Добірка наукової літератури з теми "Topological effects"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Topological effects".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Topological effects":

1

Oreg, Yuval, and Felix von Oppen. "Majorana Zero Modes in Networks of Cooper-Pair Boxes: Topologically Ordered States and Topological Quantum Computation." Annual Review of Condensed Matter Physics 11, no. 1 (March 10, 2020): 397–420. http://dx.doi.org/10.1146/annurev-conmatphys-031218-013618.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Recent experimental progress introduced devices that can combine topological superconductivity with Coulomb-blockade effects. Experiments with these devices have already provided additional evidence for Majorana zero modes in proximity-coupled semiconductor wires. They also stimulated numerous ideas for how to exploit interactions between Majorana zero modes generated by Coulomb charging effects in networks of Majorana wires. Coulomb effects promise to become a powerful tool in the quest for a topological quantum computer as well as for driving topological superconductors into topologically ordered insulating states. Here, we present a focused review of these recent developments, including discussions of recent experiments, designs of topological qubits, Majorana-based implementations of universal quantum computation, and topological quantum error correction. Motivated by the analogy between a qubit and a spin-1/2 degree of freedom, we also review how coupling between Cooper-pair boxes leads to emergent topologically ordered insulating phases.
2

Kim, Ki-Seok, and Akihiro Tanaka. "Emergent gauge fields and their nonperturbative effects in correlated electrons." Modern Physics Letters B 29, no. 16 (June 20, 2015): 1540054. http://dx.doi.org/10.1142/s0217984915400540.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The history of modern condensed matter physics may be regarded as the competition and reconciliation between Stoner’s and Anderson’s physical pictures, where the former is based on momentum–space descriptions focusing on long wave-length fluctuations while the latter is based on real-space physics emphasizing emergent localized excitations. In particular, these two view points compete with each other in various nonperturbative phenomena, which range from the problem of high [Formula: see text] superconductivity, quantum spin liquids in organic materials and frustrated spin systems, heavy-fermion quantum criticality, metal-insulator transitions in correlated electron systems such as doped silicons and two-dimensional electron systems, the fractional quantum Hall effect, to the recently discussed Fe-based superconductors. An approach to reconcile these competing frameworks is to introduce topologically nontrivial excitations into the Stoner’s description, which appear to be localized in either space or time and sometimes both, where scattering between itinerant electrons and topological excitations such as skyrmions, vortices, various forms of instantons, emergent magnetic monopoles, and etc. may catch nonperturbative local physics beyond the Stoner’s paradigm. In this review paper, we discuss nonperturbative effects of topological excitations on dynamics of correlated electrons. First, we focus on the problem of scattering between itinerant fermions and topological excitations in antiferromagnetic doped Mott insulators, expected to be relevant for the pseudogap phase of high [Formula: see text] cuprates. We propose that nonperturbative effects of topological excitations can be incorporated within the perturbative framework, where an enhanced global symmetry with a topological term plays an essential role. In the second part, we go on to discuss the subject of symmetry protected topological states in a largely similar light. While we do not introduce itinerant fermions here, the nonperturbative dynamics of topological excitations is again seen to be crucial in classifying topologically nontrivial gapped systems. We point to some hidden links between several effective field theories with topological terms, starting with one-dimensional physics, and subsequently finding natural generalizations to higher dimensions.
3

Bagchi, Susmit. "Projective and Non-Projective Varieties of Topological Decomposition of Groups with Embeddings." Symmetry 12, no. 3 (March 12, 2020): 450. http://dx.doi.org/10.3390/sym12030450.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In general, the group decompositions are formulated by employing automorphisms and semidirect products to determine continuity and compactification properties. This paper proposes a set of constructions of novel topological decompositions of groups and analyzes the behaviour of group actions under the topological decompositions. The proposed topological decompositions arise in two varieties, such as decomposition based on topological fibers without projections and decomposition in the presence of translated projections in topological spaces. The first variety of decomposition introduces the concepts of topological fibers, locality of group operation and the partitioned local homeomorphism resulting in formulation of transitions and symmetric surjection within the topologically decomposed groups. The reformation of kernel under decomposed homeomorphism and the stability of group action with the existence of a fixed point are analyzed. The first variety of decomposition does not require commutativity maintaining generality. The second variety of projective topological decomposition is formulated considering commutative as well as noncommutative projections in spaces. The effects of finite translations of topologically decomposed groups under projections are analyzed. Moreover, the embedding of a decomposed group in normal topological spaces is formulated in this paper. It is shown that Schoenflies homeomorphic embeddings preserve group homeomorphism in the decomposed embeddings within normal topological spaces. This paper illustrates that decomposed group embedding in normal topological spaces is separable. The applications aspects as well as parametric comparison of group decompositions based on topology, direct product and semidirect product are included in the paper.
4

McClarty, Paul A. "Topological Magnons: A Review." Annual Review of Condensed Matter Physics 13, no. 1 (March 10, 2022): 171–90. http://dx.doi.org/10.1146/annurev-conmatphys-031620-104715.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
At sufficiently low temperatures, magnetic materials often enter correlated phases hosting collective, coherent magnetic excitations such as magnons or triplons. Drawing on the enormous progress on topological materials of the past few years, recent research has led to new insights into the geometry and topology of these magnetic excitations. Berry phases associated with magnetic dynamics can lead to observable consequences in heat and spin transport, whereas analogs of topological insulators and semimetals can arise within magnon band structures from natural magnetic couplings. Magnetic excitations offer a platform to explore the interplay of magnetic symmetries and topology, drive topological transitions using magnetic fields, examine the effects of interactions on topological bands, and generate topologically protected spin currents at interfaces. In this review, we survey progress on all these topics, highlighting aspects of topological matter that are unique to magnon systems and the avenues yet to be fully investigated.
5

Puzantian, Benjamin, Yasser Saleem, Marek Korkusinski, and Pawel Hawrylak. "Edge States and Strain-Driven Topological Phase Transitions in Quantum Dots in Topological Insulators." Nanomaterials 12, no. 23 (December 1, 2022): 4283. http://dx.doi.org/10.3390/nano12234283.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We present here a theory of the electronic properties of quasi two-dimensional quantum dots made of topological insulators. The topological insulator is described by either eight band k→·p→ Hamiltonian or by a four-band k→·p→ Bernevig–Hughes–Zhang (BHZ) Hamiltonian. The trivial versus topological properties of the BHZ Hamiltonian are characterized by the different topologies that arise when mapping the in-plane wavevectors through the BHZ Hamiltonian onto a Bloch sphere. In the topologically nontrivial case, edge states are formed in the disc and square geometries of the quantum dot. We account for the effects of compressive strain in topological insulator quantum dots by means of the Bir–Pikus Hamiltonian. Tuning strain allows topological phase transitions between topological and trivial phases, which results in the vanishing of edge states from the energy gap. This may enable the design of a quantum strain sensor based on strain-driven transitions in HgTe topological insulator square quantum dots.
6

Shafii, S., S. E. Dillard, M. Hlawitschka, and B. Hamann. "The Topological Effects of Smoothing." IEEE Transactions on Visualization and Computer Graphics 18, no. 1 (January 2012): 160–72. http://dx.doi.org/10.1109/tvcg.2011.74.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Xu, Yong. "Thermoelectric effects and topological insulators." Chinese Physics B 25, no. 11 (November 2016): 117309. http://dx.doi.org/10.1088/1674-1056/25/11/117309.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Klein, A. G. "Topological effects in neutron optics." Physica B+C 137, no. 1-3 (March 1986): 230–34. http://dx.doi.org/10.1016/0378-4363(86)90327-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nachlis, W. L., J. T. Bendler, R. P. Kambour, and W. J. MacKnight. "Topological effects on blend miscibility." Pure and Applied Chemistry 69, no. 1 (January 1, 1997): 151–56. http://dx.doi.org/10.1351/pac199769010151.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nachlis, W. L., J. T. Bendler, R. P. Kambour, and W. J. MacKnight. "Topological Effects on Blend Miscibility." Macromolecules 28, no. 23 (November 1995): 7869–78. http://dx.doi.org/10.1021/ma00127a038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Topological effects":

1

Battenfeld, Ingo. "Topological domain theory." Thesis, University of Edinburgh, 2008. http://hdl.handle.net/1842/2214.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis presents Topological Domain Theory as a powerful and flexible framework for denotational semantics. Topological Domain Theory models a wide range of type constructions and can interpret many computational features. Furthermore, it has close connections to established frameworks for denotational semantics, as well as to well-studied mathematical theories, such as topology and computable analysis. We begin by describing the categories of Topological Domain Theory, and their categorical structure. In particular, we recover the basic constructions of domain theory, such as products, function spaces, fixed points and recursive types, in the context of Topological Domain Theory. As a central contribution, we give a detailed account of how computational effects can be modelled in Topological Domain Theory. Following recent work of Plotkin and Power, who proposed to construct effect monads via free algebra functors, this is done by showing that free algebras for a large class of parametrised equational theories exist in Topological Domain Theory. These parametrised equational theories are expressive enough to generate most of the standard examples of effect monads. Moreover, the free algebras in Topological Domain Theory are obtained by an explicit inductive construction, using only basic topological and set-theoretical principles. We also give a comparison of Topological and Classical Domain Theory. The category of omega-continuous dcpos embeds into Topological Domain Theory, and we prove that this embedding preserves the basic domain-theoretic constructions in most cases. We show that the classical powerdomain constructions on omega-continuous dcpos, including the probabilistic powerdomain, can be recovered in Topological Domain Theory. Finally, we give a synthetic account of Topological Domain Theory. We show that Topological Domain Theory is a specific model of Synthetic Domain Theory in the realizability topos over Scott's graph model. We give internal characterisations of the categories of Topological Domain Theory in this realizability topos, and prove the corresponding categories to be internally complete and weakly small. This enables us to show that Topological Domain Theory can model the polymorphic lambda-calculus, and to obtain a richer collection of free algebras than those constructed earlier. In summary, this thesis shows that Topological Domain Theory supports a wide range of semantic constructions, including the standard domain-theoretic constructions, computational effects and polymorphism, all within a single setting.
2

Calvanese, Strinati Marcello. "Topological effects in one-dimensional quantum systems." Doctoral thesis, Scuola Normale Superiore, 2018. http://hdl.handle.net/11384/85903.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Singla, Swati. "Topological Effects on Properties of Multicomponent Polymer Systems." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5067.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Multicomponent polymer systems comprised of two or more chemically different polymer moieties provide an effective way to attain the desired properties from a limited palette of commodity polymers. Variations in macromolecular topologies often result in unique and unusual properties leading to novel applications. This dissertation addresses the effect of topology on properties of two multicomponent polymers systems: blends and polyrotaxanes. Blends of cyclic and linear polymers were compared to their topological counterparts, polyrotaxanes, in which cyclic components are threaded onto the linear polymer chains. The first part of the dissertation focuses on the synthesis and purification of cyclic polymers derived from linear (polyoxyethylene) (POE). Cyclic POEs of different cycle sizes were synthesized and then purified from their linear byproducts by inclusion complexation with alpha-cyclodextrin. Polystyrene was threaded through the resulting cycles by in situ free radical polymerization of styrene monomer in the presence of an excess of POE cycles. A bulky free radical initiator was utilized to endcap the polystyrene molecule at the two ends to prevent dethreading of cyclic moieties. In the second part of the dissertation, phase behavior, morphology and dynamics of cyclic POE and polystyrene blends were compared to linear POE and polystyrene blends. Advanced solid-state NMR techniques and differential scanning calorimetry were employed for this purpose. Cyclic POE was found to be much more miscible with polystyrene when compared to linear POE, resulting in nanometer-sized domains and significantly reduced mobilities of the cyclic POE components in the blends. The unusual behavior of cyclic POE in the blends was attributed to topological as well as end-group effects with the topological effects being predominant. Polyrotaxanes composed of polystyrene and cyclic POE components exhibited cyclic POE domain sizes similar to that of physical blends. Cyclic POE dynamics in polyrotaxanes were considerably hindered, however, due to the threaded architecture. Surface segregation studies of cyclic POE/polystyrene blends and polyrotaxanes did not show segregation of POE to the surface because of the improved miscibility and the topological constraints present in these systems.
4

Asker, Andreas. "Axion Electrodynamics and Measurable Effects in Topological Insulators." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-67519.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Topological insulators are materials with their electronic band structure in bulk resembling that of an ordinary insulator, but the surface states are metallic. These surface states are topologically protected, meaning that they are robust against impurities. The topological phenomena of three dimensional topological insulators can be expressed within topological field theories, predicting axion electrodynamics and the topological magnetoelectric effect. An experiment have been suggested to measure the topological phenomena. In this thesis, the underlying theory and details around the experiment are explained and more detailed derivations and expressions are provided.
5

Sbierski, Björn [Verfasser]. "On disorder effects in topological insulators and semimetals / Björn Sbierski." Berlin : Freie Universität Berlin, 2016. http://d-nb.info/1102197114/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhang, Yi 1979. "Computer simulation and topological modeling of radiation effects in zircon." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/41587.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2006.
Includes bibliographical references.
The purpose of this study is to understand on atomic level the structural response of zircon (ZrSiO4) to irradiation using molecular dynamics (MD) computer simulations, and to develop topological models that can describe these structural changes. Topological signatures, encoded using the concepts of primitive-rings and local clusters, were developed and used to differentiate crystalline and non-crystalline atoms in various zircon structures. Since primitive-rings and local clusters are general concepts applicable to all materials, and the algorithms to systematically identify them are well-established, topological signatures based on them are easy to implement and the method of topological signatures is applicable to all structures. The method of topological signatures is better than the Wigner-Seitz cell method, which depends on the original crystalline reference grid that is unusable in heavily damaged structures or regions; it is also better than those methods based only on local structures limited to first coordination shell, since one can decide whether or not to include ring contents of large rings into the topological signatures, effectively controlling the range of the topological signatures. The early-stage evolution of non-crystalline disorder and the subsequent recrystallization in zircon collision cascade simulations were successfully modeled by using the topological signatures to identify non-crystalline atoms. Simply using the number of displaced atoms was unable to correctly show the initial peak of structural damage followed by the subsequent annealing stage. Using the topological signatures, amorphization within a single collision cascade was observed in zircon.
(cont.) In the radiation-induced amorphous zircon simulated in this study, the method of topological signatures was able to differentiate the amorphous region in the center of the simulation box and the crystalline region surrounding it. A few isolated remnant crystalline islands were identified in the amorphous region. About 5% of atoms in melted and melt-quenched structures were identified as crystalline atoms. Different amorphous zircon structures were found to be topologically different. Upon amorphization of zircon, the average ring size and the number of atoms in local cluster were found to increase. Larger average ring sizes were found in more pervasively amorphized structures. The radiation-induced amorphous structure was the least pervasively amorphized one, followed by the melt-quenched. The liquid-state amorphous structure was most pervasively amorphized and had the largest average ring size. Phase-separation of zircon into SiO2- and ZrO2-rich local regions was observed when zircon was amorphized in simulations, either thermally or by radiation. It was found in simulations using constant pressure ensembles that the zircon structure underwent abnormally huge volume swelling when it amorphized, which was attributed to the ion charges used in the potential model. Although the ion charges used in the originally chosen potential model were overall balanced, they were not balanced with regard to the phase decomposition products, and thus resulted in strong Coulombic repulsive force within locally SiO2- and ZrO2-rich regions when phase separation occurred. After the ion charges were re-balanced (and other potential parameters refitted), the volume expansion was found to be under control. The charge imbalance of SiO2 units was also found to produce unrealistically large fraction of 3-coordinated Si and shorter Si-O bond length.
(cont.) The issue of charge-balance with regard to phase decomposition products applies to all complex ceramics that decompose into separate phases upon amorphization. Threshold displacement energies in zircon were systematically determined. Many special directions, such as those directed toward neighboring atoms or open spaces surrounding the PKA, were considered. Cascade detail was extensively examined, including PKA trajectory, cascade extent, time scale, thermal spike, recoil density, distribution of PKA energy among sub-lattices and number of displaced atoms. The crystallographic features of the zircon structure were found to have profound implications for collision cascades. It was found that energetic PKAs were always deflected into the open channel along the z direction. Their displacements along the longitudinal x direction were never greater than about 4 nm in our simulations. The estimation of the cascade extent assuming homogeneous media thus greatly over-predicts the PKA displacement along the longitudinal direction. The effects of PKA mass on collision cascade were studied by comparing the cascades caused by Zr and U PKAs. The U atoms were simply "super-mass" Zr atoms in this study: U-Zr, U-Si and U-O interactions were the same as Zr-Zr, Zr-Si and Zr-O interactions, respectively. It was found that heavier PKAs produced longer cascades, more structural damage, and higher temperature in thermal spike. U also traveled further along the longitudinal x direction because it was less prone to change of velocity direction. The depleted regions in the core of the cascades surrounded by a densified shell, which were found in simulations by Trachenko et al., were not found in our study. After extensive tests of recently published zircon potentials, it was found that three out of the five tested potentials yielded poor elastic constants and appear to be unfit for serious simulations. Published simulation results using these potentials should accordingly be viewed cautiously.
by Yi Zhang.
Ph.D.
7

Nalitov, Anton. "Spin dynamics ande topological effects in physics of indirect excitons and microcavity polaritons." Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22569/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse est consacrée à de nouveaux phénomènes en physique liées au spin et à la topologie des quasi-particules lumière-matière dans des hétérostructures. Elle est divisée en quatre parties. Chapitre 1 donne un fond nécessaire et introduit les propriétés fondamentales des polaritons et des excitons indirects dans des puits quantiques couplés. Chapitre 2 est concentré sur la dynamique de spin et sur formation de défauts topologiques dans des systèmes aux excitons indirects. Les 2 derniers chapitres considèrent les structures basées sur les microcavités. Chapitre 3 est consacré à la dynamique de spin des polaritons dans des oscillateurs paramétriques optiques. Finalement, chapitre 4 étudie les réseaux des microcavités en forme des piliers et introduit l’isolant topologique polaritonique
The present thesis manuscript is devoted to new phenomena in physics of light-matter quasiparticles in heterostructures, related to spin and topology. It is divided into four parts. Chapter 1 gives a necessary background, introducing basic properties of microcavity polaritons and indirect excitons in coupled quantum wells. Chapter 2 is focused on spin dynamics and topological defects formation in indirect exciton many-body systems. The last 2 chapters are related to microcavity-based structures. Chapter 3 is devoted to polariton spin dynamics in optical parametric oscillators. Finally, Chapter 4 studies pillar microcavity lattices and introduces the polariton topological insulator
8

Palin, Victor. "Heusler compounds for spin-orbitronics : exploration of topological effects and magnetic anisotropy engineering." Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Au cours des dernières décennies les besoins en capacité de stockage ont explosé avec l’avènement de l’ordinateur. La crise énergétique que nous traversons au 21eme siècle nécessite le développement de nouveaux matériaux pour le stockage de l’information. C’est dans ce but que les physiciens ont développé de nouvelles façons de stocker l’information de façon à réduire la taille, la consommation énergétique et le coût de fabrication des mémoires tout en augmentant leurs capacités et la vitesse de traitement de l’information. Les recherches réalisées au cours de cette thèse visent à améliorer le stockage de l’information à l'aide des deux champs de recherches suivants :- Le premier se base sur l’utilisation de matériaux émergents dans le domaine de la recherche scientifique : les isolants topologiques. Ces matériaux possèdent des textures de spin particulières susceptibles de générer une conversion très élevée entre courant de spin et courant de charge. Cet état de la matière (non trivial topologiquement) peut s’avérer complexe à stabiliser et à imager. C’est l’objectif de la première partie de cette thèse où des isolants topologiques provenant de la famille des demi-Heusler sont fabriqués par épitaxie par jets moléculaires. La caractérisation structurale par diffraction des rayons X et électronique ainsi que par microscopie à effet tunnel et microscopie électronique à transmission confirme la croissance épitaxiale dans la structure désirée prédite comme ayant une topologie non triviale. La spectroscopie photoélectrique résolue en angle révèle la présence d'états linéaires autour du point Γ de la zone de Brillouin. Néanmoins, les surfaces de Fermi obtenues sont complexes et ne permettent pas de tirer des conclusions claires sur la nature non triviale des composés. Des mesures de transport ont été effectuées pour tester l'efficacité potentielle d'interconversion de nos composés et les expériences de spin Seebeck révèlent une conversion spin/charge deux à trois fois plus élevée dans nos isolants toplogiques comparés à un échantillon témoin de Pt.- La seconde étude réalisée afin d'améliorer les mémoires magnétiques conventionnelles porte sur l’anisotropie magnétique. Ici encore les alliages d’Heusler offrent une grande variété de composés permettant de répondre à ce but. La famille de composés Mn3Z (Z = Ge, Ga) a beaucoup attiré l’attention du fait de sa maille élémentaire tetragonalisée permettant de stabiliser une aimantation perpendiculaire et cela même dans une géométrie de film mince. Dans cette thèse, nous étudions les alliages Mn(100-x)Ga(x) et Mn(100-x)Ge(x) et parvenons à les stabiliser dans leur structure D0(22) offrant une aimantation perpendiculaire. Un zoom est ensuite porté sur des empilements (bicouches et super-réseaux) à base de Mn3Ge et composés d'un second alliage d'Heusler aux propriétés remarquables, la famille Co2MnZ' (Z' = Si, Ge). Les composés Co2MnZ' ont un comportement semi-métallique leur conférant un faible amortissement magnétique et une polarisation en spin de 100% au niveau de Fermi, deux propriétés très souhaitées pour des applications basées sur le couple transfert de spin. Nous développons donc ici des hétérostructures Mn3Ge/Co2MnZ' (bicouches et super-réseaux) et parvenons à faire croître les deux composés dans les structures souhaitées. Le système global possède une aimantation perpendiculaire (amenée par Mn3Ge), la dernière couche de l'empilement est un demi-métal magnétique (amené par Co2MnZ') et les épaisseurs utilisées pour les deux couches permet d'accorder les propriétés magnétiques et d'obtenir 100% de rémanence
Over the last decades, the needs in storage capacity as shot up with computing development. The energy crisis that we are going through in the 21th century requires to develop new fundamental materials for data storage. It was with this purpose that physicist develop new ways to store information in order to reduce device’s scale, energy consumption and manufacturing cost while memories’ size and information’s speed has shot up. The research conducted in this thesis make use of two different ways to improve data storage:- The first one is by using emerging materials in science, called topological insulator, that host peculiar spin texture predicted to generate very high spin-to-charge interconversion. This non-trivial state of matter can be complex to stabilize and image. This is the goal of the first part of this thesis where topological insulators coming from the half-Heusler family are engineered by molecular beam epitaxy. Structural characterization are carried out by X-ray and electronic diffraction along with scanning tunneling microscopy and transmission electron microscopy that confirm an epitaxial growth in the desired structure predicted to host a non-trivial topology. Angle resolved photoemission spectroscopy is performed and reveals the presence of linear states around the Γ point of the Brillouin zone. Nonetheless, the complex Fermi surfaces imaged do not allow to draw clear conclusions on the non-trivial nature of both alloys. Transport measurements were performed to test the potential interconversion efficiency of our compounds and spin Seebeck experiments revealed a spin-to-charge conversion two to three times higher in our TIs compared to a Pt control sample.- The second way chosen to improve conventional magnetic memories is by playing with magnetic anisotropy. Here again, Heusler family offers a vast variety of compounds allowing to fulfill this goal. The Mn3Z family compounds has attracted a lot of attention owing to their tetragonalized unit cell that allows to stabilize perpendicular magnetic anisotropy (PMA) even in a thin film geometry. In this thesis, we investigate Mn(100-x)Ga(x) and Mn(100-x)Ge(x) alloys and manage to stabilize them in their D0(22) structure that offers PMA. A peculiar zoom is then done on Mn3Ge-based stacks composed of a second Heusler alloy with remarkable properties, the Co2MnZ’ family (Z' = Si, Ge). Co2MnZ’ compounds have a half-metallic behavior making them very suitable for spin transfer torque related applications due to their low magnetic damping and full spin polarization at the Fermi level. Here we develop Mn3Ge/Co2MnZ' heterostructures (bilayers and superlattices) and manage to grow both compounds in the desired structures. The overall system is perpendicularly magnetized (thanks to Mn3Ge), terminated with a half-metal magnet (thanks to Co2MnZ') and the thicknesses used for both layers allow to tune the magnetic properties and obtained 100% of remanence
9

Song, Kenan. "Theoretical study of disorder and proximity effects in three-dimensional models of topological insulators." Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/663940.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Aquest doctorat. El projecte cobreix les investigacions sobre aïllants topològics (TI) de la família Bi2Se3 amb diferents defectes i l'estudi d'efectes de proximitat de TI a la heteroestructura de grafè amb TI. La primera part d'aquest projecte se centra principalment en l'efecte del desordre en les propietats electròniques de TI amb gruix ultrafí (<3 nm). S’ha trobat que la manca de coincidència de rotació entre capes quíntuples de TI pot augmentar el “gap” de volum dels TI però preservar la textura d'espín tipus Rashba en l'estat de la superfície; mentre que la hidrogenació en una superfície de TI pot ajudar a reduir l'efecte túnel quàntic i tancar el “gap” de superfície en el punt Γ amb la textura d'espín tipus Rashba per a la pel·lícula TI ultrafina. A més, aquest esquema també pot crear un altre punt Dirac (DP) en el punt M amb textura de spin tipus Dresselhaus. La segona part del projecte investiga els efectes de proximitat de TI dins de la heteroestructura de grafè / TI i el DP en el grafè es plega des del punt K / K 'a Γ punt de la zona Brillouin, a causa del plegament de la banda, trobant que l'alineació entre el substrat de TI i el grafè té un paper clau en la formació de l'estructura de la banda i la textura d'espín del grafè. La configuració d'apilament "hollow" podria induir la distorsió d'unió de Kekulé a la capa de grafè, donant com a resultat l'engrandiment del “gap” (3.2 meV) i el Rashba SOC, el que dóna com a resultat la precessió d'espín propera al Γ punt . A més, aquesta textura atípica de Rashba espín fa que la component d'espín fora del pla disminueixi gradualment a mesura que el punt k s'allunya del punt Γ, el que porta a la anisotropia de gir a la capa de grafè. D'altra banda, la configuració d'apilament "bridge" o "top" podria portar l'evident divisió de la banda en direcció lateral, que podria ser l'origen de l'efecte Edelstein en la capa de grafè; no obstant, no hi ha una anisotropia d'espín evident en aquesta configuració. Totes les primeres dues parts s’han dut a terme a través del càlcul de teoria funcional de la densitat (DFT) i s’ha construït un model d'unió ajustada (TB) per als resultats de DFT per tal de proporcionar una explicació analítica de l'estructura de la banda i la textura de l'spin de grafè en el dispositiu de heteroestructura. L'última part d'aquest doctorat. L'activitat de recerca se centra en estudiar l'efecte d'impureses magnètiques i no magnètiques amb un esquema de dopatge aleatori sobre les propietats electròniques dels TI. El càlcul numèric basat en el model 3D Fu-Kane-Mele TB mostra que el dopatge no magnètic en la superfície de TI només pot induir el potencial in situ a la superfície DP i elevar-lo cap amunt, preservant la textura estàndard d'espín tipus Rashba; paral·lelament, el dopatge magnètic podria trencar la simetria d'inversió de temps i obrir el “gap” de superfície amb l'anisotropia d'espín també, el que significa que la component d'espín fora del pla en la superfície TI dopada magnèticament disminueix gradualment a mesura que el punt k s'allunya del Γ punt. Els treballs de recerca en aquest projecte podrien proporcionar una guia per a la llista d'experiments sobre les propietats electròniques de TI amb diferents tipus de defectes i impureses (magnètics i no magnètics); particularment, l'estudi dels efectes de proximitat en els TI podrien explicar el fenomen fonamental bàsic observat en aquest dispositiu per a l'estudi de la dinàmica d'espín en el laboratori.
Este doctorado. El proyecto cubre las investigaciones sobre aislantes topológicos (TI) de la familia Bi2Se3 con diferentes defectos y el estudio de efectos de proximidad de TI en la heteroestructura de grafeno con TI. La primera parte de este proyecto se centra principalmente en el efecto del desorden en las propiedades electrónicas de TI con espesor ultrafino (<3 nm). Se ha encontrado que la falta de coincidencia de rotación entre capas quíntuples de TI puede aumentar el “gap” de volumen de los TI pero preservar la textura de espín tipo Rashba en el estado de la superficie; mientras que la hidrogenación en una superficie de TI puede ayudar a reducir el efecto túnel cuántico y cerrar el “gap” de los estados de superficie en el punto Γ con la textura de espín tipo Rashba para la película TI ultrafina. Además, este esquema también puede crear otro punto Dirac (DP) en el punto M con textura de espín tipo Dresselhaus. La segunda parte del proyecto investiga los efectos de proximidad de TI dentro de la heteroestructura de grafeno/TI y el DP en el grafeno se pliega desde el punto K / K' a Γ punto en la zona Brillouin, debido al plegamiento de la banda, encontrando que la alineación entre el sustrato de TI y el grafeno desempeña un papel clave en la formación de la estructura de la banda y la textura de espín del grafeno. La configuración de apilamiento “hollow” podría inducir la distorsión de unión de Kekulé a la capa de grafeno, dando como resultado el agrandamiento del “gap” (3.2 meV) y el Rashba SOC, lo que da como resultado la precesión de espín cercana al Γ punto. Además, esta textura atípica de Rashba espín hace que la componente de espín fuera del plano disminuya gradualmente a medida que el punto k se aleja del punto Γ, lo que lleva a la anisotropía de giro en la capa de grafeno. Por otro lado, la configuración de apilamiento “bridge” o “top” podría traer la evidente división de la banda en dirección lateral, que podría ser el origen del efecto Edelstein en la capa de grafeno; sin embargo, no hay una anisotropía de espín evidente en dicha configuración. Todas las primeras dos partes se han llevado a cabo a través del cálculo de la teoría funcional de la densidad (DFT) y se ha construido un modelo de unión ajustada (TB) para los resultados de DFT con el fin de proporcionar una explicación analítica de la estructura de la banda y la textura del spin de grafeno en el dispositivo de heteroestructura. La última parte de este doctorado. La actividad de investigación se centra en estudiar el efecto de impurezas magnéticas y no magnéticas con un esquema de dopaje aleatorio sobre las propiedades electrónicas de los TI. El cálculo numérico basado en el modelo 3D Fu-Kane-Mele TB mostró que el dopaje no magnético en la superficie de TI solo podía inducir el potencial in situ en la superficie DP y elevarlo hacia arriba, preservando la textura estándar de espín tipo Rashba; mientras, el dopaje magnético podría romper la simetría de inversión de tiempo y abrir el “gap” de superficie con la anisotropía de espín también, lo que significa que la componente de espín fuera del plano en la superficie TI dopada magnéticamente disminuye gradualmente a medida que el punto k se aleja del Γ punto. Los trabajos de investigación en este proyecto podrían proporcionar una guía para la lista de experimentos sobre las propiedades electrónicas de TI con diferentes tipos de defectos e impurezas (magnéticos y no magnéticos); particularmente, el estudio de los efectos de proximidad en los TI podrían explicar el fenómeno fundamental básico observado en dicho dispositivo para el estudio de la dinámica de espín en el laboratorio.
This PhD. project covers the researches on the Bi2Se3-family topological insulators (TIs) with different defects and the study of the proximity effects of TI in the heterostructure of graphene with TI. The first part of this project mainly focuses on the effect of disorder on the electronic properties of TI with ultrathin thickness (< 3 nm). It was found that rotation mismatch between quintuple of TI can enlarge the bulk gap of TI but preserve the Rashba type spin texture on the surface state; while, the hydrogenation on one TI surface can help reduce the quantum tunneling effect and close the surface gap at Γ point with Rashba type spin texture for ultrathin TI film. Furthermore, this scheme can also create another Dirac point (DP) at M point with Dresselhaus type spin texture. The second part of the project investigates in the proximity effects of TI within the heterostructure of graphene/TI and the DP on graphene is folded from K/K' point to Γ point in Brillouin zone, due to the band folding, and it was found that the alignment between TI substrate and graphene played the key role in forming the band structure and the spin texture of graphene. Hollow configuration could induce the Kekulé bonding distortion to graphene layer, mainly resulting in the enlarged gap (3.2 meV), and the Rashba SOC, resulting in the spin precession close to the Γ point. Furthermore, this atypcial Rashba spin texture has the out-of-plane spin component decrease gradually as the k point moves away from the Γ point, leading to the spin anisotropy on graphene layer. While, the bridge or the top configuration could bring the evident band splitting in lateral direction, which could be the origin of the Edelstein effect in graphene layer; however, there is no evident spin anisotropy in such configuration. All the first two parts were carried out through density functional theory (DFT) calculation and a tight binding (TB) model was built up and fitted to the DFT results in order to provide an analytical explanation for the band structure and the spin texture of graphene in the heterostructure device. The last part of this PhD. research work was to study the effect of both non-magnetic and magnetic impurities with random doping scheme on the electronic properties of TI. Numerical calculation based on 3D Fu-Kane-Mele TB model showed that non-magnetic doping on TI surface could only induce the onsite potential on the surface state and lift the DP upwards, preserving the standard Rashba type spin texture; while, the magnetic doping could break the time reversal symmetry and open up the surface gap with the spin anisotropy as well, which means the out-of-plane spin component on magnetically doped TI surface decreases gradually as the k point moves away from the Γ point. Research works in this project could provide a guideline to the experimentlist on the electronic properties of TI with different kinds of defects and impurities (magnetic and non-magnetic ones); particularly, the study of the proximity effect of TI could explain the basic fundamental phenomenon observed in such device for spin dynamics study in the laboratory.
10

Ruhl, Lindsey C. "Micro-Topological Effects on Redox-Sensitive Nutrient Availability of Manganese, Iron, Sulfur, and Phosphorus." ScholarWorks @ UVM, 2015. http://scholarworks.uvm.edu/graddis/342.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The working hypothesis for this study was that small elevation differences in field depressions affect the availability of redox active nutrients because the bottom of the depression remains waterlogged and in reducing conditions longer than the edge of the depression. Mn, Fe, S and P availabilities were investigated in a field depression with a 20 meter radius and 0.5 meter depth on a flood-prone, organic vegetable farm. One depression (Depression 1) was sampled seven times during three field seasons (May 2012-June 2014). The last two dates included sampling in an additional three depressions to allow a comparison among depressions on the same date. Sampling dates were categorized by the severity of flooding into the three following kinds of events: Post-Irene, Peak, and Non-Peak. The Post-Irene category includes sampling dates in the agricultural season following prolonged snow melt and flooding from Tropical Storm Irene in 2011. Sampling dates in the Peak category occurred within 30 days after one of the the top 12 greatest rainfalls, snowfalls, or heights of Winooski River Gage in the 30 month sampling period. Sampling on Non-Peak events occurred at least one month after a preceding Peak event. Repeated waterlogging events can increase redox cycling directly affecting the interchange of Mn, Fe, and S oxides and the soil solution. Indirectly, waterlogging can increase phosphorus release into the soil solution by reduction of iron. The results of this experiment indicate that some redox-sensitive soil nutrients correlated with elevation on some dates regardless of event type. Mn was more consistently affected by waterlogging events than Fe and S. Any relationship between sulfur and elevation may have been obscured by the strong relationship of sulfur with organic matter. This data suggests that phosphorus availability depended to some extent on available iron concentration.

Книги з теми "Topological effects":

1

Afanasiev, G. N., ed. Topological Effects in Quantum Mechanics. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4639-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Afanasiev, G. N. Topological effects in quantum mechanics. Dordrecht: Kluwer Academic Publishers, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Afanasiev, G. N. Topological Effects in Quantum Mechanics. Dordrecht: Springer Netherlands, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Isobe, Hiroki. Theoretical Study on Correlation Effects in Topological Matter. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3743-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shiomi, Yuki. Anomalous and Topological Hall Effects in Itinerant Magnets. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54361-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Shiomi, Yuki. Anomalous and Topological Hall Effects in Itinerant Magnets. Tokyo: Springer Japan, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Giuseppe, Morandi. Quantum Hall effect: Topological problems in condensed-matter physics. Napoli: Bibliopolis, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Noguchi, Ryo. Designing Topological Phase of Bismuth Halides and Controlling Rashba Effect in Films Studied by ARPES. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1874-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Frank, Ritzert, and Lewis Research Center, eds. The effect of alloying on topologically close packed phase instability in advanced nickel-based superalloy Rene N6. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Isobe, Hiroki. Theoretical Study on Correlation Effects in Topological Matter. Springer, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Topological effects":

1

Mokrousov, Y., H. Zhang, F. Freimuth, C. Lazo, S. Heinze, S. Blügel, L. Plucinski, et al. "Nanosession: Topological Effects." In Frontiers in Electronic Materials, 109–14. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527667703.ch32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Egger, Reinhold, Alex Zazunov, and Alfredo Levy Yeyati. "Interaction Effects on Transport in Majorana Nanowires." In Topological Insulators, 377–400. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527681594.ch15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Aguilera, Irene, Ilya A. Nechaev, Christoph Friedrich, Stefan Blügel, and Evgueni V. Chulkov. "Many-Body Effects in the Electronic Structure of Topological Insulators." In Topological Insulators, 161–89. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527681594.ch7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Litvinov, Vladimir. "Hall Effects and Berry Phase." In Magnetism in Topological Insulators, 25–53. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12053-5_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Litvinov, Vladimir. "Magnetic Field and Ferromagnetic Proximity Effects." In Magnetism in Topological Insulators, 55–77. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12053-5_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Afanasiev, G. N. "Introduction." In Topological Effects in Quantum Mechanics, 1–5. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4639-5_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Afanasiev, G. N. "Vector Potentials of Static Solenoids." In Topological Effects in Quantum Mechanics, 7–33. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4639-5_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Afanasiev, G. N. "Electromagnetic Properties of Static Solenoids." In Topological Effects in Quantum Mechanics, 35–75. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4639-5_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Afanasiev, G. N. "Interaction of Magnetisations with an External Electromagnetic Field and a Generalisation of Ampère’s Hypothesis." In Topological Effects in Quantum Mechanics, 77–97. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4639-5_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Afanasiev, G. N. "Electromagnetic Properties of Time-Dependent Solenoids." In Topological Effects in Quantum Mechanics, 99–129. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4639-5_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Topological effects":

1

Nagai, Yuki, Hiroki Nakamura, and Masahiko Machida. "Inhomogeneity Effects in Topological Superconductors." In Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2013). Journal of the Physical Society of Japan, 2014. http://dx.doi.org/10.7566/jpscp.3.015013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Loaiza-Brito, Oscar, Alejandro Ayala, Guillermo Contreras, Ildefonso Leon, and Pedro Podesta. "Topological effects on string vacua." In XII MEXICAN WORKSHOP ON PARTICLES AND FIELDS. AIP, 2011. http://dx.doi.org/10.1063/1.3622724.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Doss-Hammel, Stephen M., and Nathan Platt. "Topological description of mirage effects." In SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation, edited by Robert A. Melter, Angela Y. Wu, Fred L. Bookstein, and William D. K. Green. SPIE, 1995. http://dx.doi.org/10.1117/12.216432.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gorodetski, Y. "Topological effects in plasmonic metasurfaces." In 2022 Sixteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials). IEEE, 2022. http://dx.doi.org/10.1109/metamaterials54993.2022.9920897.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Schweigert, Christoph, and J. Fuchs. "Solitonic sectors, conformal boundary conditions and three-dimensional topological field theory." In Non-perturbative Quantum Effects 2000. Trieste, Italy: Sissa Medialab, 2000. http://dx.doi.org/10.22323/1.006.0039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tse, Wang-Kong. "Magneto-optical effects in topological insulators." In SPIE Nanoscience + Engineering, edited by Henri-Jean Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2016. http://dx.doi.org/10.1117/12.2230733.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

MATSUURA, TORU, KATSUHIKO INAGAKI, SATOSHI TANDA, and TAKU TSUNETA. "TOPOLOGICAL EFFECTS IN CHARGE DENSITY WAVE DYNAMICS." In Proceedings of the International Symposium. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812814623_0060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

BEZERRA, V. B. "SOME TOPOLOGICAL EFFECTS IN SAFKO–WITTEN SPACETIME." In Proceedings of the Third Workshop (IWARA07). WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814304887_0030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Islam, Md Sakibul, and Viktoriia E. Babicheva. "Topological Effects in Super-Mossian Nanoparticle Arrays." In 2023 International Applied Computational Electromagnetics Society Symposium (ACES). IEEE, 2023. http://dx.doi.org/10.23919/aces57841.2023.10114789.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yves, Simon, Geoffroy Lerosey, and Fabrice Lemoult. "Inducing Topological Effects in Locally Resonant Metamaterials." In 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2019. http://dx.doi.org/10.1109/cleoe-eqec.2019.8873254.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Topological effects":

1

Peshkin, M., H. J. Lipkin, and [Tel-Aviv Univ. (Israel)]. Topological effects in quantum mechanics. Office of Scientific and Technical Information (OSTI), August 1995. http://dx.doi.org/10.2172/166454.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hunt, Benjamin. DOE Final Technical Report: Proximity Effects and Topological Spin Currents in van der Waals Heterostructures (DE-SC0018115). Office of Scientific and Technical Information (OSTI), October 2022. http://dx.doi.org/10.2172/1973585.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chien, TeYu, Jinke Tang, Jifa Tian, and Yuri Dahnovsky. Investigation of topologically trivial and non-trivial spin textures and their relationships with the topological Hall effect. Office of Scientific and Technical Information (OSTI), April 2024. http://dx.doi.org/10.2172/2335988.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhu, Jianxin. Dark Matter Detection with Strongly Correlated Topological Matter: Flatband Effect. Office of Scientific and Technical Information (OSTI), October 2023. http://dx.doi.org/10.2172/2204176.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pan, Wei, Madhu Thalakulam, Xiaoyan Shi, Matthew Crawford, Erik Nielsen, and Jeffrey Cederberg. Non-abelian fractional quantum hall effect for fault-resistant topological quantum computation. Office of Scientific and Technical Information (OSTI), October 2013. http://dx.doi.org/10.2172/1121903.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії