Добірка наукової літератури з теми "Time reversal of diffusion"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Time reversal of diffusion".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Time reversal of diffusion":

1

Hutzenthaler, Martin, and Jesse Earl Taylor. "Time reversal of some stationary jump diffusion processes from population genetics." Advances in Applied Probability 42, no. 4 (December 2010): 1147–71. http://dx.doi.org/10.1239/aap/1293113155.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We describe the processes obtained by time reversal of a class of stationary jump diffusion processes that model the dynamics of genetic variation in populations subject to repeated bottlenecks. Assuming that only one lineage survives each bottleneck, the forward process is a diffusion on [0,1] that jumps to the boundary before diffusing back into the interior. We show that the behavior of the time-reversed process depends on whether the boundaries are accessible to the diffusive motion of the forward process. If a boundary point is inaccessible to the forward diffusion then time reversal leads to a jump diffusion that jumps immediately into the interior whenever it arrives at that point. If, instead, a boundary point is accessible then the jumps off of that point are governed by a weighted local time of the time-reversed process.
2

Hutzenthaler, Martin, and Jesse Earl Taylor. "Time reversal of some stationary jump diffusion processes from population genetics." Advances in Applied Probability 42, no. 04 (December 2010): 1147–71. http://dx.doi.org/10.1017/s0001867800004560.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We describe the processes obtained by time reversal of a class of stationary jump diffusion processes that model the dynamics of genetic variation in populations subject to repeated bottlenecks. Assuming that only one lineage survives each bottleneck, the forward process is a diffusion on [0,1] that jumps to the boundary before diffusing back into the interior. We show that the behavior of the time-reversed process depends on whether the boundaries are accessible to the diffusive motion of the forward process. If a boundary point is inaccessible to the forward diffusion then time reversal leads to a jump diffusion that jumps immediately into the interior whenever it arrives at that point. If, instead, a boundary point is accessible then the jumps off of that point are governed by a weighted local time of the time-reversed process.
3

Zang Rui, Wang Bing-Zhong, Ding Shuai, and Gong Zhi-Shuang. "Time reversal multi-target imaging technique based on eliminating the diffusion of the time reversal field." Acta Physica Sinica 65, no. 20 (2016): 204102. http://dx.doi.org/10.7498/aps.65.204102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Haussmann, U. G., and E. Pardoux. "Time Reversal of Diffusions." Annals of Probability 14, no. 4 (October 1986): 1188–205. http://dx.doi.org/10.1214/aop/1176992362.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Millet, A., D. Nualart, and M. Sanz. "Integration by Parts and Time Reversal for Diffusion Processes." Annals of Probability 17, no. 1 (January 1989): 208–38. http://dx.doi.org/10.1214/aop/1176991505.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cattiaux, Patrick. "Time reversal of diffusion processes with a boundary condition." Stochastic Processes and their Applications 28, no. 2 (June 1988): 275–92. http://dx.doi.org/10.1016/0304-4149(88)90101-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Petit, Frédérique. "Time reversal and reflected diffusions." Stochastic Processes and their Applications 69, no. 1 (July 1997): 25–53. http://dx.doi.org/10.1016/s0304-4149(97)00035-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kardaras, Constantinos, and Scott Robertson. "Continuous-time perpetuities and time reversal of diffusions." Finance and Stochastics 21, no. 1 (August 10, 2016): 65–110. http://dx.doi.org/10.1007/s00780-016-0308-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Millet, Annie, David Nualart, and Marta Sanz. "Time reversal for infinite-dimensional diffusions." Probability Theory and Related Fields 82, no. 3 (August 1989): 315–47. http://dx.doi.org/10.1007/bf00339991.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Föllmer, H., and A. Wakolbinger. "Time reversal of infinite-dimensional diffusions." Stochastic Processes and their Applications 22, no. 1 (May 1986): 59–77. http://dx.doi.org/10.1016/0304-4149(86)90114-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Time reversal of diffusion":

1

Roelly, Sylvie, and Michèle Thieullen. "Duality formula for the bridges of a Brownian diffusion : application to gradient drifts." Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2006/671/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, we consider families of time Markov fields (or reciprocal classes) which have the same bridges as a Brownian diffusion. We characterize each class as the set of solutions of an integration by parts formula on the space of continuous paths C[0; 1]; R-d) Our techniques provide a characterization of gradient diffusions by a duality formula and, in case of reversibility, a generalization of a result of Kolmogorov.
2

Blondel, Thibaud. "Approche Matricielle de l'Imagerie Sismique." Thesis, Paris Sciences et Lettres (ComUE), 2019. https://pastel.archives-ouvertes.fr/tel-03174491.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le projet de thèse a pour objectif d'étendre à la géophysique et à l'imagerie sismique une méthode matricielle de propagation des ondes dans les milieux hétérogènes. Cette méthode consiste à extraire la contribution de diffusion simple dans des données où la diffusion multiple prédomine, permettant ainsi d'améliorer l'imagerie dans ce type de milieux. L'approche a été mise au point en imagerie acoustique à l'Institut Langevin, en utilisant des réseaux linéaires unidimensionnels de transducteurs ultrasonores. Elle consiste à exploiter la matrice des réponses impulsionnelles entre les éléments du réseau, qui contient toute l'information disponible sur le milieu étudié, en y appliquant une série d'opérations mathématiques à des fins de détection, d'imagerie, de caractérisation ou de monitoring. La méthode a été testée dans un contexte industriel sur des aciers, ce qui a permis d'améliorer significativement la détection de défauts. Il s'agira durant ce projet d'adapter la méthode à la géophysique, en ayant recours à des réseaux bidimensionnels irréguliers de capteurs passifs et non plus à des réseaux de transducteurs unidimensionnels périodiques et contrôlables. D'une part, le retournement temporel itératif et les techniques associées peuvent être utilisées pour contrer les effets d'aberration associés aux hétérogénéités étendues de la couche superficielle, conduisant à une image du sous-sol mieux contrastée et résolue [1-4]. D'autre part, une approche plus élaborée basée sur les matrices aléatoires peut être utilisée dans les zones où des hétérogénéités de petites taille sont fortement diffusantes et/ou concentrées [5-7]. Dans ce régime, les méthodes d'imagerie conventionnelle souffrent de la diffusion multiple qui conduit à une image de speckle, sans lien direct avec la réflectivité du milieu. Dans le cas de capteurs purement passifs tels que les géophones habituellement utilisés en sismologie, la matrice de réponse du milieu sera obtenue de manière passive par corrélations croisées des bruits ambiants mesurés par les capteurs, tel que cela a été rigoureusement établi par des travaux innovants à ISTERRE [8]. L'objectif principal est de s'affranchir de la diffusion multiple et de repousser la profondeur limite des techniques d'imagerie existantes. De plus, l'étude de la contribution de diffusion multiple peut aussi être utile à des fins de caractérisation. Des paramètres de transport tels que les libres parcours moyens de diffusion ou de transport peuvent fournir des informations capitales sur la concentration ou la taille des inhomogénéités. References : [1] C. Prada and M. Fink, Wave Motion 20, 151 (1994). [2] C. Prada, S. Manneville, D. Spoliansky, and M. Fink, J. Acoust. Soc. Am. 99, 2067 (1996). [3] J-L. Robert, PhD dissertation on “Evaluation of Green's functions in complex media by decomposition of the Time Reversal Operator: Application to Medical Imaging and aberration correction “, Université Paris VII, 2008. [4] G. Montaldo, M. Tanter, and M. Fink, Phys. Rev. Lett. 106, 054301, 2011. [5] A. Aubry, A. Derode, Phys. Rev. Lett. 102, 084301, 2009. [6] A. Aubry, A. Derode, J. Appl. Phys. 106, 044903, 2009. [7] S. Shahjahan, A. Aubry, F. Rupin, B. Chassignole, and A. Derode, Appl. Phys. Lett. 104, 234105, 2014. [8] Campillo, M., P. Roux, and N.M. Shapiro (2011), Using seismic noise to image and to monitor the Solid Earth, in Encyclopedia of Solid Earth Geophysics, Gupta, Harsh K. (Ed.), 1230-1235, Springer, 2011
The project aims at extending to geophysical and seismic imaging a matrix approach of wave propagation in heterogeneous media. The method aims at separating single-scattering from multiple-scatterings contribution in a data set, thus allowing us to improve imaging in heterogeneous media, as if we could see through thick fog. The idea was successfully developed in the ultrasound imaging context at the Langevin Institute, restricted so far to 1-D linear arrays of ultrasonic sources/receivers. It consists in exploiting the set of inter-element impulse responses associated to an array of sensors. This response matrix contains all the information available on the scattering medium under investigation. A set of matrix operations can then be applied whether it be for detection, imaging, characterization or monitoring purposes. The method was tested on actual coarse-grain materials like steel, and was found to improve defect detection very significantly. The adaptability of the method in geophysics (with 2-D unevenly distributed passive sensors as opposed to controllable and periodic 1-D ultrasonic arrays) is to be investigated in this project. On the one hand, iterative time reversal and related techniques can be taken advantage of to overcome aberration effects associated to long-scale inhomogeneities of the superficial layer, leading to a better constrast and resolution of the subsoil image [1-4]. On the other hand, a more sophisticated random matrix approach can be used in areas where short-scale inhomogeneities are strongly scattering and/or concentrated [5-7]. In this regime, conventional imaging methods suffer from the multiple scattering of waves that results in a speckle image, with no direct connection with the medium's reflectivity. In the case of purely passive sensors such as classical geophones, the response matrix will be obtained passively from cross-correlation of ambient noise, as was thoroughly established by pioneer works at ISTERRE [8]. The main objective is to get rid of multiple scattering and push back the imaging-depth limit of existing imaging techniques. In addition, the study of the multiple scattering contribution can also be useful for characterization purposes. Transport parameters such as the scattering or transport mean free paths can actually yield key information about the concentration and the size of the inhomogeneities. References: [1] C. Prada and M. Fink, Wave Motion 20, 151 (1994). [2] C. Prada, S. Manneville, D. Spoliansky, and M. Fink, J. Acoust. Soc. Am. 99, 2067 (1996). [3] J-L. Robert, PhD dissertation on “Evaluation of Green's functions in complex media by decomposition of the Time Reversal Operator: Application to Medical Imaging and aberration correction “, Université Paris VII, 2008. [4] G. Montaldo, M. Tanter, and M. Fink, Phys. Rev. Lett. 106, 054301, 2011. [5] A. Aubry, A. Derode, Phys. Rev. Lett. 102, 084301, 2009. [6] A. Aubry, A. Derode, J. Appl. Phys. 106, 044903, 2009. [7] S. Shahjahan, A. Aubry, F. Rupin, B. Chassignole, and A. Derode, Appl. Phys. Lett. 104, 234105, 2014. [8] Campillo, M., P. Roux, and N.M. Shapiro (2011), Using seismic noise to image and to monitor the Solid Earth, in Encyclopedia of Solid Earth Geophysics, Gupta, Harsh K. (Ed.), 1230-1235, Springer, 2011
3

Yang, Yougu. "Propagation des ondes acoustiques dans les milieux granulaires confinés." Phd thesis, Université Paris-Est, 2013. http://tel.archives-ouvertes.fr/tel-01037954.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ce travail de thèse est l'étude expérimentale de la propagation des ondes acoustiques dans un milieu granulaire sec et confiné. Ces ondes permettent de sonder de manière non invasive les propriétés viscoélastiques et la structure hétérogène du milieu, mais peuvent aussi être utilisées comme perturbation contrôlée pour étudier le réarrangement des réseaux des forces. Dans une première partie, nous nous intéressons à la propagation des ondes cohérentes dans les empilements des billes de verre et aussi dans ceux des grains irréguliers (sable). En régime linéaire, un très bon accord est retrouvé entre les vitesses d'onde de compression mesurées et celles prédites par la théorie des milieux effectifs, ce qui permet d'accéder au nombre de coordinance Z. En régime non linéaire, nous observons à la fois un softening et un hardening de la vitesse d'onde de compression à cause du changement de Z induit pat la forte vibration. La deuxième partie étudie la propagation des ondes multiplement diffusées. Nous montrons que le transport de ces ondes dans un milieu granulaire peut être décrit par le modèle de diffusion. Le coefficient de diffusion et l'absorption inélastique sont déterminés en fonction de la contrainte de confinement et de la fréquence d'onde incidente. Le libre parcours moyen versus la longueur d'onde relèvent deux régimes distincts du transport des ondes diffusées à basse et à haute fréquence. De plus, une décroissance non exponentielle est observée sur le profile d'intensité des ondes diffusées à temps long lorsque la fréquence de l'onde incidente devient importante. Une étude paramétrique basée sur la renormalisation du coefficient de diffusion est effectuée pour comprendre l'origine de ce transport diffusif anomal. Enfin, nous développons un dispositif (MRT) pour effectuer l'opération du retournement temporel dans un milieu granulaire. En régime linéaire, la recompression temporelle et la refocalisation spatiale sont vérifiées. Cependant, en régime non linéaire, nous observons que le processus du retournement temporel est brisé par l'interaction irréversible onde-matière, dû au changement ou réarrangement des réseaux des forces
4

Stephens, Edmund. "Time reversal violation in atoms." Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334916.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lopez-Castellanos, Victor. "Ultrawideband Time Domain Radar for Time Reversal Applications." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1301040987.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Naguleswaran, Siva. "Time reversal symmetry in nonlinear optics." Thesis, University of Canterbury. Physics, 1998. http://hdl.handle.net/10092/8166.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Results following from time reversal symmetry are developed for those nonlinear optical processes where a statistical average is required. This extends results found in Rayleigh (and Raman) scattering to nonlinear optical processes of arbitrary order, and generalises those few analyses specific to nonlinear optics. For example, Onsager relations for self-conjugate nonlinear optical processes (when input and output photons form degenerate pairs) are derived, and associated reversality relations generalised. In the nonresonant limit magnetic dipole but not electric quadrupole terms in coherent processes are suppressed. For this and other selection rules a careful treatment is required to obtain gauge invariant conclusions since the relevant electronic operators in multipolar and Coulomb gauges have differing time reversal signatures. For general processes purely electric dipole contributions to natural optical activity are possible when intermediate resonances are present; strong resonances are not required for the domination of this contribution over the traditional contribution. Time reversal symmetry may be used to show the prescription for assigning signs to phenomenological damping factors that is usually associated with the optical susceptibility formalism is incorrect. An experimental test based on electrooptic rotation in fluid media is proposed which may distinguish between this incorrect prescription and the correct prescription. The role time reversal symmetry plays in restricting the number of parameters in Judd-Ofelt theory is elucidated.
7

O'Donoughue, Nicholas A. "Stochastic Time Reversal for Radar Detection." Research Showcase @ CMU, 2011. http://repository.cmu.edu/dissertations/178.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Time Reversal is an adaptive waveform transmission technique particularly suited to dispersive or non-homogenous media that focuses energy on a desired point in space. Early work concentrated on optical and acoustic/ultrasonic applications, followed more recently by applications in the electromagnetic domain. Time Reversal has been used for single- and multi-antenna detection, imaging, communications, non-destructive testing, and beam steering, among other applications. This thesis develops Time Reversal detection algorithms for randomly varying targets embedded in randomly varying clutter. We model the target and clutter as independent complex Gaussian random variables and consider both single-antenna and multi-antenna detection scenarios. We derive the optimal Time-Reversal Likelihood Ratio Test (TR-LRT) for the single-antenna case, as well as a sub-optimal Time Reversal-Linear Quadratic (TR-LQ) detector that allows for a priori threshold and performance computation. These detectors are compared against a benchmark Weighted Energy Detector (WED). For the multi-antenna scenario, we present the Time Reversal MIMO (TR-MIMO) detector and compare its performance to a conventional Spatial MIMO (S-MIMO) radar. We show that, for both scenarios, the relative performance of Time Reversal detection methods depends on the coherence of the channel between the forward and TR transmission stages. We discuss the potential for detection gains with Time Reversal in single-antenna and multi-antenna systems. We discuss lower and upper bounds on gain and show that Time Reversal provides a useful and computationally simple approximation to the optimal transmit signal. To compute the optimal hypothesis test for a Blind TR detection system, we derive a new statistical distribution, the Complex Double Gaussian distribution, which characterizes the complex product Z = XY of independent complex Gaussian random variables X and Y . We also apply this new probability distribution to analyze the performance of M-ary Phase Shift Keying (MPSK) communication systems, showing its applicability well beyond the realm of Time Reversal problems.
8

Edelmann, Geoffrey F. "Underwater acoustic communications using time reversal /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2003. http://wwwlib.umi.com/cr/ucsd/fullcit?p3099539.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Johnsson, Mattias Torbjörn. "Time reversal symmetry and the geometric phase." Thesis, University of Canterbury. Physics, 1998. http://hdl.handle.net/10092/8171.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis examines the quantum-mechanical geometric phase with a view toward time reversal symmetry considerations. The idea of time reversal in quantum mechanics is investigated, disagreements and inconsistencies in the literature are examined, and the action of the time reversal operator is extended to time-dependent Hamiltonians. With this background, and using a definition of time reversal symmetry based on the evolution operator, I demonstrate that the existence of a non-zero geometric phase can in all cases be attributed to a breakdown of time reversal symmetry in some form. This result holds for both adiabatic and nonadiabatic evolutions, and for arbitrary dimensional parameter spaces. I explore the role of the geometric phase in a two-level Kramers system described by a parameter-dependent Hamiltonian such that the two levels can become degenerate for some value of the parameters, and discuss, from a mathematical point of view, the monopole geometric potential that results. I then extend this analysis by considering a pair of Kramers doublets, each doublet degenerate due to time reversal symmetry, where the parameters can be chosen so that each of the pair of doublets becomes degenerate with the other. I find the explicit functional forms for the two resulting nonabelian geometric gauge potentials and show that they can be identified exactly with the only two gauge-inequivalent SU(2) monopole potentials of Yang. Furthermore, following a conformal transformation these potentials can be mapped to those of the SU(2) instanton/anti-instanton pair. Finally I examine the relevance of the geometric phase to the molecular physics of time-odd systems. Time-odd coupling in molecular physics is a much under-studied area, with many potentially interesting results. Specifically I study time-odd coupling in Jahn-Teller systems under the Born-Oppenheimer approximation, where the electronic position states are coupled to the lattice momentum rather than the usual time-even lattice position. As an example I solve the E ⊗ (b₁ ⊕ b₂ ⊕ a₂) Jahn-Teller system exactly, showing that once again monopole-like geometric potentials arise, and comment on how this affects the angular momentum of the lattice subsystem.
10

Liddy, David W. Holmes John F. "Acoustic room de-reverberation using time-reversal acoustics /." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1999. http://handle.dtic.mil/100.2/ADA374579.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (M.S. in Applied Physics) Naval Postgraduate School, September 1999.
"September 1999". Thesis advisor(s):, Andrés Larraza, Bruce C. Denardo. Includes bibliographical references (p. 49). Also available online.

Книги з теми "Time reversal of diffusion":

1

United States. National Aeronautics and Space Administration., ed. On an origin of numerical diffusion: Violation of invariance under space-time inversion. [Washington, DC: National Aeronautics and Space Administration, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

United States. National Aeronautics and Space Administration., ed. On an origin of numerical diffusion: Violation of invariance under space-time inversion. [Washington, DC: National Aeronautics and Space Administration, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gan, Woon Siong. Time Reversal Acoustics. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3235-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Geru, Ion I. Time-Reversal Symmetry. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01210-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rachidi, Farhad, Marcos Rubinstein, and Mario Paolone, eds. Electromagnetic Time Reversal. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119142119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Abragam, A. Time reversal, an autobiography. Oxford [England]: Clarendon Press, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sachs, Robert Green. The physics of time reversal. Chicago: University of Chicago Press, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chapman, Barry. Reverse time travel. London: Cassell, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chapman, Barry. Reverse time travel. London: Cassell, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Albert, David Z. Time and chance. Cambridge, Mass: Harvard University Press, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Time reversal of diffusion":

1

Cozza, A., and F. Monsef. "Time Reversal in Diffusive Media." In Electromagnetic Time Reversal, 29–90. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119142119.ch2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nagasawa, Masao. "Duality and Time Reversal of Diffusion Processes." In Schrödinger Equations and Diffusion Theory, 55–88. Basel: Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-8568-3_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Quastel, Jeremy. "Time Reversal of Degenerate Diffusions." In In and Out of Equilibrium, 249–57. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0063-5_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nagasawa, Masao, and Thomas Domenig. "Diffusion processes on an open time interval and their time reversal." In Itô’s Stochastic Calculus and Probability Theory, 261–80. Tokyo: Springer Japan, 1996. http://dx.doi.org/10.1007/978-4-431-68532-6_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sundar, P. "Time Reversal of Solutions of Equations Driven by Lévy Processes." In Diffusion Processes and Related Problems in Analysis, Volume II, 111–19. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0389-6_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Belopolskaya, Ya. "Time Reversal of Diffusion Processes in Hilbert Spaces and Manifolds." In Asymptotic Methods in Probability and Statistics with Applications, 65–79. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0209-7_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhang, Shan, Naila Murray, Lei Wang, and Piotr Koniusz. "Time-rEversed DiffusioN tEnsor Transformer: A New TENET of Few-Shot Object Detection." In Lecture Notes in Computer Science, 310–28. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-20044-1_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bohm, Arno. "Time Reversal." In Quantum Mechanics: Foundations and Applications, 505–16. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-4352-6_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bohm, Arno, and Mark Loewe. "Time Reversal." In Quantum Mechanics: Foundations and Applications, 505–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-88024-7_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Roberts, Bryan W. "Time Reversal." In The Routledge Companion to Philosophy of Physics, 605–19. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781315623818-56.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Time reversal of diffusion":

1

Burgholzer, P., F. Camacho-Gonzales, D. Sponseiler, G. Mayer, and G. Hendorfer. "Information changes and time reversal for diffusion-related periodic fields." In SPIE BiOS: Biomedical Optics, edited by Alexander A. Oraevsky and Lihong V. Wang. SPIE, 2009. http://dx.doi.org/10.1117/12.809074.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lavoine, J. P., and A. A. Villaeys. "Rotational Diffusion Effect On Time Reversal In Phase Conjugation Spectroscopy." In 1989 Intl Congress on Optical Science and Engineering, edited by Jean-Bernard Grun. SPIE, 1989. http://dx.doi.org/10.1117/12.961418.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Alrubaiee, M., Binlin Wu, M. Xu, W. Cai, J. A. Koutcher, and S. K. Gayen. "Multi-wavelength diffusive optical tomography using Independent Component Analysis and Time Reversal algorithms." In European Conference on Biomedical Optics. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/ecbo.2011.80880y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Alrubaiee, M., Binlin Wu, M. Xu, W. Cai, J. A. Koutcher, and S. K. Gayen. "Multi-wavelength diffusive optical tomography using independent component analysis and time reversal algorithms." In European Conferences on Biomedical Optics, edited by Andreas H. Hielscher and Paola Taroni. SPIE, 2011. http://dx.doi.org/10.1117/12.889982.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Judkewitz, Benjamin, Ying Min Wang, Roarke Horstmeyer, Alexandre Mathy, and Changhuei Yang. "Optical resolution imaging in the diffusive regime with time-reversal of variance-encoded light (TROVE)." In Novel Techniques in Microscopy. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/ntm.2013.nth1b.5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tanter, M., M. Fink, E. Bossy, K. Daoudi, and A. C. Boccara. "P2D-5 Time-Reversal of Photo-Acoustic Waves Generated by Optical Contrasts in an Optically Diffusive Tissue Phantom." In 2006 IEEE Ultrasonics Symposium. IEEE, 2006. http://dx.doi.org/10.1109/ultsym.2006.417.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wang, Qiang, Yufeng Wang, Jinzhou Zhao, Yongquan Hu, Chen Lin, and Xiaowei Li. "A Four-Dimensional Geostress Evolution Model for Shale Gas Based on Embedded Discrete Fracture Model and Finite Volume Method." In International Petroleum Technology Conference. IPTC, 2024. http://dx.doi.org/10.2523/iptc-23476-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Stress changes associated with reservoir depletion are often observed in the field. The four-dimensional stress evolution within and surrounding drainage areas can greatly affect completion of infill wells and refracturing. To accurately predict the four- dimensional stress distribution of shale gas reservoir, a coupled fluid- flow/geomechanics model considering the microscopic seepage mechanism of shale gas and the distribution of complex natural fractures (NFs) is derived based on the Biot's theory, the embedded discrete fracture model (DEFM) and finite volume method (FVM). Based on this model, the four-dimensional stress prediction can be realized considering the mechanism of adsorption, desorption, diffusion and slippage of shale gas and the random distribution of NFs. The results show that in the process of four- dimensional stress evolution, there will be extremes of σxx, σyy, σxy, Δσ, α and stress reversal area at some time, and the time of occurrence of extremes is different at different positions. The key to determine this law is the pore pressure gradient with spatio-temporal evolution effect. Different microscopic seepage mechanisms have great influence on the storage and transmission of shale gas, which leads to great differences in the distribution of reservoir pressure and four-dimensional stress. The influence of microscopic seepage mechanism should be considered in the process of four- dimensional stress prediction. The larger the initial stress difference is, the more difficult the stress reversal is. When the initial stress difference exceeds a certain limit value, the stress reversal phenomenon will not occur in the reservoir. This research is of great significance for understanding the four-dimensional stress evolution law of shale gas reservoir, guiding completion of infill wells and refracturing design.
8

Huang, Chongpeng, Yingming Qu, and Zhenchun Li. "A new reverse-time migration denoising method based on diffusion filtering with X-shaped denoising operator." In Second International Meeting for Applied Geoscience & Energy. Society of Exploration Geophysicists and American Association of Petroleum Geologists, 2022. http://dx.doi.org/10.1190/image2022-3751705.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nakamura, Masato R., and Jason Singh. "Effect of Number of Bars and Reciprocation Speed on Residence Time of Particles on a Moving Grate." In 2013 21st Annual North American Waste-to-Energy Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nawtec21-2735.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The moving grate systems of waste-to-energy (WTE) mass-burn combustion chambers are designed for providing efficient flow and mixing of the municipal solid waste (MSW) over the length of the grade. This study presents results from a numerical analysis of the effect of number of reciprocating bars and reciprocation speed on the degree of mixing and residence time of MSW particles on the grate. A particle-based bed model of MSW and a physical model of reverse-acting grate were used in order to quantify the mixing diffusion coefficient of MSW particles. We analyzed the particle mixing with different parameters: particle size (d = 6–22cm diameter), reciprocation speed of moving bars (Rr = 0–90recip./h), and number of moving bars (Nb = 0 to 16 bars). This combination of mathematical modeling and experimental work has shown that: (1) different particle sizes result in different residence times, according to the Brazil Nut Effect (BNE) (2) The number of moving bars (from 0 to 16 bars) of a reverse-acting grate has the net effect of increasing the mean residence time of small and medium sized particles, while decreasing that of large particles. (3) The bar height, h, was found to be one of the major geometric parameters influencing mixing diffusion coefficient, D, and residence time.
10

Nakamura, Masato R., and Marco J. Castaldi. "Mixing and Residence Time Analysis of Municipal Solid Waste Particles by Different Numbers of Moving Bars and Reciprocation Speeds of a Grate System." In 19th Annual North American Waste-to-Energy Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/nawtec19-5436.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The grate systems of waste-to-energy (WTE) mass-burn combustion chambers, which historically stem from coal combustion technology, have an important role in controlling the mixing of heterogeneous MSW during the combustion process. They are designed for providing efficient flow and mixing of Municipal Solid Waste (MSW) in the combustion chamber. This study presents results from a numerical analysis for grate design and chamber operation, i.e., number of reciprocating bars and reciprocation speed that influence the degree of mixing and residence time of MSW particles. A particle-based bed model of MSW and a physical model of reverse-acting grate were used in order to quantify the mixing diffusion coefficient of MSW particles. We analyzed the particle mixing with different parameters: particle size (d = 6–22 cm diameter), reciprocation speed of moving bars (Rr = 0–90 recip./h), and number of moving bars (Nb = 1–16 bars). According to the size segregation in the particle mixing process in the MSW bed, the undersized waste particles in the MSW bed on the reverse-acting grate have a higher diffusion coefficient than those of oversized and mean size particles. Also the number of moving bars, Nb, as well as reciprocation speed, Rr, were quantitatively related to a diffusion coefficient equation for MSW particle mixing.

Звіти організацій з теми "Time reversal of diffusion":

1

Anderson, Brian Eric. Remote Whispering Applying Time Reversal. Office of Scientific and Technical Information (OSTI), July 2015. http://dx.doi.org/10.2172/1196175.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Qiu, Robert C. Time-Reversal for UWB Communications Systems. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada455574.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Larmat, Carene. Time Reversal applied to Ionosphere seismology. Office of Scientific and Technical Information (OSTI), January 2013. http://dx.doi.org/10.2172/1060904.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Golding, William M. Time Reversal Techniques for Atomic Waveguides. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada549862.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Young, Derek P., Neil Jacklin, Ratish J. Punnoose, and David T. Counsil. Time reversal signal processing for communication. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1030259.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wasserman, Eric G. Time reversal invariance in polarized neutron decay. Office of Scientific and Technical Information (OSTI), March 1994. http://dx.doi.org/10.2172/10137967.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Haxton, W. C., and A. Hoering. Time-reversal-noninvariant, parity-conserving nuclear interactions. Office of Scientific and Technical Information (OSTI), April 1993. http://dx.doi.org/10.2172/10142415.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Asahi, Koichiro, J. D. Bowman, and B. Crawford. Time reversal tests in polarized neutron reactions. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/674870.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dowling, David R. Acoustic Time Reversal in the Shallow Ocean. Fort Belvoir, VA: Defense Technical Information Center, March 2005. http://dx.doi.org/10.21236/ada430812.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Moura, Jose M., and Yuanwei Jin. Electromagnetic Time Reversal Imaging: Analysis and Experimentation. Fort Belvoir, VA: Defense Technical Information Center, April 2010. http://dx.doi.org/10.21236/ada532508.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії