Search (TBDS). Fort Belvoir, VA: Defense Technical Information Center, June 2002. http://dx.doi.org/10.21236/ada407598.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wallin, M., and D. A. Tortorelli. Topology optimization beyond linear elasticity. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1581880.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhao, Q., K. Raza, C. Zhou, L. Fang, L. Li, and D. King. LDP Extensions for Multi-Topology. RFC Editor, July 2014. http://dx.doi.org/10.17487/rfc7307.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Varadarajan, Uday. Geometry, topology, and string theory. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/813395.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Delan, Mehson. Summer Internship Project: Set Topology. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1818087.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Robbins, Joshua, Ryan Alberdi, and Brett Clark. Concurrent Shape and Topology Optimization. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1822279.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії