Добірка наукової літератури з теми "THZ FREQUENCY"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "THZ FREQUENCY".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "THZ FREQUENCY"

1

Gu, Qun Jane, Zhiwei Xu, Heng-Yu Jian, Bo Pan, Xiaojing Xu, Mau-Chung Frank Chang, Wei Liu, and Harold Fetterman. "CMOS THz Generator With Frequency Selective Negative Resistance Tank." IEEE Transactions on Terahertz Science and Technology 2, no. 2 (March 2012): 193–202. http://dx.doi.org/10.1109/tthz.2011.2181922.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kleine-Ostmann, Thomas, Christian Jastrow, Kai Baaske, Bernd Heinen, Michael Schwerdtfeger, Uwe Karst, Henning Hintzsche, Helga Stopper, Martin Koch, and Thorsten Schrader. "Field Exposure and Dosimetry in the THz Frequency Range." IEEE Transactions on Terahertz Science and Technology 4, no. 1 (January 2014): 12–25. http://dx.doi.org/10.1109/tthz.2013.2293115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yablokov, Anton A., Vladimir A. Anfertev, Leonid S. Revin, Vladimir Yu Balakirev, Mariya B. Chernyaeva, Elena G. Domracheva, Aleksey V. Illyuk, Sergey I. Pripolzin, and Vladimir L. Vaks. "Two-Frequency THz Spectroscopy for Analytical and Dynamical Research." IEEE Transactions on Terahertz Science and Technology 5, no. 5 (September 2015): 845–51. http://dx.doi.org/10.1109/tthz.2015.2463114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Consolino, Luigi, Malik Nafa, Michele De Regis, Francesco Cappelli, Saverio Bartalini, Akio Ito, Masahiro Hitaka, et al. "Direct Observation of Terahertz Frequency Comb Generation in Difference-Frequency Quantum Cascade Lasers." Applied Sciences 11, no. 4 (February 4, 2021): 1416. http://dx.doi.org/10.3390/app11041416.

Повний текст джерела
Анотація:
Terahertz quantum cascade laser sources based on intra-cavity difference frequency generation from mid-IR devices are an important asset for applications in rotational molecular spectroscopy and sensing, being the only electrically pumped device able to operate in the 0.6–6 THz range without the need of bulky and expensive liquid helium cooling. Here we present comb operation obtained by intra-cavity mixing of a distributed feedback laser at λ = 6.5 μm and a Fabry–Pérot device at around λ = 6.9 μm. The resulting ultra-broadband THz emission extends from 1.8 to 3.3 THz, with a total output power of 8 μW at 78 K. The THz emission has been characterized by multi-heterodyne detection with a primary frequency standard referenced THz comb, obtained by optical rectification of near infrared pulses. The down-converted beatnotes, simultaneously acquired, confirm an equally spaced THz emission down to 1 MHz accuracy. In the future, this setup can be used for Fourier transform based evaluation of the phase relation among the emitted THz modes, paving the way to room-temperature, compact, and field-deployable metrological grade THz frequency combs.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jarzab, Przemysław P., Kacper Nowak, and Edward F. Plinski. "Frequency aspects of the THz photomixer." Optics Communications 285, no. 6 (March 2012): 1308–13. http://dx.doi.org/10.1016/j.optcom.2011.09.053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhang, Xiao Yu, Zhong Xin Zheng, Xin Xing Li, Ren Bing Tan, Zhi Peng Zhang, Yu Zhou, Jian Dong Sun, Bao Shun Zhang, and Hua Qin. "Terahertz Filter Based on Frequency Selective Surfaces." Advanced Materials Research 571 (September 2012): 362–66. http://dx.doi.org/10.4028/www.scientific.net/amr.571.362.

Повний текст джерела
Анотація:
Terahertz filters based on the frequency selective surfaces (FSS) structure have been modeled and fabricated on the sapphire substrate. The terahertz (THz) transmission properties are investigated using a THz time-domain spectroscopy (THz-TDS) system. The designed two FSS-based THz filters exhibit the THz electromagnetic wave transmission and reflection characteristics, respectively, showing about 70% change of THz transmission at the frequency of 1.3 THz. It is suggested that the THz filtering effect results from the resonance behavior between THz plane-wave and resonant elements of designed metallic FSS structures. The agreement between experiments and simulations indicate that the designed THz filter show a great potential application for high-speed THz modulator.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yashchyshyn, Yevhen, and Konrad Godziszewski. "A New Method for Dielectric Characterization in Sub-THz Frequency Range." IEEE Transactions on Terahertz Science and Technology 8, no. 1 (January 2018): 19–26. http://dx.doi.org/10.1109/tthz.2017.2771309.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dickie, Raymond, Robert Cahill, Vincent Fusco, Harold S. Gamble, and Neil Mitchell. "THz Frequency Selective Surface Filters for Earth Observation Remote Sensing Instruments." IEEE Transactions on Terahertz Science and Technology 1, no. 2 (November 2011): 450–61. http://dx.doi.org/10.1109/tthz.2011.2129470.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liu, Weilin, Jiejun Zhang, Maxime Rioux, Jeff Viens, Younes Messaddeq, and Jianping Yao. "Frequency Tunable Continuous THz Wave Generation in a Periodically Poled Fiber." IEEE Transactions on Terahertz Science and Technology 5, no. 3 (May 2015): 470–77. http://dx.doi.org/10.1109/tthz.2015.2412381.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nazarov, Maxim, O. P. Cherkasova, and A. P. Shkurinov. "Spectroscopy of solutions in the low frequency extended THz frequency range." EPJ Web of Conferences 195 (2018): 10008. http://dx.doi.org/10.1051/epjconf/201819510008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "THZ FREQUENCY"

1

Parvex, Pichaida Taky. "Astrometric precision spectroscopy: Experimental development of a dual-frequency laser synthesizer based on an optical frequency comb." Tesis, Universidad de Chile, 2018. http://repositorio.uchile.cl/handle/2250/159288.

Повний текст джерела
Анотація:
Ingeniero Civil Eléctrico
La tecnología de terahercios se encuentra en un estado de desarrollo atrasado con respecto a las tecnologías usadas en las bandas adyacentes, como la óptica infrarroja o la electróni- ca de microondas. En particular, no se poseen fuentes compactas de radiación que operen dentro esta banda logrando buenos niveles de potencia y amplios rangos de frecuencia. Las útiles propiedades de la radiación de terahercios como su capacidad de detectar moléculas complejas, buena resolución espacial y ser radiación no ionizante, hacen que el desarrollo de tecnología para esta banda sea un área con creciente interés. En el contexto del desarrollo de una nueva línea de investigación sobre espectroscopía molecular, en el Laboratorio de Terahertz y Astrofotónica de la Universidad de Chile, se realiza este trabajo que consiste en el desarrollo experimental de un sistema láser para la ali- mentación de fotomezcladores. Este sistema tiene como objetivo la generación de dos señales ópticas de alta estabilidad y coherencia, cuya diferencia de frecuencias puede ser ajustada de forma continua dentro del rango de 10 GHz a 300 GHz. Para esto, se utiliza un esquema basado en un peine de frecuencias óptico sobre el cual se enclava por inyección un láser de diodos de frecuencia sintonizable. Esto consigue tener una fuente infrarroja de alta precisión dentro de un gran rango. Además, se genera una segunda señal por medio de modulación en amplitud (AM), la cual es sintonizable dentro de un rango igual al espaciado producido por el peine óptico. En conjunto, estas señales logran abarcar un amplio espectro de frecuencias de forma continua sin perder estabilidad ni calidad de las señales. En este trabajo se logra implementar los subsistemas para la generación de cada una de las señales requeridas y se estudia la capacidad de estos para trabajar dentro del rango deseado. Para la señal generada por enclavamiento por inyección, se logra probar el concepto dentro de un rango reducido, principalmente por falta de un buen sistema de medición de altas frecuencias. Para la señal generada por modulación AM, se logran resultados positivos en todo el rango de diseño. Finalmente, se proponen modificaciones al sistema para mejorar su desempeño.
Este trabajo ha sido parcialmente financiado por Conicyt, a través de su fondo ALMA para el desarrollo de la astronomía, Proyecto 31140025, QUIMAL, Proyecto 1500010, CATA-Basal PFB06 y Fondecyt 1151213
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dolasinski, Brian David. "Nonlinear systems for frequency conversion from IR to RF." University of Dayton / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1417804168.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Suizu, Koji, Kodo Kawase, and 晃道 川瀬. "Monochromatic-Tunable Terahertz-Wave Sources Based on Nonlinear Frequency Conversion Using Lithium Niobate Crystal." IEEE, 2008. http://hdl.handle.net/2237/11170.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wang, Cheng. "Wideband and fast THz spectrometer using dual-frequency-comb on CMOS." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/118025.

Повний текст джерела
Анотація:
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 71-75).
Millimeter-wave/terahertz rotational spectroscopy of polar gaseous molecules provides a powerful tool for complicated gas mixture analysis. Here, a 220-to-320 GHz dual-frequency-comb spectrometer in 65-nm bulk CMOS is presented, along with a systematic analysis on fundamental issues of rotational spectrometer, including the impacts of various noise mechanisms, gas cell, molecular properties, detection sensitivity, etc. The spectrometer utilizes two counter-propagating frequency-comb signals to seamlessly scan the broadband spectrum. The comb signal, with 10 equally-spaced frequency tones, is generated and detected by a chain of inter-locked transceivers on chip. Each transceiver is based on a multi-functional electromagnetic structure, which serves as frequency doubler, sub-harmonic mixer and on-chip radiator simultaneously. In particular, theory and design methodology of a dual transmission line feedback scheme are presented, which maximizes the transistor gain near its cut-off frequency fmax. The dual-frequency-comb scheme does not only improve the scanning speed by 20 x, but also reduces the overall energy consumption to 90 mJ/point with 1 Hz bandwidth (or 0.5 s integration time). With its channelized 100-GHz scanning range and sub-kHz specificity, wide range of molecules can be detected. In the measurements, state-of-the-art total radiated power of 5.2 mW and single sideband noise figure (NF) of 14.6~19.5 dB are achieved, which further boost the scanning speed and sensitivity. Lastly, spectroscopic measurements for carbonyl sulfide (OCS) and acetonitrile (CH3CN) are presented. With a path length of 70 cm and 1 Hz bandwidth, the measured minimum detectable absorption coefficient reaches [alpha] gas,min=7 .2 x 10-7 cm- 1 . For OCS, that enables a minimum detectable concentration of 11 ppm. The predicted sensitivity for some other molecules reaches ppm level (e.g. 3 ppm for hydrogen cyanide (HCN)), or 10 ppt level if gas pre-concentration with a typical gain of 10 5 is used.
by Cheng Wang.
S.M.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Paquet, Romain. "Nouvelles sources lasers pour génération THz." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTS017.

Повний текст джерела
Анотація:
Cette thèse porte sur la conception, la réalisation et l'étude expérimentale d'une source laser bifréquence de haute cohérence émettant à 1 µm en vue d'obtenir par photomélange un émetteur THz. Nous nous intéressons plus particulièrement aux lasers à semiconducteur émettant par la surface en cavité externe verticale (VeCSEL), l'objectif étant d'obtenir un fonctionnement laser bifréquence robuste en régime continu, basé sur la coexistence simultanée de deux modes transverses de Laguerre-Gauss. La sélection de seulement deux modes transverses est réalisée grâce à des masques de pertes insérés intracavité dans le plan transverses. Les caractéristiques du laser bifréquence, telles que l'équilibre entre les puissances des deux modes, le caractère monofréquence de chacun des deux modes, l'accordabilité de l'écart de fréquence, la simultanéité de l'émission et la cohérence du battement THz obtenu, sont étudiées. Enfin, la génération THz par photomélange est effectuée grâce au VeCSEL bifréquence et à une photodiode UTC commerciale
This work focuses on the design, realization and experimental study of highly coherent dual-frequency laser sources emitting at 1 µm for THz radiation generation by photomixing. We are particularly interested in vertical-external-cavity surface-emitting laser (VeCSEL), the aim being to obtain a robust dual-frequency continuous wave operation, based on simultaneous coexistence of two Laguerre-Gaussian transverse modes. We design intracavity transverse selective losses mask to select only the two Laguerre-Gaussian modes. The stable and simultaneous dual-frequency operation, the beat-frequency tunability range and the temporal coherence was specifically studied. We demonstrated THz emission by seeding a uni-travelling-carrier photodiode by an optically-pumped dual-frequency vertical-external-cavity surface-emitting
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cluff, Julian. "Time domain THz spectroscopy of semiconductors." Thesis, University of Bath, 2000. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311454.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Niklas, Andrew John. "Characterization of Structured Nanomaterials using Terahertz Frequency Radiation." Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1347461386.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Thoma, Petra [Verfasser]. "Ultra-fast YBa2Cu3O7-x direct detectors for the THz frequency range / Petra Thoma." Karlsruhe : KIT Scientific Publishing, 2013. http://www.ksp.kit.edu.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sung, Chieh. "Interaction of a relativistic electron beam with radiation in the THz frequency range." Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1679290761&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wang, Yuekun. "In0.53Ga0.47As-In0.52Al0.48As multiple quantum well THz photoconductive switches and In0.53Ga0.47As-AlAs asymmetric spacer layer tunnel (ASPAT) diodes for THz electronics." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/in053ga047asin052al048as-multiple-quantum-well-thz-photoconductive-switches-and-in053ga047asalas-asymmetric-spacer-layer-tunnel-aspat-diodes-for-thz-electronics(5fd73bd5-aef3-476b-be1b-7498da3f9627).html.

Повний текст джерела
Анотація:
This thesis is concerned with terahertz (THz) technology from both optical and electronic approaches. On the optical front, the investigation of optimised photoconductive switches included the characterisation, fabrication and testing of devices which can generate and detect THz radiation over the frequency range from DC to ~ 2.5 THz. These devices incorporated semiconductor photoconductors grown under low temperature (LT) Molecular Beam Epitaxy (MBE) conditions and using distributed Bragg reflectors (DBRs). The material properties were studied via numerous characterisation techniques which included Hall Effect and mid infrared reflections. Antenna structures were fabricated on the surface of the active layers and pulsed/continuous wave (CW) signal absorbed by these structures (under bias) generates photocurrent. With the help of the DBRs at certain wavelengths (800 nm and 1550 nm), the absorption coefficient at the corresponding illumination wavelength increased thus leading to significant increase of the THz output power while the materials kept the desirable photoconductive material properties such as high dark resistivity and high electron mobility. The inclusion of DBRs resulted in more than doubling of the THz peak signals across the entire operating frequency range and significant improvements in the relative THz power. For the THz electronic approach, a new type of InP-based Asymmetric Spacer Tunnel Diode (ASPAT), which can be used for high frequency detector, was studied. The asymmetric DC characteristics for this novel tunnel diode showed direct compatibility with high frequency zero-bias detector applications. The devices also showed an extreme thermal stability (less than 7.8% current change from 77 K to 400 K) as the main carrier transport mechanism of the ASPAT was tunnelling. Physical models for this ASPAT diode were developed for both DC (direct current) and AC (alternating current) simulations using the TCAD software tool SILVACO. The simulated DC results showed almost perfect matches with measurements across the entire temperature range from 77 K to 400 K. From RF (radio frequency) measurements, the intrinsic diode parameters were extracted and compared with measured data. The simulated zero biased detector circuits operating at 100 GHz and 240 GHz using the new InGaAs-AlAs ASPAT diode (4*4 micrometer square) showed comparable voltage sensitivities to state of the art Schottky barrier diodes (SBDs) detectors but with the added advantage of excellent thermal stability.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "THZ FREQUENCY"

1

M, Schneider, and United States. National Bureau of Standards, eds. p12sCp16sO laser frequency tables for the 34.2 to 62.3 THz (1139 to 2079 cmp-1s) region. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

M, Schneider, and United States. National Bureau of Standards, eds. 12C16O laser frequency tables for the 34.2 to 62.3 THz (1139 to 2079 cm-1) region. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

M, Schneider, and United States. National Bureau of Standards., eds. ¹²C¹⁶O laser frequency tables for the 34.2 to 62.3 THz (1139 to 2079 cm⁻¹) region. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

A, Dax, and National Institute of Standards and Technology (U.S.), eds. Sub-Doppler frequency measurements on OCS at 87 THz (3.4 [micron]m) with the CO overtone laser: Considerations and details. Boulder, CO: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

A, Dax, and National Institute of Standards and Technology (U.S.), eds. Sub-Doppler frequency measurements on OCS at 87 THz (3.4 [micron]m) with the CO overtone laser: Considerations and details. Boulder, CO: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

A, Dax, and National Institute of Standards and Technology (U.S.), eds. Sub-Doppler frequency measurements on OCS at 87 THz (3.4 [micron]m) with the CO overtone laser: Considerations and details. Boulder, CO: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

A, Dax, and National Institute of Standards and Technology (U.S.), eds. Sub-Doppler frequency measurements on OCS at 87 THz (3.4 [micron]m) with the CO overtone laser: Considerations and details. Boulder, CO: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

A, Dax, and National Institute of Standards and Technology (U.S.), eds. Sub-Doppler frequency measurements on OCS at 87 THz (3.4 [micron]m) with the CO overtone laser: Considerations and details. Boulder, CO: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Frequency dictionary English: ENG. [Leipzig]: Leipziger Universitätsverlag, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

The Medusa frequency. London: Cape, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "THZ FREQUENCY"

1

Whitford, B. G. "Phase-Locked Frequency Chains to 130 THz at NRC." In Frequency Standards and Metrology, 187–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74501-0_34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sertel, Kubilay, and Georgios C. Trichopoulos. "Non-contact Metrology for mm-Wave and THz Electronics." In High-Frequency GaN Electronic Devices, 283–99. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20208-8_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Clairon, A., O. Acef, C. Chardonnet, and C. J. Bordé. "State-of-the-Art for High Accuracy Frequency Standards in the 28 THz Range Using Saturated Absorption Resonances of OsO4 and CO2." In Frequency Standards and Metrology, 212–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74501-0_38.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Vieweg, Nico, Christian Jansen, and Martin Koch. "Liquid Crystals and their Applications in the THz Frequency Range." In Terahertz Spectroscopy and Imaging, 301–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29564-5_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Luo, Jun, Dong Wei, and Xinyu Zhang. "Signal Sensing of Electrically Controlled Metamaterials Based on Terahertz Time-Domain Spectra (THz-TDS)." In Metamaterial-Based Optical and Radio Frequency Sensing, 137–63. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2965-8_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Özkan, Vedat Ali, Yıldız Menteşe, Taylan Takan, Asaf Behzat Şahin, and Hakan Altan. "Compressive Sensing Imaging at Sub-THz Frequency in Transmission Mode." In NATO Science for Peace and Security Series B: Physics and Biophysics, 49–55. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1093-8_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Debbarma, N., S. Debbarma, J. Pal, and K. P. Ghatak. "Influence of THz Frequency on the Gate Capacitance in 2D QWFETs." In Lecture Notes in Electrical Engineering, 181–86. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6301-8_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hellicar, Andrew D., Li Li, Kieran Greene, Greg Hislop, Stephen Hanham, Nasiha Nikolic, and Jia Dn. "A 500-700 GHz System for Exploring the THz Frequency Regime." In Advances in Broadband Communication and Networks, 37–54. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003337089-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Schevchenko, Yuliaa, Apostolos Apostolakis, and Mauro F. Pereira. "Recent Advances in Superlattice Frequency Multipliers." In Terahertz (THz), Mid Infrared (MIR) and Near Infrared (NIR) Technologies for Protection of Critical Infrastructures Against Explosives and CBRN, 101–16. Dordrecht: Springer Netherlands, 2021. http://dx.doi.org/10.1007/978-94-024-2082-1_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Beard, M. C., G. M. Turner, and C. A. Schmuttenmaer. "Low Frequency, Collective Solvent Dynamics Probed with Time-Resolved THz Spectroscopy." In ACS Symposium Series, 44–57. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2002-0820.ch004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "THZ FREQUENCY"

1

Kumagai, Motohiro, Shigeo Nagano, Yoshihisa Irimajiri, Yuko Hanado, and Iwao Hosako. "Frequency calibration of distant THz quantum cascade laser by THz frequency reference transfer." In 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2016. http://dx.doi.org/10.1109/irmmw-thz.2016.7758852.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Crowe, Thomas W., Brian Foley, Steve Durant, Kai Hui, Yiwei Duan, and Jeffrey L. Hesler. "VNA frequency extenders to 1.1 THz." In 2011 36th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2011). IEEE, 2011. http://dx.doi.org/10.1109/irmmw-thz.2011.6105028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hu, F., W. J. Otter, and S. Lucyszyn. "Optically tunable THz frequency metamaterial absorber." In 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2015. http://dx.doi.org/10.1109/irmmw-thz.2015.7327423.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Scalari, Giacomo, Andres Forrer, Tudor Olariu, David Stark, Mattias Beck, and Jerome Faist. "Broadband On-Chip Thz Frequency Combs." In 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018). IEEE, 2018. http://dx.doi.org/10.1109/irmmw-thz.2018.8510358.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mezzapesa, Francesco P., Katia Garrasi, Valentino Pistore, Lianhe Li, A. Giles Davies, Edmund H. Linfield, Sukhdeep Dhillon, and Miriam S. Vitiello. "THz quantum cascade laser frequency combs." In 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2019. http://dx.doi.org/10.1109/irmmw-thz.2019.8874187.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Consolino, L., S. Bartalini, A. Taschin, P. Bartolini, P. Cancio, M. De Pas, H. E. Beere, et al. "THz spectroscopy with an absolute frequency scale by a QCL phase-locked to a THz frequency comb." In 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2013). IEEE, 2013. http://dx.doi.org/10.1109/irmmw-thz.2013.6665715.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hayashi, Kenta, Hajime Inaba, Kaoru Minoshima, and Takeshi Yasui. "THz frequency comb for precise frequency measurement of continuous-wave terahertz radiation." In 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2013). IEEE, 2013. http://dx.doi.org/10.1109/irmmw-thz.2013.6665714.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pavelyev, Dmitry, Yuri Kochurinov, Yuan Ren, Jian Rong Gao, Niels Hovenier, Darren Hayton, Andrey Baryshev, and Andrey Khudchenko. "Superlattice devices applications in THz frequency range." In 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2012). IEEE, 2012. http://dx.doi.org/10.1109/irmmw-thz.2012.6380134.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hubers, Heinz-Wilhelm. "Heterodyne receivers for high frequency THz astrophysics." In 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2014. http://dx.doi.org/10.1109/irmmw-thz.2014.6956070.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wu, J., A. S. Mayorov, C. D. Wood, D. Mistry, L. H. Li, E. H. Linfield, A. G. Davies, and J. E. Cunningham. "On-chip THz-frequency tuneable plasmonic circuits." In 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2015. http://dx.doi.org/10.1109/irmmw-thz.2015.7327862.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "THZ FREQUENCY"

1

Kim, Sangwoo. Frequency Agile THz Detectors for Multiplicative Mixing. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada552127.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Schneider, M. [12C16O] laser frequency tables for the 34.2 to 62.3 THz (1139 to 2079 cm-1) region. Gaithersburg, MD: National Bureau of Standards, 1988. http://dx.doi.org/10.6028/nbs.tn.1321.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dax, Adrien M. Sub-doppler frequency measurements on OCS at 87 THz (3.4 *m) with the CO overtone Laser:. Gaithersburg, MD: National Bureau of Standards, 1994. http://dx.doi.org/10.6028/nist.tn.1365.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hsiao, Ming-Yen, Yoo Jin Choo, I.-Chun Liu, Boudier-Revéret Mathieu, and Min Cheol Chang. Effect of Repetitive Transcranial Magnetic Stimulation on Post-stroke Dysphagia: Meta-analysis of Stimulation Frequency, Stimulation Site, and Timing of Outcome Measurement. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, April 2022. http://dx.doi.org/10.37766/inplasy2022.4.0005.

Повний текст джерела
Анотація:
Review question / Objective: Dysphagia is one of the most frequent sequelae after stroke. It can result in various complications, such as malnutrition, dehydration, aspiration pneumonia, and poor rehabilitation outcomes. Repetitive transcranial magnetic stimulation (rTMS) is reported to improve dysphagia after stroke; however, the details remain unclear. We evaluated the following rTMS parameters on post-stroke dysphagia: stimulation frequency (high frequency [≥3 Hz] or low frequency [1 Hz]), stimulation site (ipsilesional mylohyoid cortex or contralesional mylohyoid cortex), and outcome measurement timing (immediately, 3 weeks, and 4 weeks after the rTMS session).
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lunsford, Kurt G. Business Cycles and Low-Frequency Fluctuations in the US Unemployment Rate. Federal Reserve Bank of Cleveland, August 2023. http://dx.doi.org/10.26509/frbc-wp-202319.

Повний текст джерела
Анотація:
I show that business cycles can generate most of the low-frequency movements in the unemployment rate. First, I provide evidence that the unemployment rate is stationary, while its flows have unit roots. Then, I model the log unemployment rate as the error correction term of log labor flows in a vector error correction model (VECM) with intercepts that change over the business cycle. Feeding historical expansions and recessions into the VECM generates large low-frequency movements in the unemployment rate. Frequent recessions from the late 1960s to the early 1980s interrupt labor market recoveries and ratchet the unemployment rate upward. Long expansions in the 1980s and 1990s undo this upward ratcheting. Finally, the VECM predicts that the unemployment rate will be near 3.6 percent after a 10-year expansion and that lower unemployment rates are possible with longer expansions.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Walls, F. L., John Gary, Abbie O'Gallagher, Roland Sweet, and Linda Sweet. Time domain frequency stability calculated from the frequency domain description :. Gaithersburg, MD: National Institute of Standards and Technology, 1989. http://dx.doi.org/10.6028/nist.ir.89-3916.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Walls, F. L., John Gary, Abbie O'Gallagher, Roland Sweet, and Linda Sweet. Time domain frequency stability calculated from the frequency domain description :. Gaithersburg, MD: National Institute of Standards and Technology, 1991. http://dx.doi.org/10.6028/nist.ir.89-3916r1991.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rice, Michael, and Erik Perrins. On Frequency Offset Estimation Using the iNET Preamble in Frequency Selective Fading Channels. Fort Belvoir, VA: Defense Technical Information Center, March 2014. http://dx.doi.org/10.21236/ada622041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Berlinski, Samuel, Matías Busso, Taryn Dinkelman, and Claudia Martínez. Research Insights: Can Low-Cost Communication Technologies Bridge Information Gaps between Schools and Parents? Inter-American Development Bank, October 2021. http://dx.doi.org/10.18235/0003737.

Повний текст джерела
Анотація:
We document large gaps between parents knowledge and school reports of students attendance and grades. Sending frequent text messages with information on attendance, grades and school behavior shrinks those gaps. Parents of at-risk students adjust their understanding of their children's performance to the greatest degree. High-frequency text messages had positive impacts on grades and attendance. Math GPA increased 0.08 of a standard deviation; the probability of earning a passing grade in math increased by 2.7 percentage points (relative to a mean of 90 percent). The intervention also reduced school absenteeism by 1 percentage point and increased the share of students who met attendance requirements for grade promotion by 4.5 percentage points.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Klemetti, Wayne I., Paul A. Kossey, John E. Rasmussen, and Maria Sueli Da Silveira Macedo Moura. VLF/LF (Very Low Frequency/Low Frequency) Reflection Properties of the Low Latitude Ionosphere. Fort Belvoir, VA: Defense Technical Information Center, February 1988. http://dx.doi.org/10.21236/ada205976.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії