Добірка наукової літератури з теми "THZ FREQUENCY"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "THZ FREQUENCY".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "THZ FREQUENCY"
Gu, Qun Jane, Zhiwei Xu, Heng-Yu Jian, Bo Pan, Xiaojing Xu, Mau-Chung Frank Chang, Wei Liu, and Harold Fetterman. "CMOS THz Generator With Frequency Selective Negative Resistance Tank." IEEE Transactions on Terahertz Science and Technology 2, no. 2 (March 2012): 193–202. http://dx.doi.org/10.1109/tthz.2011.2181922.
Повний текст джерелаKleine-Ostmann, Thomas, Christian Jastrow, Kai Baaske, Bernd Heinen, Michael Schwerdtfeger, Uwe Karst, Henning Hintzsche, Helga Stopper, Martin Koch, and Thorsten Schrader. "Field Exposure and Dosimetry in the THz Frequency Range." IEEE Transactions on Terahertz Science and Technology 4, no. 1 (January 2014): 12–25. http://dx.doi.org/10.1109/tthz.2013.2293115.
Повний текст джерелаYablokov, Anton A., Vladimir A. Anfertev, Leonid S. Revin, Vladimir Yu Balakirev, Mariya B. Chernyaeva, Elena G. Domracheva, Aleksey V. Illyuk, Sergey I. Pripolzin, and Vladimir L. Vaks. "Two-Frequency THz Spectroscopy for Analytical and Dynamical Research." IEEE Transactions on Terahertz Science and Technology 5, no. 5 (September 2015): 845–51. http://dx.doi.org/10.1109/tthz.2015.2463114.
Повний текст джерелаConsolino, Luigi, Malik Nafa, Michele De Regis, Francesco Cappelli, Saverio Bartalini, Akio Ito, Masahiro Hitaka, et al. "Direct Observation of Terahertz Frequency Comb Generation in Difference-Frequency Quantum Cascade Lasers." Applied Sciences 11, no. 4 (February 4, 2021): 1416. http://dx.doi.org/10.3390/app11041416.
Повний текст джерелаJarzab, Przemysław P., Kacper Nowak, and Edward F. Plinski. "Frequency aspects of the THz photomixer." Optics Communications 285, no. 6 (March 2012): 1308–13. http://dx.doi.org/10.1016/j.optcom.2011.09.053.
Повний текст джерелаZhang, Xiao Yu, Zhong Xin Zheng, Xin Xing Li, Ren Bing Tan, Zhi Peng Zhang, Yu Zhou, Jian Dong Sun, Bao Shun Zhang, and Hua Qin. "Terahertz Filter Based on Frequency Selective Surfaces." Advanced Materials Research 571 (September 2012): 362–66. http://dx.doi.org/10.4028/www.scientific.net/amr.571.362.
Повний текст джерелаYashchyshyn, Yevhen, and Konrad Godziszewski. "A New Method for Dielectric Characterization in Sub-THz Frequency Range." IEEE Transactions on Terahertz Science and Technology 8, no. 1 (January 2018): 19–26. http://dx.doi.org/10.1109/tthz.2017.2771309.
Повний текст джерелаDickie, Raymond, Robert Cahill, Vincent Fusco, Harold S. Gamble, and Neil Mitchell. "THz Frequency Selective Surface Filters for Earth Observation Remote Sensing Instruments." IEEE Transactions on Terahertz Science and Technology 1, no. 2 (November 2011): 450–61. http://dx.doi.org/10.1109/tthz.2011.2129470.
Повний текст джерелаLiu, Weilin, Jiejun Zhang, Maxime Rioux, Jeff Viens, Younes Messaddeq, and Jianping Yao. "Frequency Tunable Continuous THz Wave Generation in a Periodically Poled Fiber." IEEE Transactions on Terahertz Science and Technology 5, no. 3 (May 2015): 470–77. http://dx.doi.org/10.1109/tthz.2015.2412381.
Повний текст джерелаNazarov, Maxim, O. P. Cherkasova, and A. P. Shkurinov. "Spectroscopy of solutions in the low frequency extended THz frequency range." EPJ Web of Conferences 195 (2018): 10008. http://dx.doi.org/10.1051/epjconf/201819510008.
Повний текст джерелаДисертації з теми "THZ FREQUENCY"
Parvex, Pichaida Taky. "Astrometric precision spectroscopy: Experimental development of a dual-frequency laser synthesizer based on an optical frequency comb." Tesis, Universidad de Chile, 2018. http://repositorio.uchile.cl/handle/2250/159288.
Повний текст джерелаLa tecnología de terahercios se encuentra en un estado de desarrollo atrasado con respecto a las tecnologías usadas en las bandas adyacentes, como la óptica infrarroja o la electróni- ca de microondas. En particular, no se poseen fuentes compactas de radiación que operen dentro esta banda logrando buenos niveles de potencia y amplios rangos de frecuencia. Las útiles propiedades de la radiación de terahercios como su capacidad de detectar moléculas complejas, buena resolución espacial y ser radiación no ionizante, hacen que el desarrollo de tecnología para esta banda sea un área con creciente interés. En el contexto del desarrollo de una nueva línea de investigación sobre espectroscopía molecular, en el Laboratorio de Terahertz y Astrofotónica de la Universidad de Chile, se realiza este trabajo que consiste en el desarrollo experimental de un sistema láser para la ali- mentación de fotomezcladores. Este sistema tiene como objetivo la generación de dos señales ópticas de alta estabilidad y coherencia, cuya diferencia de frecuencias puede ser ajustada de forma continua dentro del rango de 10 GHz a 300 GHz. Para esto, se utiliza un esquema basado en un peine de frecuencias óptico sobre el cual se enclava por inyección un láser de diodos de frecuencia sintonizable. Esto consigue tener una fuente infrarroja de alta precisión dentro de un gran rango. Además, se genera una segunda señal por medio de modulación en amplitud (AM), la cual es sintonizable dentro de un rango igual al espaciado producido por el peine óptico. En conjunto, estas señales logran abarcar un amplio espectro de frecuencias de forma continua sin perder estabilidad ni calidad de las señales. En este trabajo se logra implementar los subsistemas para la generación de cada una de las señales requeridas y se estudia la capacidad de estos para trabajar dentro del rango deseado. Para la señal generada por enclavamiento por inyección, se logra probar el concepto dentro de un rango reducido, principalmente por falta de un buen sistema de medición de altas frecuencias. Para la señal generada por modulación AM, se logran resultados positivos en todo el rango de diseño. Finalmente, se proponen modificaciones al sistema para mejorar su desempeño.
Este trabajo ha sido parcialmente financiado por Conicyt, a través de su fondo ALMA para el desarrollo de la astronomía, Proyecto 31140025, QUIMAL, Proyecto 1500010, CATA-Basal PFB06 y Fondecyt 1151213
Dolasinski, Brian David. "Nonlinear systems for frequency conversion from IR to RF." University of Dayton / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1417804168.
Повний текст джерелаSuizu, Koji, Kodo Kawase, and 晃道 川瀬. "Monochromatic-Tunable Terahertz-Wave Sources Based on Nonlinear Frequency Conversion Using Lithium Niobate Crystal." IEEE, 2008. http://hdl.handle.net/2237/11170.
Повний текст джерелаWang, Cheng. "Wideband and fast THz spectrometer using dual-frequency-comb on CMOS." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/118025.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 71-75).
Millimeter-wave/terahertz rotational spectroscopy of polar gaseous molecules provides a powerful tool for complicated gas mixture analysis. Here, a 220-to-320 GHz dual-frequency-comb spectrometer in 65-nm bulk CMOS is presented, along with a systematic analysis on fundamental issues of rotational spectrometer, including the impacts of various noise mechanisms, gas cell, molecular properties, detection sensitivity, etc. The spectrometer utilizes two counter-propagating frequency-comb signals to seamlessly scan the broadband spectrum. The comb signal, with 10 equally-spaced frequency tones, is generated and detected by a chain of inter-locked transceivers on chip. Each transceiver is based on a multi-functional electromagnetic structure, which serves as frequency doubler, sub-harmonic mixer and on-chip radiator simultaneously. In particular, theory and design methodology of a dual transmission line feedback scheme are presented, which maximizes the transistor gain near its cut-off frequency fmax. The dual-frequency-comb scheme does not only improve the scanning speed by 20 x, but also reduces the overall energy consumption to 90 mJ/point with 1 Hz bandwidth (or 0.5 s integration time). With its channelized 100-GHz scanning range and sub-kHz specificity, wide range of molecules can be detected. In the measurements, state-of-the-art total radiated power of 5.2 mW and single sideband noise figure (NF) of 14.6~19.5 dB are achieved, which further boost the scanning speed and sensitivity. Lastly, spectroscopic measurements for carbonyl sulfide (OCS) and acetonitrile (CH3CN) are presented. With a path length of 70 cm and 1 Hz bandwidth, the measured minimum detectable absorption coefficient reaches [alpha] gas,min=7 .2 x 10-7 cm- 1 . For OCS, that enables a minimum detectable concentration of 11 ppm. The predicted sensitivity for some other molecules reaches ppm level (e.g. 3 ppm for hydrogen cyanide (HCN)), or 10 ppt level if gas pre-concentration with a typical gain of 10 5 is used.
by Cheng Wang.
S.M.
Paquet, Romain. "Nouvelles sources lasers pour génération THz." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTS017.
Повний текст джерелаThis work focuses on the design, realization and experimental study of highly coherent dual-frequency laser sources emitting at 1 µm for THz radiation generation by photomixing. We are particularly interested in vertical-external-cavity surface-emitting laser (VeCSEL), the aim being to obtain a robust dual-frequency continuous wave operation, based on simultaneous coexistence of two Laguerre-Gaussian transverse modes. We design intracavity transverse selective losses mask to select only the two Laguerre-Gaussian modes. The stable and simultaneous dual-frequency operation, the beat-frequency tunability range and the temporal coherence was specifically studied. We demonstrated THz emission by seeding a uni-travelling-carrier photodiode by an optically-pumped dual-frequency vertical-external-cavity surface-emitting
Cluff, Julian. "Time domain THz spectroscopy of semiconductors." Thesis, University of Bath, 2000. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311454.
Повний текст джерелаNiklas, Andrew John. "Characterization of Structured Nanomaterials using Terahertz Frequency Radiation." Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1347461386.
Повний текст джерелаThoma, Petra [Verfasser]. "Ultra-fast YBa2Cu3O7-x direct detectors for the THz frequency range / Petra Thoma." Karlsruhe : KIT Scientific Publishing, 2013. http://www.ksp.kit.edu.
Повний текст джерелаSung, Chieh. "Interaction of a relativistic electron beam with radiation in the THz frequency range." Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1679290761&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Повний текст джерелаWang, Yuekun. "In0.53Ga0.47As-In0.52Al0.48As multiple quantum well THz photoconductive switches and In0.53Ga0.47As-AlAs asymmetric spacer layer tunnel (ASPAT) diodes for THz electronics." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/in053ga047asin052al048as-multiple-quantum-well-thz-photoconductive-switches-and-in053ga047asalas-asymmetric-spacer-layer-tunnel-aspat-diodes-for-thz-electronics(5fd73bd5-aef3-476b-be1b-7498da3f9627).html.
Повний текст джерелаКниги з теми "THZ FREQUENCY"
M, Schneider, and United States. National Bureau of Standards, eds. p12sCp16sO laser frequency tables for the 34.2 to 62.3 THz (1139 to 2079 cmp-1s) region. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1988.
Знайти повний текст джерелаM, Schneider, and United States. National Bureau of Standards, eds. 12C16O laser frequency tables for the 34.2 to 62.3 THz (1139 to 2079 cm-1) region. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1988.
Знайти повний текст джерелаM, Schneider, and United States. National Bureau of Standards., eds. ¹²C¹⁶O laser frequency tables for the 34.2 to 62.3 THz (1139 to 2079 cm⁻¹) region. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1988.
Знайти повний текст джерелаA, Dax, and National Institute of Standards and Technology (U.S.), eds. Sub-Doppler frequency measurements on OCS at 87 THz (3.4 [micron]m) with the CO overtone laser: Considerations and details. Boulder, CO: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.
Знайти повний текст джерелаA, Dax, and National Institute of Standards and Technology (U.S.), eds. Sub-Doppler frequency measurements on OCS at 87 THz (3.4 [micron]m) with the CO overtone laser: Considerations and details. Boulder, CO: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.
Знайти повний текст джерелаA, Dax, and National Institute of Standards and Technology (U.S.), eds. Sub-Doppler frequency measurements on OCS at 87 THz (3.4 [micron]m) with the CO overtone laser: Considerations and details. Boulder, CO: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.
Знайти повний текст джерелаA, Dax, and National Institute of Standards and Technology (U.S.), eds. Sub-Doppler frequency measurements on OCS at 87 THz (3.4 [micron]m) with the CO overtone laser: Considerations and details. Boulder, CO: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.
Знайти повний текст джерелаA, Dax, and National Institute of Standards and Technology (U.S.), eds. Sub-Doppler frequency measurements on OCS at 87 THz (3.4 [micron]m) with the CO overtone laser: Considerations and details. Boulder, CO: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.
Знайти повний текст джерелаFrequency dictionary English: ENG. [Leipzig]: Leipziger Universitätsverlag, 2012.
Знайти повний текст джерелаThe Medusa frequency. London: Cape, 1987.
Знайти повний текст джерелаЧастини книг з теми "THZ FREQUENCY"
Whitford, B. G. "Phase-Locked Frequency Chains to 130 THz at NRC." In Frequency Standards and Metrology, 187–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74501-0_34.
Повний текст джерелаSertel, Kubilay, and Georgios C. Trichopoulos. "Non-contact Metrology for mm-Wave and THz Electronics." In High-Frequency GaN Electronic Devices, 283–99. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20208-8_10.
Повний текст джерелаClairon, A., O. Acef, C. Chardonnet, and C. J. Bordé. "State-of-the-Art for High Accuracy Frequency Standards in the 28 THz Range Using Saturated Absorption Resonances of OsO4 and CO2." In Frequency Standards and Metrology, 212–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74501-0_38.
Повний текст джерелаVieweg, Nico, Christian Jansen, and Martin Koch. "Liquid Crystals and their Applications in the THz Frequency Range." In Terahertz Spectroscopy and Imaging, 301–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29564-5_12.
Повний текст джерелаLuo, Jun, Dong Wei, and Xinyu Zhang. "Signal Sensing of Electrically Controlled Metamaterials Based on Terahertz Time-Domain Spectra (THz-TDS)." In Metamaterial-Based Optical and Radio Frequency Sensing, 137–63. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2965-8_8.
Повний текст джерелаÖzkan, Vedat Ali, Yıldız Menteşe, Taylan Takan, Asaf Behzat Şahin, and Hakan Altan. "Compressive Sensing Imaging at Sub-THz Frequency in Transmission Mode." In NATO Science for Peace and Security Series B: Physics and Biophysics, 49–55. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1093-8_7.
Повний текст джерелаDebbarma, N., S. Debbarma, J. Pal, and K. P. Ghatak. "Influence of THz Frequency on the Gate Capacitance in 2D QWFETs." In Lecture Notes in Electrical Engineering, 181–86. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6301-8_15.
Повний текст джерелаHellicar, Andrew D., Li Li, Kieran Greene, Greg Hislop, Stephen Hanham, Nasiha Nikolic, and Jia Dn. "A 500-700 GHz System for Exploring the THz Frequency Regime." In Advances in Broadband Communication and Networks, 37–54. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003337089-2.
Повний текст джерелаSchevchenko, Yuliaa, Apostolos Apostolakis, and Mauro F. Pereira. "Recent Advances in Superlattice Frequency Multipliers." In Terahertz (THz), Mid Infrared (MIR) and Near Infrared (NIR) Technologies for Protection of Critical Infrastructures Against Explosives and CBRN, 101–16. Dordrecht: Springer Netherlands, 2021. http://dx.doi.org/10.1007/978-94-024-2082-1_8.
Повний текст джерелаBeard, M. C., G. M. Turner, and C. A. Schmuttenmaer. "Low Frequency, Collective Solvent Dynamics Probed with Time-Resolved THz Spectroscopy." In ACS Symposium Series, 44–57. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2002-0820.ch004.
Повний текст джерелаТези доповідей конференцій з теми "THZ FREQUENCY"
Kumagai, Motohiro, Shigeo Nagano, Yoshihisa Irimajiri, Yuko Hanado, and Iwao Hosako. "Frequency calibration of distant THz quantum cascade laser by THz frequency reference transfer." In 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2016. http://dx.doi.org/10.1109/irmmw-thz.2016.7758852.
Повний текст джерелаCrowe, Thomas W., Brian Foley, Steve Durant, Kai Hui, Yiwei Duan, and Jeffrey L. Hesler. "VNA frequency extenders to 1.1 THz." In 2011 36th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2011). IEEE, 2011. http://dx.doi.org/10.1109/irmmw-thz.2011.6105028.
Повний текст джерелаHu, F., W. J. Otter, and S. Lucyszyn. "Optically tunable THz frequency metamaterial absorber." In 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2015. http://dx.doi.org/10.1109/irmmw-thz.2015.7327423.
Повний текст джерелаScalari, Giacomo, Andres Forrer, Tudor Olariu, David Stark, Mattias Beck, and Jerome Faist. "Broadband On-Chip Thz Frequency Combs." In 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018). IEEE, 2018. http://dx.doi.org/10.1109/irmmw-thz.2018.8510358.
Повний текст джерелаMezzapesa, Francesco P., Katia Garrasi, Valentino Pistore, Lianhe Li, A. Giles Davies, Edmund H. Linfield, Sukhdeep Dhillon, and Miriam S. Vitiello. "THz quantum cascade laser frequency combs." In 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2019. http://dx.doi.org/10.1109/irmmw-thz.2019.8874187.
Повний текст джерелаConsolino, L., S. Bartalini, A. Taschin, P. Bartolini, P. Cancio, M. De Pas, H. E. Beere, et al. "THz spectroscopy with an absolute frequency scale by a QCL phase-locked to a THz frequency comb." In 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2013). IEEE, 2013. http://dx.doi.org/10.1109/irmmw-thz.2013.6665715.
Повний текст джерелаHayashi, Kenta, Hajime Inaba, Kaoru Minoshima, and Takeshi Yasui. "THz frequency comb for precise frequency measurement of continuous-wave terahertz radiation." In 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2013). IEEE, 2013. http://dx.doi.org/10.1109/irmmw-thz.2013.6665714.
Повний текст джерелаPavelyev, Dmitry, Yuri Kochurinov, Yuan Ren, Jian Rong Gao, Niels Hovenier, Darren Hayton, Andrey Baryshev, and Andrey Khudchenko. "Superlattice devices applications in THz frequency range." In 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2012). IEEE, 2012. http://dx.doi.org/10.1109/irmmw-thz.2012.6380134.
Повний текст джерелаHubers, Heinz-Wilhelm. "Heterodyne receivers for high frequency THz astrophysics." In 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2014. http://dx.doi.org/10.1109/irmmw-thz.2014.6956070.
Повний текст джерелаWu, J., A. S. Mayorov, C. D. Wood, D. Mistry, L. H. Li, E. H. Linfield, A. G. Davies, and J. E. Cunningham. "On-chip THz-frequency tuneable plasmonic circuits." In 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2015. http://dx.doi.org/10.1109/irmmw-thz.2015.7327862.
Повний текст джерелаЗвіти організацій з теми "THZ FREQUENCY"
Kim, Sangwoo. Frequency Agile THz Detectors for Multiplicative Mixing. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada552127.
Повний текст джерелаSchneider, M. [12C16O] laser frequency tables for the 34.2 to 62.3 THz (1139 to 2079 cm-1) region. Gaithersburg, MD: National Bureau of Standards, 1988. http://dx.doi.org/10.6028/nbs.tn.1321.
Повний текст джерелаDax, Adrien M. Sub-doppler frequency measurements on OCS at 87 THz (3.4 *m) with the CO overtone Laser:. Gaithersburg, MD: National Bureau of Standards, 1994. http://dx.doi.org/10.6028/nist.tn.1365.
Повний текст джерелаHsiao, Ming-Yen, Yoo Jin Choo, I.-Chun Liu, Boudier-Revéret Mathieu, and Min Cheol Chang. Effect of Repetitive Transcranial Magnetic Stimulation on Post-stroke Dysphagia: Meta-analysis of Stimulation Frequency, Stimulation Site, and Timing of Outcome Measurement. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, April 2022. http://dx.doi.org/10.37766/inplasy2022.4.0005.
Повний текст джерелаLunsford, Kurt G. Business Cycles and Low-Frequency Fluctuations in the US Unemployment Rate. Federal Reserve Bank of Cleveland, August 2023. http://dx.doi.org/10.26509/frbc-wp-202319.
Повний текст джерелаWalls, F. L., John Gary, Abbie O'Gallagher, Roland Sweet, and Linda Sweet. Time domain frequency stability calculated from the frequency domain description :. Gaithersburg, MD: National Institute of Standards and Technology, 1989. http://dx.doi.org/10.6028/nist.ir.89-3916.
Повний текст джерелаWalls, F. L., John Gary, Abbie O'Gallagher, Roland Sweet, and Linda Sweet. Time domain frequency stability calculated from the frequency domain description :. Gaithersburg, MD: National Institute of Standards and Technology, 1991. http://dx.doi.org/10.6028/nist.ir.89-3916r1991.
Повний текст джерелаRice, Michael, and Erik Perrins. On Frequency Offset Estimation Using the iNET Preamble in Frequency Selective Fading Channels. Fort Belvoir, VA: Defense Technical Information Center, March 2014. http://dx.doi.org/10.21236/ada622041.
Повний текст джерелаBerlinski, Samuel, Matías Busso, Taryn Dinkelman, and Claudia Martínez. Research Insights: Can Low-Cost Communication Technologies Bridge Information Gaps between Schools and Parents? Inter-American Development Bank, October 2021. http://dx.doi.org/10.18235/0003737.
Повний текст джерелаKlemetti, Wayne I., Paul A. Kossey, John E. Rasmussen, and Maria Sueli Da Silveira Macedo Moura. VLF/LF (Very Low Frequency/Low Frequency) Reflection Properties of the Low Latitude Ionosphere. Fort Belvoir, VA: Defense Technical Information Center, February 1988. http://dx.doi.org/10.21236/ada205976.
Повний текст джерела