Добірка наукової літератури з теми "Topological physics"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Topological physics".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Topological physics"
Ota, Yasutomo, Kenta Takata, Tomoki Ozawa, Alberto Amo, Zhetao Jia, Boubacar Kante, Masaya Notomi, Yasuhiko Arakawa, and Satoshi Iwamoto. "Active topological photonics." Nanophotonics 9, no. 3 (January 28, 2020): 547–67. http://dx.doi.org/10.1515/nanoph-2019-0376.
Повний текст джерелаCho, Y. M., Seung Hun Oh, and Pengming Zhang. "Knots in physics." International Journal of Modern Physics A 33, no. 07 (March 8, 2018): 1830006. http://dx.doi.org/10.1142/s0217751x18300065.
Повний текст джерелаKim, Ki-Seok, and Akihiro Tanaka. "Emergent gauge fields and their nonperturbative effects in correlated electrons." Modern Physics Letters B 29, no. 16 (June 20, 2015): 1540054. http://dx.doi.org/10.1142/s0217984915400540.
Повний текст джерелаHafezi, Mohammad, and Jacob M. Taylor. "Topological physics with light." Physics Today 67, no. 5 (May 2014): 68–69. http://dx.doi.org/10.1063/pt.3.2394.
Повний текст джерелаShuo, LIU, ZHANG Shuang, and CUI Tie-jun. "Topological circuit: a playground for exotic topological physics." Chinese Optics 14, no. 4 (2021): 736–53. http://dx.doi.org/10.37188/co.2021-0095.
Повний текст джерелаShen, Yuanyuan, Shengguo Guan, and Chunyin Qiu. "Topological valley transport of spoof surface acoustic waves." Journal of Applied Physics 133, no. 11 (March 21, 2023): 114305. http://dx.doi.org/10.1063/5.0137591.
Повний текст джерелаHAN, Jung Hoon. "Solid State Physics, Condensed Matter Physics, and Topological Physics!" Physics and High Technology 25, no. 12 (December 30, 2016): 2–6. http://dx.doi.org/10.3938/phit.25.060.
Повний текст джерелаNovitsky, Denis V., and Andrey V. Novitsky. "Bound States in the Continuum versus Fano Resonances: Topological Argument." Photonics 9, no. 11 (November 20, 2022): 880. http://dx.doi.org/10.3390/photonics9110880.
Повний текст джерелаLiu, Shuo, Wenlong Gao, Qian Zhang, Shaojie Ma, Lei Zhang, Changxu Liu, Yuan Jiang Xiang, Tie Jun Cui, and Shuang Zhang. "Topologically Protected Edge State in Two-Dimensional Su–Schrieffer–Heeger Circuit." Research 2019 (February 5, 2019): 1–8. http://dx.doi.org/10.34133/2019/8609875.
Повний текст джерелаLiu, Shuo, Wenlong Gao, Qian Zhang, Shaojie Ma, Lei Zhang, Changxu Liu, Yuan Jiang Xiang, Tie Jun Cui, and Shuang Zhang. "Topologically Protected Edge State in Two-Dimensional Su–Schrieffer–Heeger Circuit." Research 2019 (February 5, 2019): 1–8. http://dx.doi.org/10.1155/2019/8609875.
Повний текст джерелаДисертації з теми "Topological physics"
Tapio, O. (Ossi). "Topological defects in cosmology." Master's thesis, University of Oulu, 2013. http://urn.fi/URN:NBN:fi:oulu-201302121030.
Повний текст джерелаMoore, Christopher Paul. "Tunneling Transport Phenomena in Topological Systems." Thesis, Clemson University, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=13420479.
Повний текст джерелаOriginally proposed in high energy physics as particles, which are their own anti-particles, Majorana fermions have never been observed in experiments. However, possible signatures of their condensed matter analog, zero energy, charge neutral, quasiparticle excitations, known as Majorana zero modes (MZMs), are beginning to emerge in experimental data. The primary method of engineering topological superconductors capable of supporting MZMs is through proximity-coupled semiconductor nanowires with strong Rashba spin-orbit coupling and an applied magnetic field. Recent tunneling transport experiments involving these materials, known as semiconductor-superconductor heterostructures, were capable for the first time of measuring quantized zero bias conductance plateaus, which are robust over a range of control parameters, long believed to be the smoking gun signature of the existence of MZMs. The possibility of observing Majorana zero modes has garnered great excitement within the field due to the fact that MZMs are predicted to obey non-Abelian quantum statistics and therefore are the leading candidates for the creation of qubits, the building blocks of a topological quantum computer. In this work, we first give a brief introduction to Majorana zero modes and topological quantum computing (TQC). We emphasize the importance that having a true topologically protected state, which is not dependent on local degrees of freedom, has with regard to non-Abelian braiding calculations. We then introduce the concept of partially separated Andreev bound states (ps-ABSs) as zero energy states whose constituent Majorana bound states (MBSs) are spatially separated on the order of the Majorana decay length. Next, through numerical calculation, we show that the robust 2 e2/h zero bias conductance plateaus recently measured and claimed by many in the community to be evidence of having observed MZMs for the first time, can be identically created due to the existence of ps-ABSs. We use these results to claim that all localized tunneling experiments, which have been until now the main way researchers have tried to measure MZMs, have ceased to be useful. Finally, we outline a two-terminal tunneling experiment, which we believe to be relatively straight forward to implement and fully capable of distinguishing between ps-ABSs and true topologically protected MZMs.
Timothy, H. Hsieh Timothy (Timothy Hwa-wei). "Topological materials and quantum entanglement." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/103228.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 83-91).
As the title implies, this thesis consists of two main topics: materials which realize topological phases of matter and applications of the concept of entanglement in understanding topological phases and their transitions. The first part will focus on a particular class of materials called topological crystalline insulators (TCI), which are bulk insulators with metallic boundary states protected by crystal mirror symmetries. The realization of TCIs in the SnTe class of materials and the anti-perovskite family will be described. The second part will focus on using entanglement notions to probe a topological phase transition, based on a single topological wavefunction. This is achieved by performing extensive partitions of the wavefunction, such as a checkerboard partition. Implementing this technique in one dimension naturally involves the use of tensor networks, which will be reviewed and then utilized.
by Timothy H. Hsieh.
Ph. D.
Chess, Jordan J. "Mapping Topological Magnetization and Magnetic Skyrmions." Thesis, University of Oregon, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10684160.
Повний текст джерелаA 2014 study by the US Department of Energy conducted at Lawrence Berkeley National Laboratory estimated that U.S. data centers consumed 70 billion kWh of electricity. This represents about 1.8% of the total U.S. electricity consumption. Putting this in perspective 70 billion kWh of electricity is the equivalent of roughly 8 big nuclear reactors, or around double the nation's solar panel output. Developing new memory technologies capable of reducing this power consumption would be greatly beneficial as our demand for connectivity increases in the future. One newly emerging candidate for an information carrier in low power memory devices is the magnetic skyrmion. This magnetic texture is characterized by its specific non-trivial topology, giving it particle-like characteristics. Recent experimental work has shown that these skyrmions can be stabilized at room temperature and moved with extremely low electrical current densities. This rapidly developing field requires new measurement techniques capable of determining the topology of these textures at greater speed than previous approaches. In this dissertation, I give a brief introduction to the magnetic structures found in Fe/Gd multilayered systems. I then present newly developed techniques that streamline the analysis of Lorentz Transmission Electron Microscopy (LTEM) data. These techniques are then applied to further the understanding of the magnetic properties of these Fe/Gd based multilayered systems.
This dissertation includes previously published and unpublished co-authored material.
Damodaran, K. "Topological defects in cosmology and nuclear physics." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598261.
Повний текст джерелаYang, Biao. "Photonic topological metamaterials." Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8103/.
Повний текст джерелаLu, Fuyan. "Topological Phases with Crystalline Symmetries." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1524790822570583.
Повний текст джерелаLifschytz, Gilad. "Quantum gravity and topological field theory." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/33529.
Повний текст джерелаTang, Evelyn (Evelyn May Yin). "Topological phases in narrow-band systems." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/103220.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 64-72).
I discuss several novel topological phases in correlated electron systems, realized through spin-orbit interactions and lattice effects especially narrow-band systems. The first realizes the fractional quantum Hall effect using geometric frustration and ferromagnetism to obtain a nearly flat band with a large bandgap and non-zero Chern number. This system can support this effect at high temperatures upon partial filling of the flat band. The second proposal builds upon this system: as the ground state is a fractional quantum Hall state, excitations of this state are anyons when there is an incommensurate filling. The underlying lattice allows access to a new regime in which the anyon gas can form a charged superfluid, including states with intrinsic topological order or that similar to a BCS-type state. The third proposal studies topological crystalline insulators and strain as an effective gauge field on the surface state Dirac fermions. The zero-energy Landau orbitals form a flat band where the high density of states gives rise to the interface superconductivity observed in IV-VI semiconductor multilayers at high temperatures, with non-BCS behavior. A discussion of superconductivity in flat band systems concludes and is contrasted with classic results for a typical electron gas. This work closely parallels that in references [1, 2, 3].
by Evelyn Tang.
Ph. D.
Wu, Hao. "Excitations in Topological Superfluids and Superconductors." Thesis, Northwestern University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10259423.
Повний текст джерелаIn this thesis I present the theoretical work on Fermionic surface states, and %the bulk Bosonic collective excitations in topological superfluids and superconductors. Broken symmetries %Bulk-edge correspondence in topological condensed matter systems have implications for the spectrum of Fermionic excitations confined on surfaces or topological defects. (Abstract shortened by ProQuest.)
Книги з теми "Topological physics"
Basu, Saurabh. Topological Phases in Condensed Matter Physics. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5321-9.
Повний текст джерелаHollands, Lotte. Topological strings and quantum curves. Amsterdam: Amsterdam University Press, 2009.
Знайти повний текст джерелаAfanasiev, G. N. Topological Effects in Quantum Mechanics. Dordrecht: Springer Netherlands, 1999.
Знайти повний текст джерелаAnne-Christine, Davis, Brandenberger Robert Hans, North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Study Institute on Formation and Interactions of Topological Defects (1994 : Cambridge, England), eds. Formation and interactions of topological defects. New York: Plenum Press, 1995.
Знайти повний текст джерелаservice), SpringerLink (Online, ed. Differentiable Manifolds: A Theoretical Physics Approach. Boston: Springer Science+Business Media, LLC, 2012.
Знайти повний текст джерелаLaboratory, Fermi National Accelerator, and United States. National Aeronautics and Space Administration., eds. The formation of topological defects in phase transitions. Batavia, IL: Fermi National Accelerator Laboratory, 1989.
Знайти повний текст джерелаGiuseppe, Morandi. Quantum Hall effect: Topological problems in condensed-matter physics. Napoli: Bibliopolis, 1988.
Знайти повний текст джерелаShen, Shun-Qing. Topological Insulators: Dirac Equation in Condensed Matters. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Знайти повний текст джерелаDavis, Anne-Christine. Formation and Interactions of Topological Defects: Proceedings of a NATO Advanced Study Institute on Formation and Interactions of Topological Defects, held August 22-September 2, 1994, in Cambridge, England. Boston, MA: Springer US, 1995.
Знайти повний текст джерелаGrigorʹevich, Barʹi͡a︡khtar Viktor, ed. Dynamics of topological magnetic solitons: Experiment and theory. Berlin: Springer-Verlag, 1994.
Знайти повний текст джерелаЧастини книг з теми "Topological physics"
Baus, Marc, and Carlos F. Tejero. "Topological Defects and Topological Phase Transitions." In Equilibrium Statistical Physics, 323–71. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75432-7_12.
Повний текст джерелаBlanchard, Philippe, and Erwin Brüning. "Topological Aspects." In Mathematical Methods in Physics, 235–45. Boston, MA: Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-1-4612-0049-9_18.
Повний текст джерелаBlanchard, Philippe, and Erwin Brüning. "Topological Aspects." In Mathematical Methods in Physics, 265–76. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14045-2_19.
Повний текст джерелаMonastyrsky, Michael. "Topological Particles." In Riemann, Topology, and Physics, 145–56. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-0-8176-4779-7_14.
Повний текст джерелаMonastyrsky, Michael. "Topological Structures." In Riemann, Topology, and Physics, 95–106. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-0-8176-4779-7_9.
Повний текст джерелаMonastyrsky, Michael. "Topological Particles." In Riemann, Topology, and Physics, 125–29. Boston, MA: Birkhäuser Boston, 1987. http://dx.doi.org/10.1007/978-1-4899-3514-4_14.
Повний текст джерелаMonastyrsky, Michael. "Topological Structures." In Riemann, Topology, and Physics, 76–87. Boston, MA: Birkhäuser Boston, 1987. http://dx.doi.org/10.1007/978-1-4899-3514-4_9.
Повний текст джерелаJohnson, P. D. "Dirac cones and topological states: topological insulators." In Physics of Solid Surfaces, 523–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53908-8_127.
Повний текст джерелаKouneiher, Joseph. "Topological Foundations of Physics." In The Map and the Territory, 245–71. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72478-2_13.
Повний текст джерелаHafezi, Mohammad, and Jacob Taylor. "Topological Physics with Photons." In Quantum Science and Technology, 71–89. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52025-4_4.
Повний текст джерелаТези доповідей конференцій з теми "Topological physics"
Kriisa, Annika, R. G. Mani, and W. Wegscheider. "Topological Hall insulator." In THE PHYSICS OF SEMICONDUCTORS: Proceedings of the 31st International Conference on the Physics of Semiconductors (ICPS) 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4848352.
Повний текст джерелаSoljacic, Marin. "AI for photonics and topological physics." In Active Photonic Platforms (APP) 2023, edited by Ganapathi S. Subramania and Stavroula Foteinopoulou. SPIE, 2023. http://dx.doi.org/10.1117/12.2678581.
Повний текст джерелаAmaral, R. L. P. G. "Mappings From Models Presenting Topological Mass Mechanisms to Purely Topological Models." In IX HADRON PHYSICS AND VII RELATIVISTIC ASPECTS OF NUCLEAR PHYSICS: A Joint Meeting on QCD and QCP. AIP, 2004. http://dx.doi.org/10.1063/1.1843610.
Повний текст джерелаWang, Jing, Xi Chen, Bang-Fen Zhu, and Shou-Cheng Zhang. "Topological p-n junction." In THE PHYSICS OF SEMICONDUCTORS: Proceedings of the 31st International Conference on the Physics of Semiconductors (ICPS) 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4848348.
Повний текст джерелаThiang, Guo Chuan. "T-duality and K-theory: a view from condensed matter physics." In Workshop on Strings, Membranes and Topological Field Theory. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813144613_0007.
Повний текст джерелаNIEH, H. T. "A TORSIONAL TOPOLOGICAL INVARIANT." In Statistical Physics, High Energy, Condensed Matter and Mathematical Physics - The Conference in Honor of C. N. Yang'S 85th Birthday. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812794185_0003.
Повний текст джерелаJackiw, R. "Topological structures in QCD at high T." In CAM-94 Physics meeting. AIP, 1995. http://dx.doi.org/10.1063/1.48782.
Повний текст джерелаYukalov, V. I. "Topological Coherent Modes in Trapped Bose Gas." In ATOMIC PHYSICS 19: XIX International Conference on Atomic Physics; ICAP 2004. AIP, 2005. http://dx.doi.org/10.1063/1.1928856.
Повний текст джерелаIwamoto, Satoshi, and Yasutomo Ota. "Exploiting Photonic Topology in Semiconductor Nanophotonics." In JSAP-Optica Joint Symposia. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/jsapo.2023.19p_a602_1.
Повний текст джерелаKoushik, R., Matthias Baenninger, Vijay Narayan, Subroto Mukerjee, Michael Pepper, Ian Farrer, David A. Ritchie, and Arindam Ghosh. "Topological excitations in semiconductor heterostructures." In THE PHYSICS OF SEMICONDUCTORS: Proceedings of the 31st International Conference on the Physics of Semiconductors (ICPS) 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4848387.
Повний текст джерелаЗвіти організацій з теми "Topological physics"
Guha, Supratik, H. S. Philip Wong, Jean Anne Incorvia, and Srabanti Chowdhury. Future Directions Workshop: Materials, Processes, and R&D Challenges in Microelectronics. Defense Technical Information Center, June 2022. http://dx.doi.org/10.21236/ad1188476.
Повний текст джерелаYan, Yujie, and Jerome F. Hajjar. Automated Damage Assessment and Structural Modeling of Bridges with Visual Sensing Technology. Northeastern University, May 2021. http://dx.doi.org/10.17760/d20410114.
Повний текст джерела