Добірка наукової літератури з теми "Time Finite Element Method"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Time Finite Element Method".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Time Finite Element Method"

1

Yamada, T., and K. Tani. "Finite element time domain method using hexahedral elements." IEEE Transactions on Magnetics 33, no. 2 (March 1997): 1476–79. http://dx.doi.org/10.1109/20.582539.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Becker, Roland, Erik Burman, and Peter Hansbo. "A finite element time relaxation method." Comptes Rendus Mathematique 349, no. 5-6 (March 2011): 353–56. http://dx.doi.org/10.1016/j.crma.2010.12.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hansbo, Peter. "A free-Lagrange finite element method using space-time elements." Computer Methods in Applied Mechanics and Engineering 188, no. 1-3 (July 2000): 347–61. http://dx.doi.org/10.1016/s0045-7825(99)00157-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Feliziani, M., and E. Maradei. "Point matched finite element-time domain method using vector elements." IEEE Transactions on Magnetics 30, no. 5 (September 1994): 3184–87. http://dx.doi.org/10.1109/20.312614.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kobayashi, Osuke, Kazuhiko Adachi, Yohei Azuma, Atsushi Fujita, and Eiji Kohmura. "64028 Computational Time Reduction for Neurosurgical Training System Based on Finite Element Method(Biomechanics)." Proceedings of the Asian Conference on Multibody Dynamics 2010.5 (2010): _64028–1_—_64028–7_. http://dx.doi.org/10.1299/jsmeacmd.2010.5._64028-1_.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Neda, Monika. "Discontinuous Time Relaxation Method for the Time-Dependent Navier-Stokes Equations." Advances in Numerical Analysis 2010 (October 3, 2010): 1–21. http://dx.doi.org/10.1155/2010/419021.

Повний текст джерела
Анотація:
A high-order family of time relaxation models based on approximate deconvolution is considered. A fully discrete scheme using discontinuous finite elements is proposed and analyzed. Optimal velocity error estimates are derived. The dependence of these estimates with respect to the Reynolds number Re is , which is an improvement with respect to the continuous finite element method where the dependence is .
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jin-Fa Lee, R. Lee, and A. Cangellaris. "Time-domain finite-element methods." IEEE Transactions on Antennas and Propagation 45, no. 3 (March 1997): 430–42. http://dx.doi.org/10.1109/8.558658.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Steinbach, Olaf. "Space-Time Finite Element Methods for Parabolic Problems." Computational Methods in Applied Mathematics 15, no. 4 (October 1, 2015): 551–66. http://dx.doi.org/10.1515/cmam-2015-0026.

Повний текст джерела
Анотація:
AbstractWe propose and analyze a space-time finite element method for the numerical solution of parabolic evolution equations. This approach allows the use of general and unstructured space-time finite elements which do not require any tensor product structure. The stability of the numerical scheme is based on a stability condition which holds for standard finite element spaces. We also provide related a priori error estimates which are confirmed by numerical experiments.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Anees, Asad, and Lutz Angermann. "Time Domain Finite Element Method for Maxwell’s Equations." IEEE Access 7 (2019): 63852–67. http://dx.doi.org/10.1109/access.2019.2916394.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chessa, Jack, and Ted Belytschko. "A local space–time discontinuous finite element method." Computer Methods in Applied Mechanics and Engineering 195, no. 13-16 (February 2006): 1325–43. http://dx.doi.org/10.1016/j.cma.2005.05.022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Time Finite Element Method"

1

Valivarthi, Mohan Varma, and Hema Chandra Babu Muthyala. "A Finite Element Time Relaxation Method." Thesis, Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-17728.

Повний текст джерела
Анотація:
In our project we discuss a finite element time-relaxation method for high Reynolds number flows. The key idea consists of using local projections on polynomials defined on macro element of each pair of two elements sharing a face. We give the formulation for the scalar convection–diffusion equation and a numerical illustration.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Alpert, David N. "Enriched Space-Time Finite Element Methods for Structural Dynamics Applications." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1377870451.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kashefi, Ali. "A Finite-Element Coarse-GridProjection Method for Incompressible Flows." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/79948.

Повний текст джерела
Анотація:
Coarse grid projection (CGP) methodology is a novel multigrid method for systems involving decoupled nonlinear evolution equations and linear elliptic Poisson equations. The nonlinear equations are solved on a fine grid and the linear equations are solved on a corresponding coarsened grid. Mapping operators execute data transfer between the grids. The CGP framework is constructed upon spatial and temporal discretization schemes. This framework has been established for finite volume/difference discretizations as well as explicit time integration methods. In this article we present for the first time a version of CGP for finite element discretizations, which uses a semi-implicit time integration scheme. The mapping functions correspond to the finite-element shape functions. With the novel data structure introduced, the mapping computational cost becomes insignificant. We apply CGP to pressure correction schemes used for the incompressible Navier Stokes flow computations. This version is validated on standard test cases with realistic boundary conditions using unstructured triangular meshes. We also pioneer investigations of the effects of CGP on the accuracy of the pressure field. It is found that although CGP reduces the pressure field accuracy, it preserves the accuracy of the pressure gradient and thus the velocity field, while achieving speedup factors ranging from approximately 2 to 30. Exploring the influence of boundary conditions on CGP, the minimum speedup occurs for velocity Dirichlet boundary conditions, while the maximum speedup occurs for open boundary conditions. We discuss the CGP method as a guide for partial mesh refinement of incompressible flow computations and show its application for simulations of flow over a backward facing step and flow past a cylinder.
Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Marais, Neilen. "Efficient high-order time domain finite element methods in electromagnetics." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/1499.

Повний текст джерела
Анотація:
Thesis (DEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2009.
The Finite Element Method (FEM) as applied to Computational Electromagnetics (CEM), can beused to solve a large class of Electromagnetics problems with high accuracy and good computational efficiency. For solving wide-band problems time domain solutions are often preferred; while time domain FEM methods are feasible, the Finite Difference Time Domain (FDTD) method is more commonly applied. The FDTD is popular both for its efficiency and its simplicity. The efficiency of the FDTD stems from the fact that it is both explicit (i.e. no matrices need to be solved) and second order accurate in both time and space. The FDTD has limitations when dealing with certain geometrical shapes and when electrically large structures are analysed. The former limitation is caused by stair-casing in the geometrical modelling, the latter by accumulated dispersion error throughout the mesh. The FEM can be seen as a general mathematical framework describing families of concrete numerical method implementations; in fact the FDTD can be described as a particular FETD (Finite Element Time Domain) method. To date the most commonly described FETD CEM methods make use of unstructured, conforming meshes and implicit time stepping schemes. Such meshes deal well with complex geometries while implicit time stepping is required for practical numerical stability. Compared to the FDTD, these methods have the advantages of computational efficiency when dealing with complex geometries and the conceptually straight forward extension to higher orders of accuracy. On the downside, they are much more complicated to implement and less computationally efficient when dealing with regular geometries. The FDTD and implicit FETD have been combined in an implicit/explicit hybrid. By using the implicit FETD in regions of complex geometry and the FDTD elsewhere the advantages of both are combined. However, previous work only addressed mixed first order (i.e. second order accurate) methods. For electrically large problems or when very accurate solutions are required, higher order methods are attractive. In this thesis a novel higher order implicit/explicit FETD method of arbitrary order in space is presented. A higher order explicit FETD method is implemented using Gauss-Lobatto lumping on regular Cartesian hexahedra with central differencing in time applied to a coupled Maxwell’s equation FEM formulation. This can be seen as a spatially higher order generalisation of the FDTD. A convolution-free perfectly matched layer (PML) method is adapted from the FDTD literature to provide mesh termination. A curl conforming hybrid mesh allowing the interconnection of arbitrary order tetrahedra and hexahedra without using intermediate pyramidal or prismatic elements is presented. An unconditionally stable implicit FETD method is implemented using Newmark-Beta time integration and the standard curl-curl FEM formulation. The implicit/explicit hybrid is constructed on the hybrid hexahedral/tetrahedral mesh using the equivalence between the coupled Maxwell’s formulation with central differences and the Newmark-Beta method with Beta = 0 and the element-wise implicitness method. The accuracy and efficiency of this hybrid is numerically demonstrated using several test-problems.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Johansson, August. "Duality-based adaptive finite element methods with application to time-dependent problems." Doctoral thesis, Umeå : Institutionen för matematik och matematisk statistik, Umeå universitet, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-33872.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wang, Shumin. "Improved-accuracy algorithms for time-domain finite methods in electromagnetics." The Ohio State University, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=osu1061225243.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Vikas, Sharma. "Development of Space-Time Finite Element Method for Seismic Analysis of Hydraulic Structures." Kyoto University, 2018. http://hdl.handle.net/2433/235094.

Повний текст джерела
Анотація:
Kyoto University (京都大学)
0048
新制・課程博士
博士(農学)
甲第21374号
農博第2298号
新制||農||1066(附属図書館)
学位論文||H30||N5147(農学部図書室)
京都大学大学院農学研究科地域環境科学専攻
(主査)教授 村上 章, 教授 藤原 正幸, 教授 渦岡 良介
学位規則第4条第1項該当
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wang, Bao. "Numerical Simulation of Detonation Initiation by the Space-Time Conservation Element and Solution Element Method." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1293461692.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Campbell-Kyureghyan, Naira Helen. "Computational analysis of the time-dependent biomechanical behavior of the lumbar spine." Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1095445065.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Ohio State University, 2004.
Title from first page of PDF file. Document formatted into pages; contains xix, 254 p.; also includes graphics. Includes bibliographical references (p. 234-254).
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dosopoulos, Stylianos. "Interior Penalty Discontinuous Galerkin Finite Element Method for the Time-Domain Maxwell's Equations." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1337787922.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Time Finite Element Method"

1

Farahani, Ali Reza Vashghani. 3D finite element time domain methods. Ottawa: National Library of Canada, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lin-Jun, Hou, and Langley Research Center, eds. Periodic trim solutions with hp-version finite elements in time: Final report. Atlanta, Ga: School of Aerospace Engineering, Georgia Institute of Technology, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Golla, David Frank. Dynamics of viscoelastic structures: a time-domain finite element formulation. [Downsview, Ont.]: [Institute for Aerospace Studies], 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Golla, D. F. Dynamics of viscoelastic structures - a time-domain, finite element formulation. [S.l.]: [s.n.], 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., ed. Time-domain finite elements in optimal control with application to launch-vehicle guidance. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., ed. Time-domain finite elements in optimal control with application to launch-vehicle guidance. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Golla, David Frank. Dynamics of viscoelastic structures: A time-domain finite element formulation. [Downsview, Ont.]: Institute for Aerospace Studies, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bless, Robert R. Time-domain finite elements in optimal control with application to launch-vehicle guidance. Hampton, Va: Langley Research Center, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, Jichun. Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Li, Jichun, and Yunqing Huang. Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33789-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Time Finite Element Method"

1

Bajer, Czesław I., and Bartłomiej Dyniewicz. "Space-Time Finite Element Method." In Numerical Analysis of Vibrations of Structures under Moving Inertial Load, 123–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29548-5_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Raiyan Kabir, S. M., B. M. A. Rahman, and A. Agrawal. "Finite Element Time Domain Method for Photonics." In Recent Trends in Computational Photonics, 1–37. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55438-9_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Thomée, Vidar. "The Discontinuous Galerkin Time Stepping Method." In Galerkin Finite Element Methods for Parabolic Problems, 181–208. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03359-3_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cardoso, José Roberto. "Finite Element Method for Time-Dependent Electromagnetic Fields." In Electromagnetics Through the Finite Element Method, 129–40. Boca Raton : Taylor & Francis, 2016. | “A CRC title.”: CRC Press, 2016. http://dx.doi.org/10.1201/9781315366777-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Li, Jichun, and Yunqing Huang. "Introduction to Finite Element Methods." In Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials, 19–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33789-5_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bangerth, Wolfgang, and Rolf Rannacher. "Time-Dependent Problems." In Adaptive Finite Element Methods for Differential Equations, 113–28. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-7605-6_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Witkowski, M. "The Fundamentals of the Space-Time Finite Element Method." In Engineering Software IV, 281–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-21877-8_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zahedi, Sara. "A Space-Time Cut Finite Element Method with Quadrature in Time." In Lecture Notes in Computational Science and Engineering, 281–306. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71431-8_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, Jichun, and Yunqing Huang. "Time-Domain Finite Element Methods for Metamaterials." In Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials, 53–125. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33789-5_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Griffiths, David F. "Finite Element Methods for Time Dependent Problems." In Astrophysical Radiation Hydrodynamics, 327–57. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4754-2_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Time Finite Element Method"

1

Laroche, T., S. Ballandras, W. Daniau, J. Garcia, K. Dbich, M. Mayer, X. Perois, and K. Wagner. "Simulation of finite acoustic resonators from Finite Element Analysis based on mixed Boundary Element Method/Perfectly Matched Layer." In 2012 European Frequency and Time Forum (EFTF). IEEE, 2012. http://dx.doi.org/10.1109/eftf.2012.6502364.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Crawford, Zane D., Jie Li, Andrew Christlieb, and B. Shanker. "Unconditionally stable time-domain mixed finite-element method." In 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2017. http://dx.doi.org/10.1109/apusncursinrsm.2017.8072937.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Venkatarayalu, N., R. Lee, Yeow Beng Gan, and Le-Wei Li. "Hanging variables in finite element time domain method with hexahedral edge elements." In 17th International Zurich Symposium on Electromagnetic Compatibility. IEEE, 2006. http://dx.doi.org/10.1109/emczur.2006.214900.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gao, JingBo, MinQiang Xu, and RiXin Wang. "Study About Real-Time Finite Element Method Using CNN." In ASME 2003 Pressure Vessels and Piping Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/pvp2003-1908.

Повний текст джерела
Анотація:
The paper presents cellular neural network (CNN) for real-time finite element method, useful as calculating temperature field and thermal stress field for rotor of turbine and so on. The comparability between template of CNN and the stiffness matrix of finite element is analyzed, and the conception of finite element template (FMT) of CNN is discussed. The FMT can be suitable for finite element grid with arbitrary shape. In this paper, the FMT is simulated by temperature field of rotor of turbine, the result is right.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gedney, S. D., T. Kramer, C. Luo, J. A. Roden, R. Crawford, B. Guernsey, John Beggs, and J. A. Miller. "The Discontinuous Galerkin Finite Element Time Domain method (DGFETD)." In 2008 IEEE International Symposium on Electromagnetic Compatibility - EMC 2008. IEEE, 2008. http://dx.doi.org/10.1109/isemc.2008.4652146.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tuncer, O., B. Shanker, and L. C. Kempel. "Development of time domain vector generalized finite element method." In 2011 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting. IEEE, 2011. http://dx.doi.org/10.1109/aps.2011.5997155.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Taggar, Karanvir, Emad Gad, and Derek McNamara. "High-order unconditionally stable time-domain finite element method." In 2018 18th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM). IEEE, 2018. http://dx.doi.org/10.1109/antem.2018.8572958.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rahman, Azizur B. "Computationally Efficient Dual Perforated Finite Element Time Domain Method." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/iprsn.2013.im2b.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Skotniczny, Marcin, Anna Paszynska, and Maciej Paszynski. "ALGORITHM FOR FAST SIMULATIONS OF SPACE-TIME FINITE ELEMENT METHOD." In VII European Congress on Computational Methods in Applied Sciences and Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2016. http://dx.doi.org/10.7712/100016.1883.4831.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kwon, Soonwook, Inderjit Chopra, and Sung Lee. "Adaptive Finite Element in Time Method for Rotorcraft Analysis Using Element Size Control." In 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-1487.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Time Finite Element Method"

1

Ewsuk, K. G., J. G. Arguello, Jr, D. H. Zeuch, and A. F. Fossum. Real-Time Design of Improved Powder Pressing Dies Using Finite Element Method Modeling. Office of Scientific and Technical Information (OSTI), December 2000. http://dx.doi.org/10.2172/773876.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

White, D., M. Stowell, J. Koning, R. Rieben, A. Fisher, N. Champagne, and N. Madsen. Higher-Order Mixed Finite Element Methods for Time Domain Electromagnetics. Office of Scientific and Technical Information (OSTI), February 2004. http://dx.doi.org/10.2172/15014733.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dupont, T., R. Glowinski, W. Kinton, and M. F. Wheeler. Mixed Finite Element Methods for Time Dependent Problems: Application to Control. Fort Belvoir, VA: Defense Technical Information Center, September 1989. http://dx.doi.org/10.21236/ada455261.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rieben, Robert N. A Novel High Order Time Domain Vector Finite Element Method for the Simulation of Electromagnetic Devices. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/15014486.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

White, D. A. Discrete time vector finite element methods for solving maxwell`s equations on 3D unstructured grids. Office of Scientific and Technical Information (OSTI), September 1997. http://dx.doi.org/10.2172/16341.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yan, Yujie, and Jerome F. Hajjar. Automated Damage Assessment and Structural Modeling of Bridges with Visual Sensing Technology. Northeastern University, May 2021. http://dx.doi.org/10.17760/d20410114.

Повний текст джерела
Анотація:
Recent advances in visual sensing technology have gained much attention in the field of bridge inspection and management. Coupled with advanced robotic systems, state-of-the-art visual sensors can be used to obtain accurate documentation of bridges without the need for any special equipment or traffic closure. The captured visual sensor data can be post-processed to gather meaningful information for the bridge structures and hence to support bridge inspection and management. However, state-of-the-practice data postprocessing approaches require substantial manual operations, which can be time-consuming and expensive. The main objective of this study is to develop methods and algorithms to automate the post-processing of the visual sensor data towards the extraction of three main categories of information: 1) object information such as object identity, shapes, and spatial relationships - a novel heuristic-based method is proposed to automate the detection and recognition of main structural elements of steel girder bridges in both terrestrial and unmanned aerial vehicle (UAV)-based laser scanning data. Domain knowledge on the geometric and topological constraints of the structural elements is modeled and utilized as heuristics to guide the search as well as to reject erroneous detection results. 2) structural damage information, such as damage locations and quantities - to support the assessment of damage associated with small deformations, an advanced crack assessment method is proposed to enable automated detection and quantification of concrete cracks in critical structural elements based on UAV-based visual sensor data. In terms of damage associated with large deformations, based on the surface normal-based method proposed in Guldur et al. (2014), a new algorithm is developed to enhance the robustness of damage assessment for structural elements with curved surfaces. 3) three-dimensional volumetric models - the object information extracted from the laser scanning data is exploited to create a complete geometric representation for each structural element. In addition, mesh generation algorithms are developed to automatically convert the geometric representations into conformal all-hexahedron finite element meshes, which can be finally assembled to create a finite element model of the entire bridge. To validate the effectiveness of the developed methods and algorithms, several field data collections have been conducted to collect both the visual sensor data and the physical measurements from experimental specimens and in-service bridges. The data were collected using both terrestrial laser scanners combined with images, and laser scanners and cameras mounted to unmanned aerial vehicles.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Babuska, Ivo, Uday Banerjee, and John E. Osborn. Superconvergence in the Generalized Finite Element Method. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada440610.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Coyle, J. M., and J. E. Flaherty. Adaptive Finite Element Method II: Error Estimation. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada288358.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Babuska, I., and J. M. Melenk. The Partition of Unity Finite Element Method. Fort Belvoir, VA: Defense Technical Information Center, June 1995. http://dx.doi.org/10.21236/ada301760.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Graville. L51764 Hydrogen Cracking in the Heat-Affected Zone of High-Strength Steels-Year 2. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 1997. http://dx.doi.org/10.55274/r0010170.

Повний текст джерела
Анотація:
During year 1 of this project a test to evaluate the sensitivity of the heat affected zone (HAZ) to hydrogen cracking was developed. This was in response to a need for a test which provided unambiguous results in contrast to existing test methods which often led to difficulties in interpretation. For example, WIC tests usually cracked in the weld metal rather than the HAZ and therefore did not produce a clear indication of the sensistivity of the HAZ. The new test involves a machined notch which can be placed in the HAZ thus forcing crack initiation to occur in the desired region. A further advantage of the new test is that it is quantitative with each test specimen providing a measure of the sensitivity of the HAZ in that test. Existing tests are usually of the crack/no-crack type requiring a series of tests at different preheats to be carried out in order to establish a critical value. This is an expensive, time-consuming approach. The new test measures the deflection to first load drop (normally the onset of significant cracking) when the welded specimen is loaded in bending. It was also shown during the first year of the project that the simple geometry of the test lends itself to easy analysis enabling the stress/strain distribution to be calculated by finite element analysis. The quantitative measurement of susceptibility in the test enabled the cracking of more complex welds to be predicted on the basis of a local critical hydrogen model. The objective of the work was to extend the notched bend test to the evaluation of weld metal sensitivity to hydrogen cracking. The experiments were designed to determine whether the test could discriminate between two different weld metals and to study the effects of reducing hydrogen content. In addition, finite element analysis of the weld metal test was carried out and finite difference analysis used to predict the local hydrogen concentration. This work modifies the notched bend test, developed for evaluating the sensitivity of the heat affected zone (HAZ), to allow the evaluation of weld metal. The results showed that weld metal could readily be evaluated, with the test discriminating among weld metals of different composition and hydrogen contact. Finite element analysis was undertaken and showed that for the two weld metals tested, cracking occurred at the same local stress when the hydrogen content was the same, despite differences in strength. A finite model was used to calculate the distribution of hydrogen as a function of aging time. Although the general trends were confirmed by the experimental measurements of hydrogen content, there was considerable scatter attributed to the small hydrogen volumes measured.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії