Добірка наукової літератури з теми "Titanium"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Titanium".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Titanium"

1

Kemmitt, Tim, Najeh I. Al-Salim, Graeme J. Gainsford та William Henderson. "Titanium Amino Alcohol Complexes from α-Titanic Acid: X-Ray Crystal Structure of Titanium Bis[2,2´-(methylimino)diethanolate]". Australian Journal of Chemistry 52, № 10 (1999): 915. http://dx.doi.org/10.1071/ch99089.

Повний текст джерела
Анотація:
A method for producing amino alcohol complexes of titanium from hydrated titania (α-titanic acid) is described. Thus hydrated titania was completely converted into triethanolamine and diethanolamine complexes during reaction at 120°C for 6 h. This represents a synthetic method for titanium sol–gel precursors which are free from chlorine-containing impurities. Products were characterized with assistance from 1 H and 13 C nuclear magnetic resonance spectroscopy, and electrospray mass spectrometry. A single-crystal X-ray structure of titanium bis[2,2´- (methyl-imino)ethanolate], tetragonal, space group P4 – 2 1 c, is presented. The titanium centre is coordinated by an N2O4 donor set which can be most closely described as a bifacially capped tetrahedral geometry.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Markowska-Szczupak, Agata, Maya Endo-Kimura, Oliwia Paszkiewicz, and Ewa Kowalska. "Are Titania Photocatalysts and Titanium Implants Safe? Review on the Toxicity of Titanium Compounds." Nanomaterials 10, no. 10 (October 19, 2020): 2065. http://dx.doi.org/10.3390/nano10102065.

Повний текст джерела
Анотація:
Titanium and its compounds are broadly used in both industrial and domestic products, including jet engines, missiles, prostheses, implants, pigments, cosmetics, food, and photocatalysts for environmental purification and solar energy conversion. Although titanium/titania-containing materials are usually safe for human, animals and environment, increasing concerns on their negative impacts have been postulated. Accordingly, this review covers current knowledge on the toxicity of titania and titanium, in which the behaviour, bioavailability, mechanisms of action, and environmental impacts have been discussed in detail, considering both light and dark conditions. Consequently, the following conclusions have been drawn: (i) titania photocatalysts rarely cause health and environmental problems; (ii) despite the lack of proof, the possible carcinogenicity of titania powders to humans is considered by some authorities; (iii) titanium alloys, commonly applied as implant materials, possess a relatively low health risk; (iv) titania microparticles are less toxic than nanoparticles, independent of the means of exposure; (v) excessive accumulation of titanium in the environment cannot be ignored; (vi) titanium/titania-containing products should be clearly marked with health warning labels, especially for pregnant women and young children; (vi) a key knowledge gap is the lack of comprehensive data about the environmental content and the influence of titania/titanium on biodiversity and the ecological functioning of terrestrial and aquatic ecosystems.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Jun, and Sheng Ru Qiao. "A New Route to Synthesis of Titanium Silicalite-1 by Ball-Milling." Advanced Materials Research 634-638 (January 2013): 475–78. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.475.

Повний текст джерела
Анотація:
Titanium Silicalite-1 (TS-1) was successfully synthesized from amorphous silica and titania powders by using a ball-milling method. In this method, amorphous fumed silica and anatase titania powders were ground in a planetary ball mill to produce a silica-titania precursor. The obtained precursor was then hydrothermally treated where TPABr was used as a template to obtain titanium silicalite-1 (TS-1). The XRD and UV-vis spectra indicate that the titanium in anatase with octahedral coordination is incorporated into the silica-titania precursor and the final TS-1 framework with a tetrahedral coordination. SEM image shows that TS-1 synthesized in this work appears in a shape of elongated prism with a dimension of about 3μm×1μm×0.2μm. This method gives a simple new approach to the synthesis of TS-1 using inexpensive silicon source, titanium source and template.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ji, Jin Gou, Bin Yang, Xiao Yu Yuan, Zhi Ning Xia, Chao Hui Shi, and Huan Liu. "Nanometer Anatase Titania Synthesis by Reverse Titration Method and Evaluation of their Photocatalytic Activity." Advanced Materials Research 148-149 (October 2010): 1079–82. http://dx.doi.org/10.4028/www.scientific.net/amr.148-149.1079.

Повний текст джерела
Анотація:
The nanometer titanium dioxide (TiO2) was prepared by reverse titration method with titanium trichloride and titanium tetrachloride at low temperature. The prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and laser diffraction particle size analyzer, the photocatalytic activity of the samples was also evaluated. The results showed that the prepared TiO2 was nanometer anatase titania with an average particle size of 56.39 nm and the zeta potential of +39.42 mV. The nanometer anatase titania had the best photocatalytic activity than the TiO2 prepared by reverse titration or forward titration with titanium tetrachloride and a good stability.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Vyboishchik, Alexander, and Mikhail Popov. "Production of Pigments on the Basis of Titanium Tetrachloride." MATEC Web of Conferences 346 (2021): 01037. http://dx.doi.org/10.1051/matecconf/202134601037.

Повний текст джерела
Анотація:
The article describes the manufacture of titanium dioxide, or titania, on the basis of titanium tetrachloride. The main technological requirements for the production of titania are listed, the most prospective raw materials for the chlorination method are given, the description of the technological process for the yield of titania is described.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vyboishchik, Alexander, and Mikhail Popov. "Production of Pigments on the Basis of Titanium Tetrachloride." MATEC Web of Conferences 346 (2021): 02037. http://dx.doi.org/10.1051/matecconf/202134602037.

Повний текст джерела
Анотація:
The article describes the manufacture of titanium dioxide, or titania, on the basis of titanium tetrachloride. The main technological requirements for the production of titania are listed, the most prospective raw materials for the chlorination method are given, the description of the technological process for the yield of titania is described.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Xie, Yi Bing, Li Min Zhou, Chuan Jun Huang, Yang Liu, and Jian Lu. "Preparation and Electrochemical Capacitance of Ruthenium Oxide-Titania Nanotube Composite." Materials Science Forum 614 (March 2009): 235–41. http://dx.doi.org/10.4028/www.scientific.net/msf.614.235.

Повний текст джерела
Анотація:
A well-aligned titania nanotube array grown on titanium sheet was fabricated by an anodization process in hydrofluoric acid-phosphoric acid-ethylene glycol aqueous electrolyte. Electroactive ruthenium oxide was filled into independent titania nanotubes or deposited on the surface of planar titanium sheet by an electrodeposition-oxidation process. Electrochemical capacitances of these well-designed ruthenium oxides were investigated for supercapacitor applications. Accordingly, ruthenium oxide-titania/titanium (RuO2-TiO2/Ti) nanocomposite exhibits a much higher specific capacitance, power and energy density than ruthenium oxide/titanium (RuO2/Ti) in sulphate acid electrolyte. The utilization efficiency of RuO2 is intensively improved by introducing a novel electrode substrate with a nanotube array structure. Such a superior performance of RuO2-TiO2/Ti nanocomposite is ascribed to its highly accessible reaction sites of well-tailored RuO2 on TiO2 nanotubes.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Asif Mammadov, Asif Mammadov, Gunel Pashazade, Afarida Gasymova, and Ulviya Sharifova. "Production of Iron, Titanium Dioxide Modofocations and Titanium." Chemistry and Chemical Technology 14, no. 2 (June 15, 2020): 227–33. http://dx.doi.org/10.23939/chcht14.02.227.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Uekawa, Naofumi, Naoya Endo, Keisuke Ishii, Takashi Kojima, and Kazuyuki Kakegawa. "Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide." Journal of Nanotechnology 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/102361.

Повний текст джерела
Анотація:
Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP) and a NH3aqueous solution at 368 K for 24 h. The concentration of NH3aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH3aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO2nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO2nanoparticles.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Štengl, Václav, Jiří Henych, Martin Šťastný, and Martin Kormunda. "Fast and Straightforward Synthesis of Luminescent Titanium(IV) Dioxide Quantum Dots." Journal of Nanomaterials 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/3089091.

Повний текст джерела
Анотація:
The nucleus of titania was prepared by reaction of solution titanium oxosulphate with hydrazine hydrate. These titania nuclei were used for titania quantum dots synthesis by a simple and fast method. The prepared titanium(IV) dioxide quantum dots were characterized by measurement of X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), high-resolution electron microscopy (HRTEM), and selected area electron diffraction (SAED). The optical properties were determined by photoluminescence (PL) spectra. The prepared titanium(IV) dioxide quantum dots have the narrow range of UV excitation (365–400 nm) and also a close range of emission maxima (450–500 nm).
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Titanium"

1

Ki, Jun-Wan. "Titanium Sponge on Titanium Substrate for Titanium Electrolytic Capacitor Anodes." Case Western Reserve University School of Graduate Studies / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=case1113244951.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Toner, Andrew Joseph. "Titanium-aluminium and titanium-alkyl Schiff base complexes." Thesis, Manchester Metropolitan University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Eriksson, Mirva. "Spark plasma sintering and deformation behaviour of Titanium and Titanium/TiB2Spark plasma sintering and deformation behaviour of Titanium and Titanium/TiB2 composites." Licentiate thesis, Stockholms universitet, Institutionen för fysikalisk kemi, oorganisk kemi och strukturkemi, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-26122.

Повний текст джерела
Анотація:
Titanium has been used as a model substance to study how it behaves in a SPS apparatus when heating rate and/or pressure were varied during the sintering and deformation process. The sintering and deformation of Ti in SPS were compared with that occurring in the conventional hot pressing (HP) in order to reveal if there are any positive effects added by the use of SPS. The ductility of Ti was explored in order to understand the sintering and deformation of (Ti) x (TiB2)1-x composites with x = 0.05, 0.1, and 0.2, respectively, expressed in mol ratio. The temperature difference (DT) between the monitored and the temperature that the samples are exposed to was evaluated. It was noticed that Ti can be sintered at relatively low temperatures. High heating rate implied that the onset temperatures of the sintering and deformation processes decreased. Increasing pressure did not affect the onset temperature but revealed that the deformation of Ti is different if the experiments are conducted within the stability region of the a -phase region of Ti or if the deformation takes place in a temperature region that covers both a-and b-phase areas, i. e. the use of high pressures implied a one step deformation process while the use of low implied that the main part of the deformation took place in the b-phase region. (Ti) x (TiB2)1-x composites were prepared to full densities at 1500 °C using a holding time of 3 min and pressure of 50 MPa. During the SPS sintering the composite with x= 0.2 revealed the presence of TiB due to the reaction Ti + TiB 2 -> 2TiB while the composites with low x values did not show any formation of TiB. The formation of TiB impaired the mechanical properties. The deformation of composites was very difficult. Their deformability increased with increasing x and temperature as well as pressure. During the deformations of pre-sintered samples TiB was formed in all of the composites.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nishiguchi, Shigeru. "Bone-bonding Abilities of Alkali- and Heat-treated Titanium and Titaniumu Alloys." Kyoto University, 2000. http://hdl.handle.net/2433/180814.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Adipuri, Andrew Materials Science &amp Engineering Faculty of Science UNSW. "Chlorination of Titanium Oxycarbide and Oxycarbonitride." Publisher:University of New South Wales. Materials Science & Engineering, 2009. http://handle.unsw.edu.au/1959.4/44405.

Повний текст джерела
Анотація:
The project undertook a systematic study of chlorination of titanium oxycarbide and oxycarbonitride with the aim to develop further understanding of kinetics and mechanisms of the chlorination reactions. The project studied titania, ilmenite ores, and synthetic rutile reduced by carbon in argon and nitrogen and chlorinated at different temperatures, gas flow rates and compositions. Chlorination of titanium suboxides, iron and impurities in ilmenite was also examined. Chlorination of titanium oxycarbide Ti(O,C) or oxycarbonitride Ti(O,C,N) can be implemented at 200 to 400 deg.C, while the commercial chlorination process in the production of titanium metal or titania pigment requires 800 to 1100 deg.C. This makes chlorination of Ti(O,C) or Ti(O,C,N) an attractive technology in processing of titanium minerals. Chlorination reaction is strongly exothermal, which increased the sample temperature up to 200 deg.C above the furnace temperature. The chlorination of Ti(O,C) or Ti(O,C,N) was ignited at 150 deg.C to 200 deg.C depending on the sample composition. Their chlorination at 235 deg.C to 400 deg.C was close to completion in less than 30 min. The chlorination rate of titanium oxycarbide or oxycarbonitride increased with increasing gas flow rate. Sample composition had a significant effect on the extent of chlorination. The optimum results were obtained for titanium oxycarbide or oxycarbonitride produced with carbon to titania molar ratio of 2.5; these samples contained no detectable excess of carbon or unreduced titanium suboxides. In chlorination of reduced ilmenite ores and synthetic rutile, Ti(O,C) or Ti(O,C,N), metallic iron and Ti2O3 were chlorinated. The rate and extent of chlorination of titanium increased with increasing carbon to TiO2 ratio. Chlorination of Ti2O3 was slow relative to Ti(O,C) or Ti(O,C,N) and iron; chlorination of impurity oxides such as MgO, SiO2 and Al2O3 was not observed. The project also examined chlorination of Ti(O,C) or Ti(O,C,N) in ilmenite ore and synthetic rutile after removal of iron, which was achieved by aerated leaching of reduced samples in heated flask containing 0.37 M of ammonium chloride solution. Iron removal from the ilmenite ore or synthetic rutile resulted in higher rate and extent of chlorination of titanium oxycarbide or oxycarbonitride.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yuan, Fei (Fred) Materials Science &amp Engineering Faculty of Science UNSW. "Properties of titanium matrix composites reinforced with titanium boride powders." Awarded by:University of New South Wales. Materials Science & Engineering, 2007. http://handle.unsw.edu.au/1959.4/40750.

Повний текст джерела
Анотація:
Metal matrix composites can produce mechanical and physical properties better than those of the monolithic metal. Titanium alloys are widely used matrix materials as they can offer outstanding specific strength, corrosion resistance and other advantages over its competitors, such as aluminium, magnesium and stainless steel. In past decades, titanium matrix composites served in broad areas, including aerospace, military, automobile and biomedical industries. In this project, a revised powder metallurgy method, which contains cold isostatic pressing and hot isostatic pressing, was adopted to refine the microstructure of monolithic titanium. It was also used to manufacture titanium matrix composites. TiH2 powder was selected as the starting material to form Ti matrix and the reinforcements were sub-micron and nano-metric TiB particles. Mechanical properties and microstructure of commercial titanium composites exhaust valves from Toyota Motor Corporation have been studied as the reference of properties of titanium composites manufactured in this project. It has been shown that tensile strength and hardness of exhaust valves increase about 30% than those of similar matrix titanium alloys. Examination on powder starting materials of this project was also carried out, especially the dehydrogenation process shown in the DSC result. Mechanical properties and microstructures of titanium matrix composites samples in this project, as related to the process parameter, have also been investigated. The density of these samples reached 96% of theoretical one but cracks were found through out the samples after sintering. Fast heating rates during the processing was suspected to have caused the crack formation, since the hydrogen release was too fast during dehydrogenation. Hardness testing of sintered samples was carried out and the value was comparable and even better than that of commercial exhaust valves and titanium composites in literature. Microstructure study shows that the size of reinforcements increased and the size of grains decreased as the increasing amount of TiB reinforcements. And this condition also resulted in the increasing amount of the acicular alpha structure.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rasool, Ghulam. "Tribo-corrosion maps for steels, titanium and titanium carbide materials." Thesis, University of Strathclyde, 2015. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=24939.

Повний текст джерела
Анотація:
In this project, research work was carried out on the tribo-corrosion behaviour of titanium carbide composite coatings produced by Tungsten Inert Gas (TIG) welding torch melting process on steel and titanium substrates. The integrity of TiC composite coatings were checked and analysed on the substrates. The effects of change in sliding speeds and normal loads on wear behaviours were investigated for dry sliding conditions and tribo-corrosion maps were constructed with a tribo-system approach. The work was carried out in the following phases: In phase I, a fundamental study of the wear behaviour of two steels of different Cr contents and hardness were carried out. Pin-on-disk apparatus was used for testing 303stainless steel (303SS) disks and 8620 low alloy steel pins. For 303SS adhesive wear and tribo-oxidation were predominated at relatively low sliding speeds and adhesive wear was predominated at high sliding speeds and normal loads. In contrast, oxidative wear was more prevalent for the low alloy steel. Wear mapping approaches were undertaken to represent the transitions in wear modes and wear mechanisms as a function of sliding speeds and applied loads. The different wear maps generated for the pins and disks were discussed in the context of the wear mechanisms observed in the tribological contact. In phase II, dry sliding wear tests were carried out on 303SS disks (uncoated and coated with TiC composite coatings) against alumina balls as a counterface on pin-on-disk configuration. The composite coatings increased the surface hardness hence the sliding wear resistance of the 303SS substrate. Wear maps for both uncoated and coated materials were developed on the basis of tests results. These maps show that the mild wear regime for the composite coating was expanded to a higher range of sliding speeds and normal loads. For the composite coating, an additional wear mode transition i.e. from the mild to very mild regime occurred at low sliding speeds and normal loads. In phase III, experimental work was carried out on a pin-on-disk sliding wear testing rig on hardened steel (A.I.S.I. 0-1-Ground Flat Stock) disks and titanium (Ti) uncoated and coated pins with titanium carbide (TiC) composite coatings. For uncoated Ti and hardened steel tribo-couple, pins' material was transferred to disks and covered the wear tracks almost for each combination of sliding speed and normal load. High wear of Ti was found against hardened steel. Adhesive wear was prevalent for Ti pins along with abrasive, plastic deformation and delamination against hardened steel disks. While for the Ti base TiC composite coatings against hardened steel different wear behaviour observed. The composite coating increased the surface hardness hence the sliding wear resistance of the Ti substrate. Dry sliding wear behaviour of hardened steel disks was characterized by abrasive-oxidative wear at lower normal load while adhesive-oxidative wear was predominated at high normal load with iron oxide transfer to the coated pins for the range of sliding speed. In contrast, micro-abrasion and oxidative wear were predominated for the TiC composite coatings pins along with very mild adhesive-abrasive wear. A tribo-system approach was adopted to investigate the wear behaviour of TiC coatings and hardened steel against each other. Wear maps for both uncoated and coated materials were constructed on the basis of tests results. The tribo-corrosion maps show that due to TiC composite coating wear resistance of the substrate was increased. Higher tribo-corrosion resistance of the TiC composite coatings was found on Ti substrate than that of 303SS substrate. Moreover, the surfaces treated with TiC coatings by TIG welding torch as heat source, expanded the mild wear regime to a higher range of sliding speeds and normal loads with creation of a new wear regime i.e. very mild wear and elimination of severe wear regime.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jeffers, Elizabeth Ann. "Reaction Synthesis of Titanium Aluminide / Titanium Diboride in-Situ Composites." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/35367.

Повний текст джерела
Анотація:
Reaction synthesis is a processing technique where the thermal activation energy needed to form a compound is provided by the exothermic heat of formation of the thermodynamically stable product. This type of synthesis has been used to form a variety of ceramics, intermetallics, and in-situ composites. In this work, the effects of changing the stoichiometry of the titanium aluminide matrix, and the effects of extrinsic reaction variables on the behavior of the reaction were studied and compared to theoretical predictions. It was shown that changing the stoichiometry of the titanium aluminide did have an effect on the measured heat of reaction; however this did not match the prediction. Changing the extrinsic variables of titanium and aluminum particle sizes also showed a significant effect on the behavior of the reaction.
Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cairns, Malcolm. "Titanium particle combustion." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=86572.

Повний текст джерела
Анотація:
In order to increase the validity of numerical models of the detonation of heterogeneous titanium explosives, experimental results are needed. The combustino of titanium is studied using two experimental techniques. The first technique is the study of the burn time for a single particle over a wide range of initial diameters while altering the oxygen concentration. To accomplish this a new flat flame burner to study particle burn time has been designed. Luminous tracks caused by the light emitted by the combustion of the particles are analyzed and burn time is inferred. Burn time in air and in an oxygen enriched atmosphere were determined. A second experiment involves the study of large scale detonation of heterogeneous charges. The charges are filled with nitromethane and a packed bed of titanium particles. The titanium particles varied in morphology and particles size. A critical charge diameter for charge ignition (CDPI) was found for irregularly shaped particles but was not found for spherical particles.
Pour augmenter la validit des modles numriques sur dtonation d'explosifs htrognes contenants du titane , des rsultats exprimentaux sont ncessaires. Le combustino de titane est tudi en utilisant deux techniques exprimentales. La premire technique est l'tude du temps brle pour une particule sur une large gamme de diamtres initiaux en changeant la concentration d'oxygne. Pour l'accomplir un nouveau brleur de flamme plat pour tudier la particule brle le temps a t conu. Les empreintes lumineuses provoques par la lumire mise par la combustion des particules sont analyses et brlent le temps est dduit. Brlez le temps dans l'air et dans l'atmosphre enrichie d'un oxygne ont t dtermins. Une deuxime exprience implique l'tude de grande dtonation d'chelle de charges htrognes. Les charges sont remplies de nitromethane et un lit emball de particules de titane. Les particules de titane variaient dans la grandeur de particules et la morphologie. Un diamtre de charge critique pour l'ignition de charge (CDPI) a t trouv pour les particules irrgulirement en forme de, mais n'a pas t trouv pour pour les particules irrgulirement en forme de mais n'a pas t trouv pour les particules sphriques.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bettley, Alison. "Electroplated titanium coatings." Thesis, Open University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Titanium"

1

Lütjering, Gerd, and James C. Williams. Titanium. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-71398-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Karina, Sitta. Titanium. [Jakarta]: Terrant, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Williams, J. C. (James Case), 1938- and Knovel (Firm), eds. Titanium. 2nd ed. Berlin: Springer, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ltjering, G. Titanium. Berlin: Springer, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Roza, Greg. Titanium. New York, NY: Rosen Pub. Group, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Williams, J. C. (James Case), 1938- and Knovel (Firm), eds. Titanium. Berlin: Springer, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

United States. Agency for Toxic Substances and Disease Registry. Division of Toxicology. Titanium tetrachloride. Atlanta, GA: Dept. of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Blake, Yashin. Titanium punch. Toronto: ECW Press, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Winkler, Jochen. Titanium dioxide. Hannover: Vincentz Verlag, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

1967-, Leyens C., and Peters M. 1950-, eds. Titanium and titanium alloys: Fundamentals and applications. Weinheim: Wiley-VCH, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Titanium"

1

Bährle-Rapp, Marina. "Titanium/Titanium Dioxide." In Springer Lexikon Kosmetik und Körperpflege, 559. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_10572.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lütjering, Gerd, and James C. Williams. "Introduction." In Titanium, 1–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-71398-2_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lütjering, Gerd, and James C. Williams. "Special Properties and Applications of Titanium." In Titanium, 329–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-71398-2_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lütjering, Gerd, and James C. Williams. "Fundamental Aspects." In Titanium, 13–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-71398-2_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lütjering, Gerd, and James C. Williams. "Technological Aspects." In Titanium, 51–148. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-71398-2_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lütjering, Gerd, and James C. Williams. "Commercially Pure (CP) Titanium and Alpha Alloys." In Titanium, 149–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-71398-2_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lütjering, Gerd, and James C. Williams. "Alpha + Beta Alloys." In Titanium, 177–232. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-71398-2_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lütjering, Gerd, and James C. Williams. "High Temperature Alloys." In Titanium, 233–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-71398-2_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lütjering, Gerd, and James C. Williams. "Beta Alloys." In Titanium, 247–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-71398-2_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lütjering, Gerd, and James C. Williams. "Titanium Based Intermetallics." In Titanium, 289–312. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-71398-2_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Titanium"

1

Sun, Hongwan, Ling Tang, and Jingying Zhang. "Titanium and Titanium Alloy Surface Structure Effects on Osteoblast." In 2014 International Conference on Mechatronics, Electronic, Industrial and Control Engineering. Paris, France: Atlantis Press, 2014. http://dx.doi.org/10.2991/meic-14.2014.319.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kania, Patrik, Thomas F. Giesen, Holger S. P. Muller, Stephan Schlemmer, and Sandra Brunken. "Millimeter wave spectroscopy of titanium monoxide and titanium dioxide." In 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2008). IEEE, 2008. http://dx.doi.org/10.1109/icimw.2008.4665795.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gardon, M., and J. M. Guilemany. "The Influence of Titanium Sub-Oxides in Thermal Sprayed Coatings." In ITSC 2012, edited by R. S. Lima, A. Agarwal, M. M. Hyland, Y. C. Lau, C. J. Li, A. McDonald, and F. L. Toma. ASM International, 2012. http://dx.doi.org/10.31399/asm.cp.itsc2012p0622.

Повний текст джерела
Анотація:
Abstract The plasma spray process is used to create titanium oxide coatings under the current stoichiometry of titania and titanium suboxides. This study used feedstock powder with Magnéli phases TinO2n-1, slightly reduced titania TiO2-x, and rutile. A factorial design of experiments approach was used to better understand the influence of operational parameters on coating quality, in particular, the electric resistivity and the degree of oxidation of the titanium oxide during the spraying. Firstly, arc current intensity and stand-off distance were studied; the results show strong correlations between particle temperatures and the electric resistivity of the coating. Then, different plasma compositions were used in order to understand the influence of hydrogen in the formation of titanium sub-oxides. The hardness of the most significant coatings was analyzed.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Leira, Bernt J., Arve Bjo̸rset, and Stig Berge. "Titanium Riser Configurations." In ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/omae2002-28432.

Повний текст джерела
Анотація:
The present paper addresses mechanical design aspects for titanium riser configurations. Three main types of riser systems are considered: • Vertical top-tensioned risers suspended from a TLP; • Catenary risers suspended from a TLP; • Pliant-wave risers suspended from a Semi-submersible. For each configuration, characteristic response properties related to bending moment and axial force diagrams are presented. Critical sections for each riser system are identified. For the vertical top-tensioned riser, design of a bending stiffener located at the seabed is briefly addressed. Capacity formulations and the relative importance of the following mechanical limit states are addressed: • Yielding; • Local buckling; • Fatigue. Differences between parameters influencing the various limit states for titanium respectively steel are highlighted. The local buckling limit state is subsequently focused upon in some more detail in relation to loads due to combined external overpressure and bending.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

OSWIN, JR. "TITANIUM FLEXTENSIONAL TRANSDUCERS." In Sonar Transducers 1995. Institute of Acoustics, 2024. http://dx.doi.org/10.25144/20053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Davidson, D. E. "Designing with Gamma Titanium CAESAR Program Titanium Aluminide Component Applications." In Superalloys. TMS, 1996. http://dx.doi.org/10.7449/1996/superalloys_1996_545_553.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Manoharan, Mohan Prasad, Amit Desai, and Amanul Haque. "Fracture Toughness of Titanium - Titanium Nitride Multi-Layer Thin Film." In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49821.

Повний текст джерела
Анотація:
Thin film specimens of titanium - titanium nitride multilayer erosion resistant coating were prepared using liftout technique in Focused Ion Beam - Scanning Electron Microscope (SEM). The fracture toughness of the thin film specimen was measured in situ using a cantilever bending experiment in SEM to be 11.33 MPa/m0.5, twice as much as conventional TiN coatings. Ti–TiN multi-layer coatings are part of a new class of advanced erosion resistant coatings and this paper discusses an experimental technique to measure the fracture toughness of these coatings.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kurmoiartseva, K. A., and P. V. Trusov. "Multilevel description of damage accumulation in titanium and titanium alloys." In MECHANICS, RESOURCE AND DIAGNOSTICS OF MATERIALS AND STRUCTURES (MRDMS-2018): Proceedings of the 12th International Conference on Mechanics, Resource and Diagnostics of Materials and Structures. Author(s), 2018. http://dx.doi.org/10.1063/1.5084393.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mall, Shankar, and Scott Cunningham. "Fatigue Response of Joint Between Titanium and Titanium Matrix Composite." In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
14th AIAA/ASME/AHS Adaptive Structures Conference
7th
. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-1673.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Omar Arawi, Ainaa Zafirah, Rosmamuhamadani Ramli, Mahesh Kumar Talari, and Minaketan Tripathy. "Effect of titanium addition on mechanical properties of hydroxyapatite - Titanium nanocomposite." In 2011 IEEE Colloquium on Humanities, Science and Engineering (CHUSER). IEEE, 2011. http://dx.doi.org/10.1109/chuser.2011.6163789.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Titanium"

1

Sears, J. W. Plasma quench production of titanium from titanium tetrachloride. Office of Scientific and Technical Information (OSTI), October 1994. http://dx.doi.org/10.2172/116695.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Briant, Clyde L., K. S. Kumar, and Zhengfu Wang. Hydriding of Titanium. Fort Belvoir, VA: Defense Technical Information Center, March 1998. http://dx.doi.org/10.21236/ada344947.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jimenez, J., D. L. Ederer, and T. Shu. Raman scattering in transition metal compounds: Titanium and compounds of titanium. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/603585.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jones, Tyrone L. Ballistic Performance of Titanium Alloys: Ti-6Al-4V Versus Russian Titanium. Fort Belvoir, VA: Defense Technical Information Center, February 2004. http://dx.doi.org/10.21236/ada420984.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fajardo, L. S. Titanium/gold process characterization. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/5099099.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cotton, J. D., J. F. Bingert, P. S. Dunn, D. P. Butt, and R. W. Margevicius. Titanium-tantalum alloy development. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/219383.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kobryn, Pamela A. Casting of Titanium Alloys. Fort Belvoir, VA: Defense Technical Information Center, February 1996. http://dx.doi.org/10.21236/ada312008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Esterowitz, Leon, Roger Allen, and P. Lacovara. Flash-Pumped Titanium Laser. Fort Belvoir, VA: Defense Technical Information Center, January 1989. http://dx.doi.org/10.21236/ada217599.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hand, T. E., and G. W. Bohnert. Precision Cleaning Titanium Components. Office of Scientific and Technical Information (OSTI), February 2000. http://dx.doi.org/10.2172/750960.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Abkowitz, Susan M. Lightweight Durable Titanium Tracks Using Low Cost Powder Metal Titanium Composite Technology. Fort Belvoir, VA: Defense Technical Information Center, July 2001. http://dx.doi.org/10.21236/ada395519.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії