Добірка наукової літератури з теми "Tissu vasculaire"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Tissu vasculaire".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Tissu vasculaire"
Andreelli, Fabrizio. "Risque cardio-vasculaire et tissu adipeux épicardique." Médecine des Maladies Métaboliques 2, no. 2 (March 2008): 166. http://dx.doi.org/10.1016/s1957-2557(08)70428-0.
Повний текст джерелаAlessi, Marie-Christine, Corinne Frère, and Irène Juhan-Vague. "Substances produites par le tissu adipeux, obésité et risque vasculaire." La Presse Médicale 34, no. 11 (June 2005): 820–24. http://dx.doi.org/10.1016/s0755-4982(05)84051-5.
Повний текст джерелаBouloumié, A., M. Lafontan, and D. Langin. "Les cellules de la fraction stroma-vasculaire du tissu adipeux humain: caractérisation et rôles." Obésité 1, no. 2-4 (December 2006): 79–86. http://dx.doi.org/10.1007/s11690-006-0019-3.
Повний текст джерелаNseir, I., F. Delaunay, C. Latrobe, A. Bonmarchand, D. Coquerel-Beghin, and I. Auquit-Auckbur. "Apport du tissu adipeux et de la fraction vasculaire stromale en chirurgie de la main." Revue de Chirurgie Orthopédique et Traumatologique 103, no. 6 (October 2017): 643–48. http://dx.doi.org/10.1016/j.rcot.2017.06.013.
Повний текст джерелаNseir, Iad, Isabelle Auquit Auckbur, Dorothée Coquerel Beghin, Albane Bonmarchand, Flore Delaunay, and Charles Latrobe. "Apport du tissu adipeux et de la fraction vasculaire stromale en chirurgie de la main." Hand Surgery and Rehabilitation 35, no. 6 (December 2016): 485–86. http://dx.doi.org/10.1016/j.hansur.2016.10.193.
Повний текст джерелаThery, A., P. Blery, O. Malard, J. Guicheux, P. Weiss, and F. Espitalier. "Apport de la fraction vasculaire stromale du tissu adipeux associée à un biomatériau dans la reconstruction osseuse en territoire irradié." Annales françaises d'Oto-rhino-laryngologie et de Pathologie Cervico-faciale 130, no. 4 (October 2013): A109. http://dx.doi.org/10.1016/j.aforl.2013.06.343.
Повний текст джерелаMwamengele, G. L. M., and S. Larsen. "L’ultrastructure de lamicrovasculature cérébrale de chèvres infectées expérimentalement avec Cowdria ruminantium." Revue d’élevage et de médecine vétérinaire des pays tropicaux 46, no. 1-2 (January 1, 1993): 245. http://dx.doi.org/10.19182/remvt.9372.
Повний текст джерелаGui, Liqiong, and Laura E. Niklason. "Vascular tissue engineering: building perfusable vasculature for implantation." Current Opinion in Chemical Engineering 3 (February 2014): 68–74. http://dx.doi.org/10.1016/j.coche.2013.11.004.
Повний текст джерелаMeiliana, Anna, and Andi Wijaya. "Perivascular Adipose Tissue and Cardiometabolic Disease." Indonesian Biomedical Journal 5, no. 1 (April 1, 2013): 13. http://dx.doi.org/10.18585/inabj.v5i1.46.
Повний текст джерелаPommerrenig, Benjamin, Kai Eggert, and Gerd P. Bienert. "Boron Deficiency Effects on Sugar, Ionome, and Phytohormone Profiles of Vascular and Non-Vascular Leaf Tissues of Common Plantain (Plantago major L.)." International Journal of Molecular Sciences 20, no. 16 (August 9, 2019): 3882. http://dx.doi.org/10.3390/ijms20163882.
Повний текст джерелаДисертації з теми "Tissu vasculaire"
Vallet, Benoît. "Reactivite vasculaire et oxygenation tissulaire." Lille 2, 1994. http://www.theses.fr/1994LIL2P265.
Повний текст джерелаDichamp, Jules. "De l'imagerie tissu entier à la modélisation in silico du réseau vasculaire du tissu adipeux." Phd thesis, Toulouse, INPT, 2018. http://oatao.univ-toulouse.fr/23606/1/Dichamp.pdf.
Повний текст джерелаCouet, Frédéric. "Contrôle d'un bioréacteur à perfusion pour la régénération du tissu vasculaire." Thesis, Université Laval, 2011. http://www.theses.ulaval.ca/2011/28452/28452.pdf.
Повний текст джерелаThe limited availability of autologous blood vessels for bypass surgeries (coronary or peripheral) and the poor patency rate of vascular prosthesis for the replacement of small diameter vessels (Ø < 6 mm) motivate researches in the domain of vascular tissue engineering. One of the possible strategies named functional tissue engineering aims to regenerate a blood vessel in vitro in a controlled environment. The objective of this thesis is to design a perfusion bioreactor and develop a control system able to dynamically interact with a growing blood vessel in order to guide and stimulate the maturation of the vascular construct. The principal question addressed in this work is: How to choose culture conditions in a bioreactor in the most efficient way? Two main challenges have been identified: first, the need to develop a better comprehension of the physical and biological phenomenon occurring in bioreactors; second, the need to influence and optimize vascular tissue maturation. A controller based on the concept of genetic programming was developed for real-time modeling of vascular tissue regeneration. Using the produced models, the controller searches an optimal culture strategy (circumferential strain, longitudinal shear stress and frequency of the pulsed pressure signal) by the mean of a Markov decision process solved by dynamic programming. Numerical simulations showed that the method has the potential to improve growth, safety of the process, and information gathering. The controller is able to work with common nonlinearities in tissue growth. Experimental results show that the controller is able to identify important culture parameters for the growth and remodelling of tissue engineered blood vessels. Furthermore, this bioreactor represents an interesting tool to study the evolution of the mechanical properties of a vascular construct during maturation.
Couët, Frédéric. "Contrôle d'un bioréacteur à perfusion pour la régénération du tissu vasculaire." Doctoral thesis, Université Laval, 2011. http://hdl.handle.net/20.500.11794/22956.
Повний текст джерелаThe limited availability of autologous blood vessels for bypass surgeries (coronary or peripheral) and the poor patency rate of vascular prosthesis for the replacement of small diameter vessels (Ø < 6 mm) motivate researches in the domain of vascular tissue engineering. One of the possible strategies named functional tissue engineering aims to regenerate a blood vessel in vitro in a controlled environment. The objective of this thesis is to design a perfusion bioreactor and develop a control system able to dynamically interact with a growing blood vessel in order to guide and stimulate the maturation of the vascular construct. The principal question addressed in this work is: How to choose culture conditions in a bioreactor in the most efficient way? Two main challenges have been identified: first, the need to develop a better comprehension of the physical and biological phenomenon occurring in bioreactors; second, the need to influence and optimize vascular tissue maturation. A controller based on the concept of genetic programming was developed for real-time modeling of vascular tissue regeneration. Using the produced models, the controller searches an optimal culture strategy (circumferential strain, longitudinal shear stress and frequency of the pulsed pressure signal) by the mean of a Markov decision process solved by dynamic programming. Numerical simulations showed that the method has the potential to improve growth, safety of the process, and information gathering. The controller is able to work with common nonlinearities in tissue growth. Experimental results show that the controller is able to identify important culture parameters for the growth and remodelling of tissue engineered blood vessels. Furthermore, this bioreactor represents an interesting tool to study the evolution of the mechanical properties of a vascular construct during maturation.
Boissier, Romain. "La fraction vasculaire stromale issue du tissu adipeux en urologie : propriétés thérapeutiques et modèle d'évaluation de la vasculocompétence du transplant rénal." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0691.
Повний текст джерелаThe Stromal Vascular Fraction (SVF) is a cell population obtained by enzymatic digestion of adipose tissue.The objective of this work was to transpose the SVF model into urology, by evaluating its therapeutic properties in an animal model of urethral sphincter lesion and then as non-invasive material for studying alterations associated with the least function of renal transplants. taken from the marginal donor, or ECD (Extended Criteria Donor).1. The injection of autologous SVF into a porcine model of ureteral lesion resulted in a significant reduction in the area of fibrosis in favor of the reconstitution of muscle tissue in the urethral scar and an increase in urethral pressure, in favor of recovery function of the sphincter.2. We have adapted the subcutaneous SVF extraction technique to the most accessible source of adipose tissue in renal transplantation: perirenal fat. Our study provides the first evidence of the link between NK lymphocytic infiltration of the FVS, the age of the donor and early transplant dysfunction.3. Finally, we evaluated whether the surgical approach could modulate the level of inflammatory response after renal transplantation in a prospective comparative clinical study of the inflammatory syndrome between robot-assisted renal transplantation and open route.This exploratory work on perirenal SVF opens up perspectives for assessing the vasculocompetence of the renal transplant and identifying targets to limit the deleterious effects of inflammation during the reconditioning of marginal transplants
Bertheuil, Nicolas. "Le tissu adipeux : approfondissement des connaissances fondamentales du tissu et de son compartiment vasculaire stromal, intérêt clinique pour la chirurgie plastique." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1B051/document.
Повний текст джерелаThe aim of this work was to improve the knowledge on adipose tissue, organ that is at the heart of the practice of plastic surgeons. Indeed, this tissue can be transplanted autologously in order to fill a defect (volumizing role of the adipocytes) but also to be used for tissue regeneration in connection with the cells of the stromal vascular fraction (SVF) and especially the mesenchymal stromal cells (MSCs). These cells are obtained after liposuction of the tissue by enzymatic digestion of the extracellular matrix. It turns out that the knowledge available on these CSM is essentially derived from in vitro studies after a cell culture phase and thus the in vivo properties are poorly known. This work consisted in characterizing the heterogeneity of the native stromal compartment of adipose tissue obtained after enzymatic digestion. We isolated two distinct native stromal populations: the ASC (CD34 +), for the most part, and the pericyte cells (CD146 +). These 2 cell types differed in their phenotypes, their clonogenecity potentials and their immunomodulatory properties in vitro and in vivo. We then compared the enzymatic digestion of the tissue with the techniques of mechanical digestion usable within our operating room. We have demonstrated that these new techniques made it possible to produce the cells of the FVS including MSC, cells particularly interesting for regenerative surgery. In addition, all the laboratory techniques acquired during this work allowed us to investigate the role of liposuction techniques used in plastic surgery on adipose tissue. We have demonstrated by flow cytometry and confocal microscopy, that part of the microvasculature framework is conserved after liposuction. All of these results are in addition to clinical data demonstrating that liposuction of the tissue is a gesture to be more conservative for the tissue and could explain lower rates of complications after contour surgery
Deschesne, Karine. "Exploraton des changements de la perméabilité microvasculaire dans le tissu adipeux du modèle de rat Zucker obèse." Mémoire, Université de Sherbrooke, 2008. http://savoirs.usherbrooke.ca/handle/11143/3917.
Повний текст джерелаDevillard, Chloé. "Développement de tissus vasculaires par bioimpression 3D." Thesis, Lyon, 2021. http://www.theses.fr/2021LYSE1339.
Повний текст джерелаThis thesis aims to develop a vascular tissue by the method of 3D bioprinting of living tissue. To carry out this work, a bioink composed of three natural biomaterials: gelatin, alginate, and fibrinogen, was formulated. An improvement in the manufacturing process of a 3D object by bioprinting as well as the development of a specific consolidation solution allowed the development of a three-dimensional cellular network. The particular use of culture medium at all stages of manufacture, from the preparation of the biomaterials to the consolidation of the object, has demonstrated a marked increase in cell proliferation. Rheological and histological characterizations were set up to demonstrate this increased proliferation. To develop vascular tissue, several technological approaches have been presented, following well-defined specifications: (i) tubular vascular biofabrication technology and (ii) planar vascular biofabrication technology. The methods of 3D bioprinting by micro-extrusion with 1 and 3 extruders, co-axial and tri-axial 3D bioprinting, 3D bioprinting in a constrained environment, 4D printing by enzymatic diffusion, bio- 3D printing by winding, have thus been studied to respond to the creation of a tubular, multilayer structure of centimeter size. Micro-extrusion 3D bioprinting and 4D bioprinting were presented to respond to the creation of a planar multilayer structure, biologically relevant, mimicking the vascular wall composed of an endothelial layer, d 'a layer of vascular smooth muscle cells, and a layer of fibroblasts. The last part of this thesis concerns the results of bioprinting, allowing to biofabricate a vascularized tissue. A study of the impact of communications between fibroblasts and endothelial cells, within a 3D environment, on the development of a complex network, was presented. A vascularized tissue organized by endothelial cells inside a dense extracellular matrix and neosynthesized by fibroblasts could thus be placed in 7 days. Histological characterizations demonstrated the presence of micro-vascularization and transmission electron microscopy technology characterized the formation of collagen and elastin fibers, secreted by fibroblasts
Vinée, Philippe. "Contribution a l'etude de la relation structure-fonction du tissu vasculaire humain par rmn du proton." Strasbourg 1, 1993. http://www.theses.fr/1993STR13049.
Повний текст джерелаSamouillan, Valérie. "Etude de la structure physique des biopolymeres constitutifs du tissu cardio-vasculaire. Application a la definition de biomateriaux." Toulouse 3, 1999. http://www.theses.fr/1999TOU30107.
Повний текст джерелаКниги з теми "Tissu vasculaire"
Zhao, Feng, and Kam W. Leong, eds. Vascular Tissue Engineering. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-1708-3.
Повний текст джерелаWalpoth, Beat, Helga Bergmeister, Gary Bowlin, Deling Kong, Joris Rotmans, and Peter Zilla, eds. Tissue-Engineered Vascular Grafts. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-71530-8.
Повний текст джерелаservice), ScienceDirect (Online, ed. Tissue-specific vascular endothelial signals and vector targeting. Amsterdam: Elsevier, 2009.
Знайти повний текст джерелаScarpella, Enrico. Genetic control fo vascular tissue development in rice. [Leiden]: E. Scarpella, 2003.
Знайти повний текст джерелаAdvanced School on "Biomechanics of Soft Tissue" (2001 Udine, Italy). Biomechanics of soft tissue in cardiovascular systems. Wien: Springer, 2003.
Знайти повний текст джерелаFu, Bingmei M., and Neil T. Wright, eds. Molecular, Cellular, and Tissue Engineering of the Vascular System. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96445-4.
Повний текст джерелаModeling tumor vasculature: Molecular, cellular, and tissue level aspects and implications. New York: Springer, 2012.
Знайти повний текст джерелаLaey, J. J. De. Vascular tumors and malformations of the ocular fundus. Dordrecht: Kluwer Academic Publishers, 1990.
Знайти повний текст джерелаLuis, Requena, ed. Pathology of vascular skin lesions: Clinicopathological correlations. Totowa, N.J: Humana Press, 2003.
Знайти повний текст джерелаM, Hanssens, and Belgian Ophthalmological Society, eds. Vascular tumours and malformations of the ocular fundus. Dordrecht: Kluwer Academic Publishers, 1990.
Знайти повний текст джерелаЧастини книг з теми "Tissu vasculaire"
Cannarozzo, Giovanni, Steven Paul Nisticò, Keyvan Nouri, and Mario Sannino. "Vascular Tissue." In Atlas of Lasers and Lights in Dermatology, 153–80. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-31232-9_20.
Повний текст джерелаMocellin, Simone. "Atypical Vascular Lesion." In Soft Tissue Tumors, 123–24. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58710-9_32.
Повний текст джерелаMiranda-Nieves, David, Amnie Ashour, and Elliot L. Chaikof. "Bioinspired Vascular Grafts." In Organ Tissue Engineering, 1–20. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-18512-1_15-1.
Повний текст джерелаMayne, Richard. "Vascular Connective Tissue." In Connective Tissue Disease, 163–83. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003210016-9.
Повний текст джерелаMiranda-Nieves, David, Amnie Ashour, and Elliot L. Chaikof. "Bioinspired Vascular Grafts." In Organ Tissue Engineering, 3–22. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-44211-8_15.
Повний текст джерелаBuvat, Roger. "Xylem (Vascular Tissue)." In Ontogeny, Cell Differentiation, and Structure of Vascular Plants, 369–445. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73635-3_11.
Повний текст джерелаvan Lith, Robert, and Guillermo A. Ameer. "Biohybrid Strategies for Vascular Grafts." In Tissue Engineering, 279–316. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02824-3_15.
Повний текст джерелаOparil, Suzanne, Qingcheng Meng, Shuang-dan Sun, Yiu-Fai Chen, and Louis J. Dell’Italia. "Tissue Angiotensin Converting Enzyme." In Vascular Endothelium, 205–39. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0355-8_15.
Повний текст джерелаBrennan, Murray F., Cristina R. Antonescu, Kaled M. Alektiar, and Robert G. Maki. "Vascular Sarcomas." In Management of Soft Tissue Sarcoma, 221–36. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41906-0_13.
Повний текст джерелаAmor, Mariem Ben Haj, Caroline Degrugillier-Chopinet, Alexandre Bridoux, François Pontana, Luc Ceugnart, and Anne Cotten. "Vascular Tumors." In Imaging of Soft Tissue Tumors, 363–92. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-46679-8_16.
Повний текст джерелаТези доповідей конференцій з теми "Tissu vasculaire"
Desoutter, A., A. G. Bodard, S. Langonnet, S. Salino, and J. C. Bera. "Développement d’un modèle expérimental d’irradiation de mandibule de lapin. Intérêt dans l’évaluation de nouvelles techniques de traitement ou prévention de l’ORN." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206603023.
Повний текст джерелаBouhoute, M., K. El Harti, and W. El Wady. "Gestion des dysplasies osseuses florides symptomatiques : série de cas et revue de littérature." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206603019.
Повний текст джерелаPark, Seungman, Catherine Whittington, Mervin C. Yoder, Sherry Voytik-Harbin, and Bumsoo Han. "Effects of Collagen Microstructure on the Transport Properties of Vascularized Engineered Tissues." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80817.
Повний текст джерелаHoffmann, Nathan E., Bo H. Chao, and John C. Bischof. "Cryo, Hyper or Both? Investigating Combination Cryo/Hyperthermia in the Dorsal Skin Flap Chamber." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2239.
Повний текст джерелаGutierrez-Croft, Gabriela, Curtis H. Blanchard, and Robert B. Roemer. "Blood Vessel Network Generation for Thermal Modeling of Living Tissue." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0786.
Повний текст джерелаBuchanan, Cara F., Elizabeth Voigt, Pavlos P. Vlachos, and Marissa Nichole Rylander. "Tissue Engineered Tumor Microvessels to Study the Role of Flow Shear Stress on Endothelial Barrier Function." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14592.
Повний текст джерелаMarone, Alessandro, Jennifer W. Hoi, Chris J. Fong, Youngwan Kim, Hyun K. Kim, Danielle R. Bajakian, and Andreas H. Hielscher. "Using dynamic vascular optical spectroscopy to evaluate peripheral arterial disease (PAD) in patients who undergo a vascular intervention." In Optical Tomography and Spectroscopy of Tissue XIII, edited by Sergio Fantini, Paola Taroni, Bruce J. Tromberg, and Eva M. Sevick-Muraca. SPIE, 2019. http://dx.doi.org/10.1117/12.2509116.
Повний текст джерелаMakovik, Irina N., Mikhail Volkov, Lyubov Eratova, Denis Myalitsin, and Viktor V. Dremin. "Direct optical generation of singlet oxygen in the regulation of vascular tone." In Tissue Optics and Photonics II, edited by Zeev Zalevsky, Valery V. Tuchin, and Walter C. Blondel. SPIE, 2022. http://dx.doi.org/10.1117/12.2621491.
Повний текст джерелаChen, Cuiye, and Lisa X. Xu. "Theoretical and Experimental Studies of Local Tissue Temperature Oscillation Under Hyperthermic Conditions Using Preserved Pig Kidney." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2226.
Повний текст джерелаBjork, Jason W., and Robert T. Tranquillo. "Transmural Flow Bioreactor for Vascular Tissue Engineering." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206488.
Повний текст джерелаЗвіти організацій з теми "Tissu vasculaire"
Xia, Mengna, and Hanli Liu. Simultaneous Monitoring of Vascular Oxygenation and Tissue Oxygen Tension of Breast Tumors Under Hyperbaric Oxygen Exposure. Fort Belvoir, VA: Defense Technical Information Center, April 2007. http://dx.doi.org/10.21236/ada483971.
Повний текст джерелаXia, Mengna, and Hanli Liu. Simultaneous Monitoring of Vascular Oxygenation and Tissue Oxygen Tension of Breast Tumors Under Hyperbaric Oxygen Exposure. Fort Belvoir, VA: Defense Technical Information Center, April 2008. http://dx.doi.org/10.21236/ada533046.
Повний текст джерелаZhao, Dawen. Therapeutic Vascular Targeting and Irradiation: Correlation of MRI Tissue Changes at Cellular and Molecular Levels to Optimizing Outcome. Fort Belvoir, VA: Defense Technical Information Center, June 2008. http://dx.doi.org/10.21236/ada494942.
Повний текст джерелаBercovier, Herve, and Paul Frelier. Pathogenic Streptococcus in Tilapia: Rapid Diagnosis, Epidemiology and Pathophysiology. United States Department of Agriculture, October 1994. http://dx.doi.org/10.32747/1994.7568776.bard.
Повний текст джерелаKanner, Joseph, Mark Richards, Ron Kohen, and Reed Jess. Improvement of quality and nutritional value of muscle foods. United States Department of Agriculture, December 2008. http://dx.doi.org/10.32747/2008.7591735.bard.
Повний текст джерела