Добірка наукової літератури з теми "THz emission sources"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "THz emission sources".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "THz emission sources"
Andronov, A. A., A. V. Ikonnikov, K. V. Maremianin, V. I. Pozdnjakova, Y. N. Nozdrin, A. A. Marmalyuk, A. A. Padalitsa, et al. "THz stimulated emission from simple superlattice in positive differential conductivity region." Физика и техника полупроводников 52, no. 4 (2018): 463. http://dx.doi.org/10.21883/ftp.2018.04.45812.01.
Повний текст джерелаWang, Maorong, Yifan Zhang, Leilei Guo, Mengqi Lv, Peng Wang, and Xia Wang. "Spintronics Based Terahertz Sources." Crystals 12, no. 11 (November 18, 2022): 1661. http://dx.doi.org/10.3390/cryst12111661.
Повний текст джерелаHu, Qing. "Generation of Terahertz Emission Based on Intersubband Transitions." International Journal of High Speed Electronics and Systems 12, no. 04 (December 2002): 995–1024. http://dx.doi.org/10.1142/s0129156402001897.
Повний текст джерелаWang, Suyun. "Terahertz Emission Modeling of Lunar Regolith." Remote Sensing 16, no. 21 (October 30, 2024): 4037. http://dx.doi.org/10.3390/rs16214037.
Повний текст джерелаMinkevičius, Linas, Liang Qi, Agnieszka Siemion, Domas Jokubauskis, Aleksander Sešek, Andrej Švigelj, Janez Trontelj, Dalius Seliuta, Irmantas Kašalynas, and Gintaras Valušis. "Titanium-Based Microbolometers: Control of Spatial Profile of Terahertz Emission in Weak Power Sources." Applied Sciences 10, no. 10 (May 14, 2020): 3400. http://dx.doi.org/10.3390/app10103400.
Повний текст джерелаChen, Yuxuan, Yuhang He, Liyuan Liu, Zhen Tian, Jianming Dai, and Xi-Cheng Zhang. "Backward THz Emission from Two-Color Laser Field-Induced Air Plasma Filament." Sensors 23, no. 10 (May 10, 2023): 4630. http://dx.doi.org/10.3390/s23104630.
Повний текст джерелаHuang, Hsin-hui, Takeshi Nagashima, Wei-hung Hsu, Saulius Juodkazis, and Koji Hatanaka. "Dual THz Wave and X-ray Generation from a Water Film under Femtosecond Laser Excitation." Nanomaterials 8, no. 7 (July 13, 2018): 523. http://dx.doi.org/10.3390/nano8070523.
Повний текст джерелаHawecker, J., E. Rongione, A. Markou, S. Krishnia, F. Godel, S. Collin, R. Lebrun, et al. "Spintronic THz emitters based on transition metals and semi-metals/Pt multilayers." Applied Physics Letters 120, no. 12 (March 21, 2022): 122406. http://dx.doi.org/10.1063/5.0079955.
Повний текст джерелаLange, Simon Jappe, Matthias C. Hoffmann, and Peter Uhd Jepsen. "Lightwave-driven electron emission for polarity-sensitive terahertz beam profiling." APL Photonics 8, no. 1 (January 1, 2023): 016105. http://dx.doi.org/10.1063/5.0125947.
Повний текст джерелаConsolino, Luigi, Malik Nafa, Michele De Regis, Francesco Cappelli, Saverio Bartalini, Akio Ito, Masahiro Hitaka, et al. "Direct Observation of Terahertz Frequency Comb Generation in Difference-Frequency Quantum Cascade Lasers." Applied Sciences 11, no. 4 (February 4, 2021): 1416. http://dx.doi.org/10.3390/app11041416.
Повний текст джерелаДисертації з теми "THz emission sources"
Abdul, Hadi Zeinab. "Terahertz emission spectroscopy of multiferroic bismuth ferrite : insights into ultrafast currents and phonon dynamics." Electronic Thesis or Diss., Le Mans, 2024. http://www.theses.fr/2024LEMA1030.
Повний текст джерелаTerahertz (THz) technologies have attracted significant interest in the scientific community due to their unique position in the electromagnetic spectrum, bridging the gap between the microwave and infrared regions. This radiation is non-ionizing and can penetrate various materials without causing damage, making it highly attractive for numerous potential applications. Recent advances in ultrafast laser technology have expanded the exploration of THz radiation into a wide range of exciting technologies. It’s now being used in fields like medicine for new imaging techniques, in spectroscopy for analyzing materials, in information and communication technology for faster data transfer, and even in security, agriculture, quality control and fundamental material science. Consequently, the development of efficient and tunable THz sources has become a major focus within the THz community to expand these applications further, motivating the exploration of new materials and emission mechanisms. In my PhD project, I have explored a promising new THz emitter: the well-known multiferroic material ‘Bismuth Ferrite’ (BiFeO3). This multiferroic material is particularly interesting due to its distinctive multiferroic properties. BiFeO3 exhibits both a large ferroelectric polarization and a antiferromagnetic order at room temperature offering a unique interplay of ferroelectric and magnetic orders and making this material a promising candidate for THz generation. Using a THz emission spectroscopy setup that I constructed, with its electro-optical sampling detection, I examine THz emission from three distinct BiFeO3 samples. First one with in-plane polarization, another with out-of-plane polarization, and a third presenting striped domains with two orientations of polarization. This technique allows for the direct observation and analysis of THz radiation emitted by these samples upon above gap laser excitation. The experimental investigation involves a detailed study of the THz transient signals emitted from the BiFeO3 samples under varying experimental conditions. By varying the pump wavelengths, sample orientations, directions of pump light polarization, and pump power levels, we can explore how these factors influence the THz emission. Following this, we extract the carrier dynamics (ultrafast current) and lattice vibrations (optical phonons) contributions to this THz transient. And finally, by analyzing their response to experimental parameters changes, we can have a deeper understanding of the physical mechanisms contributing to these ultrafast dynamics and THz emission in BiFeO3
Ayoub, Anas. "Sources laser ultrarapides performantes dans le moyen IR et le Tz." Thesis, Normandie, 2020. http://www.theses.fr/2020NORMR044.
Повний текст джерелаThe atome probe tomography is an instrument for analyzing matter in three dimensions with atomic resolution. This instrument relies on the effect of an electric field generated at the end of a sample cut into the shape of a nanoscale needle to evaporate the surface atoms which are collected by a two-dimensional detector. The measurement of the time of flight of the ions whose evaporation is triggered by an electrical or optical pulse makes it possible to measure the chemical composition in addition to the 3D localization of the atoms. In current atome probes, atomic evaporation is triggered by a high-speed laser emitting in the UV. However, the interaction of UV light with matter induces thermal heating which limits the mass resolution of the instrument and prevents its use for the analysis of fragile materials such as biocompatible components. This thesis work aims to study solutions to promote rapid evaporation while inhibiting unwanted thermal effects of the laser in atome probe. Our approach consists in exploiting ultrashort pulses in the mid-infrared or THz domain due to their high ponderomotive energy associated with low photon energy. This manuscript reports on the development of a bench for the generation and characterization of intense THz pulses. Coupling these radiations with a negatively polarized metallic nanotip has made it possible to characterize the near field induced at the surface of the nanotip, which is strongly modified by the antenna effect. The second part reports on the development of an ultra-fast laser source tunable in the mid-infrared around 3 mm using fluoride glass fibers
Copperwheat, C. M. "The optical emission from ultraluminous X-ray sources." Thesis, University College London (University of London), 2007. http://discovery.ucl.ac.uk/1445395/.
Повний текст джерелаXiu, Meng. "Evaluating the emission of air pollutants from different sources." Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/235386/1/Meng%2BXiu%2BThesis%284%29.pdf.
Повний текст джерелаDomański, Grzegorz. "The contribution of different sources to the total CO2 emission from soils /." Stuttgart : Inst. für Bodenkunde und Standortslehre, 2003. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=012802754&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Повний текст джерелаLohmann, Rainer. "Studies on the atmospheric sources, fate and behaviour of dioxins and furans." Thesis, Lancaster University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322093.
Повний текст джерелаHolt, Joanna. "An observational study of the emission line systems in compact radio sources." Thesis, University of Sheffield, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419256.
Повний текст джерелаHunter, Gillian C. "The behaviour of plumes from point sources in stratified flows." Thesis, Open University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315334.
Повний текст джерелаUrsini, Francesco. "Constraining the high energy emission sources in the environment of supermassive black holes." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY062/document.
Повний текст джерелаSupermassive black holes of several hundred million solar masses lie at the centre of most massive galaxies. In 90% of cases, these black holes are in quiescent, very low luminous states. Nevertheless, in the remaining 10%, extremely violent processes are seen, with the liberation of huge amounts of energy especially in the UV, X-ray and gamma-ray bands. We also sometimes observe powerful jets, extending up to several hundred kpc scales. The cores of these galaxies are called Active Galactic Nuclei (AGNs). These are among the most luminous objects in the Universe. The accretion of surrounding matter onto the central supermassive black hole is generally considered as the most likely energy source to explain the extraordinary observed luminosity. The gravitational energy would be partly liberated into an accretion disc as thermal radiation peaking in the optical/UV band, and partly radiated in the X-ray/gamma-ray band by a corona of hot plasma lying in the environment close to the black hole.However, several phenomena are still poorly understood and a number of questions lacks satisfactory answers: what are the dynamics and the structure of the accretion and ejection flows in AGNs? What are the radiative processes producing the UV/X-ray radiation? What is the origin of the different spectral components present in those energy bands? The goal of this thesis is to derive new observational constraints to better answer to these questions. Its originality resides in the development and application of realistic models of thermal Comptonization, allowing on the one hand to better constrain the physical and geometrical properties of the UV and X-ray-emitting regions, and on the other hand to better understand the origin of the different observed spectral components. In particular, we studied the excess of the soft (<2 keV) X-ray emission, seen in a great number of AGNs, and whose origin is still unknown.This work is structured along two main branches. One is the detailed spectral analysis of long, multiwavelength observational campaigns on three Seyfert galaxies (NGC 5548, NGC 7213 and NGC 4593). The quality of the data permitted to reveal the geometrical and physical parameters (in particular the temperature and optical depth) of the thermal corona producing the X-ray continuum. The second branch is based on the analysis of archival data (from the XMM-newton satellite) of a large sample of Seyfert galaxies. This allowed us to derive more general constraints on the high-energy emission processes observed in these objects. These two approaches have shown, in particular, that the soft X-ray emission excess may arise in the warm upper layers of the accretion disc, suggesting a more effective heating of the surface rather than the inner regions
Falcetelli, Francesco. "Modelling of Pencil-Lead Break Acoustic Emission Sources using the Time Reversal Technique." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16554/.
Повний текст джерелаКниги з теми "THz emission sources"
California Environmental Protection Agency. Air Resources Board. Stationary Source Division., California Environmental Protection Agency. Air Resources Board. Mobile Source Division., and California Environmental Protection Agency. Air Resources Board., eds. Mobile source emission reduction credits: Guidelines for the generation and use of mobile source emission reduction credits. [Sacamento]: State of California, California Environmental Protection Agency, Air Resources Board, 1993.
Знайти повний текст джерелаF, Jones B., and United States. National Aeronautics and Space Administration., eds. Optical spectroscopy of IRAS sources with the infrared emission bands. [Washington, DC: National Aeronautics and Space Administration, 1987.
Знайти повний текст джерелаUnited States. Environmental Protection Agency. Office of Air Quality Planning and Standards. Technical Support Division and Atmospheric Research and Exposure Assessment Laboratory (U.S.). Quality Assurance Division, eds. Protocol for the field validation of emission concentrations from stationary sources. Research Triangle Park, NC: Technical Support Division, Office of Air Quality Planning and Standards and Quality Assurance Division, Atmospheric Research and Exposure Assessment Laboratory, U.S. Environmental Protection Agency, 1991.
Знайти повний текст джерелаDaywitt, William C. 10-60 GHz G/T measurements using the sun as a source: A preliminary study. [Washington, D.C.]: National Bureau of Standards, Dept. of Commerce, 1986.
Знайти повний текст джерелаDaywitt, William C. 10-60 GHz G/T measurements using the sun as a source: A preliminary study. [Washington, D.C.]: National Bureau of Standards, Dept. of Commerce, 1986.
Знайти повний текст джерелаDaywitt, William C. 10-60 GHz G/T measurements using the sun as a source: A preliminary study. [Washington, D.C.]: National Bureau of Standards, Dept. of Commerce, 1986.
Знайти повний текст джерелаDaywitt, William C. 10-60 GHz G/T measurements using the sun as a source: A preliminary study. [Washington, D.C.]: National Bureau of Standards, Dept. of Commerce, 1986.
Знайти повний текст джерелаKananaskis Centre for Environmental Research. Results of the emission source surveys: Emission inventory of sulphur oxides and nitrogen oxides in Alberta. S.l: s.n, 1987.
Знайти повний текст джерелаAnuradha, Koratkar, and United States. National Aeronautics and Space Administration., eds. The nature of the energy source in LINERs. [Washington, DC: National Aeronautics and Space Administration, 1996.
Знайти повний текст джерелаInternational Vacuum Electron Sources Conference (5th 2004 Beijing, China). IVESC2004: The 5th International Vacuum Electron Sources Conference : proceedings : September 6-10, 2004, the Media Center Hotel, Beijing, China. Piscataway, N.J: IEEE, 2004.
Знайти повний текст джерелаЧастини книг з теми "THz emission sources"
Zaman, M., K. Kleineidam, L. Bakken, J. Berendt, C. Bracken, K. Butterbach-Bahl, Z. Cai, et al. "Methane Production in Ruminant Animals." In Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques, 177–211. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55396-8_6.
Повний текст джерелаBikam, Peter Bitta. "Technology Innovations in Green Transport." In Green Economy in the Transport Sector, 37–49. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86178-0_4.
Повний текст джерелаZaman, M., K. Kleineidam, L. Bakken, J. Berendt, C. Bracken, K. Butterbach-Bahl, Z. Cai, et al. "Greenhouse Gases from Agriculture." In Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques, 1–10. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55396-8_1.
Повний текст джерелаGoodrick, Scott L., Leland W. Tarnay, Bret A. Anderson, Janice L. Coen, James H. Furman, Rodman R. Linn, Philip J. Riggan, and Christopher C. Schmidt. "Fire Behavior and Heat Release as Source Conditions for Smoke Modeling." In Wildland Fire Smoke in the United States, 51–81. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87045-4_3.
Повний текст джерелаBrunetti, G., G. Setti, and A. Comastri. "On the X-Ray Emission from the Powerful Radio Galaxies." In Extragalactic Radio Sources, 407–8. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0295-4_145.
Повний текст джерелаCarvalho, Joel C. "On the Age of GPS Radio Sources." In Multi-Wavelength Continuum Emission of AGN, 424. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-010-9537-2_134.
Повний текст джерелаRuijing, Shi, Ren Peng, Fan Xiaochao, and Wang Jianglei. "Study on Optimization Operation of Micro-energy Network Considering Electro-ammonia Conversion." In Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 452–64. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_44.
Повний текст джерелаRöttgering, Huub. "Distant Radio Galaxies: The Strong Link between the Radio and Optical Emission." In Extragalactic Radio Sources, 583–84. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0295-4_208.
Повний текст джерелаBicknell, G. V., M. A. Dopita, and C. P. O’dea. "Shock Excitation of Emission Lines and the Relation to GPS Sources." In Extragalactic Radio Sources, 469–70. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0295-4_169.
Повний текст джерелаMeyer, Henry J., and Robert R. Alfano. "Conical Emission Produced from Femtosecond Laser Pulses." In The Supercontinuum Laser Source, 445–56. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06197-4_11.
Повний текст джерелаТези доповідей конференцій з теми "THz emission sources"
Oqbi, Manar Y., and Dhabia M. Al-Mohannadi. "Deciphering the Policy-Technology Nexus: Enabling Effective and Transparent Carbon Capture Utilization and Storage Supply Chains." In Foundations of Computer-Aided Process Design, 844–52. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.185903.
Повний текст джерелаKunkel, William M., Christopher P. Donahue, Dominic T. Altamura, Cameron Dudiak, Benjamin Moscona-Remnitz, Nelson C. Goldsworth, Brandon Kennedy, and Michael J. Thorpe. "Aerial Gas Mapping Lidar for Methane Emission Source Localization, Quantification, and Large-Scale Statistical Characterization." In CLEO: Applications and Technology, ATh1E.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.ath1e.6.
Повний текст джерелаTANI, Masahiko, Masayoshi TONOUCHI, Kiyomi SAKAI, Zhen WANG, Noriaki ONODERA, Masanori HANGYO, Yoshishige MURAKAMI, and Shin-ichi NAKASHIMA. "Emission Properties of YBCO-Film Photo-Switches as THz Radiation Sources." In 1996 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1996. http://dx.doi.org/10.7567/ssdm.1996.d-5-5.
Повний текст джерелаManohara, Harish, Wei Lien Dang, Peter H. Siegel, Michael Hoenk, Ali Husain, and Axel Scherer. "Field emission testing of carbon nanotubes for THz frequency vacuum microtube sources." In Micromachining and Microfabrication, edited by Danelle M. Tanner and Rajeshuni Ramesham. SPIE, 2004. http://dx.doi.org/10.1117/12.531403.
Повний текст джерелаKlimov, A. S. "THE SYNTHESIS OF BULK CERAMIC PRODUCTS USING FOREVACUUM PLASMA ELECTRON SOURCE." In Plasma emission electronics. Buryat Scientific Center of SB RAS Press, 2018. http://dx.doi.org/10.31554/978-5-7925-0524-7-2018-139-142.
Повний текст джерелаBaldanov, B. B., A. P. Semenov, and Ts V. Ranzhurov. "SURROUND THE SOURCE OF THE PLASMA JET ON THE BASIS OF LOW-VOLTAGE NONSTATIONARY DISCHARGE." In Plasma emission electronics. Buryat Scientific Center of SB RAS Press, 2018. http://dx.doi.org/10.31554/978-5-7925-0524-7-2018-92-97.
Повний текст джерелаKoval, T. V., V. I. Shin, M. S. Vorobyev, P. V. Moskvin, V. N. Devyatkov, and N. N. Koval. "CONDITIONS FOR ENSURING MINIMAL INHOMOGENEITY OF THE ELECTRON BEAM ON THE COLLECTOR IN SOURCES WITH A GRID PLASMA CATHODE." In Plasma emission electronics. Buryat Scientific Center of SB RAS Press, 2023. http://dx.doi.org/10.31554/978-5-7925-0655-8-2023-71-76.
Повний текст джерелаMamedov, N. V., M. S. Lobov, I. M. Mamedov, A. Yu Presnyakov, and N. N. Shchitov. "CALCULATION OF THE VAC OF A PENNING ION SOURCE FOR A MINIATURE LINEAR ACCELERATOR." In Plasma emission electronics. Buryat Scientific Center of SB RAS Press, 2023. http://dx.doi.org/10.31554/978-5-7925-0655-8-2023-77-82.
Повний текст джерелаShin, V. I., M. S. Vorobyev, P. V. Moskvin, V. N. Devyatkov, and N. N. Koval. "COMBINED CONTROL OF THE ELECTRON BEAM CURRENT IN A SOURCE WITH A GRID PLASMA CATHODE." In Plasma emission electronics. Buryat Scientific Center of SB RAS Press, 2023. http://dx.doi.org/10.31554/978-5-7925-0655-8-2023-97-100.
Повний текст джерелаMoiseenko, I. "Waveguide Modes in the AKR Source." In Planetary Radio Emissions VII. Vienna: Austrian Academy of Sciences Press, 2011. http://dx.doi.org/10.1553/pre7s253.
Повний текст джерелаЗвіти організацій з теми "THz emission sources"
Panek, Jeffrey, Adrian Huth, James McCarthy, and Alan Krol. PR-312-18208-E01 Statistical Technique for Estimating NOx Emissions from Infrequently Operated Units. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), June 2020. http://dx.doi.org/10.55274/r0011681.
Повний текст джерелаChepeliev, Maksym. Development of the Air Pollution Database for the GTAP 10A Data Base. GTAP Research Memoranda, June 2020. http://dx.doi.org/10.21642/gtap.rm33.
Повний текст джерелаChepeliev, Maksym. Development of the Non-CO2 GHG Emissions Database for the GTAP 10A Data Base. GTAP Research Memoranda, March 2020. http://dx.doi.org/10.21642/gtap.rm32.
Повний текст джерелаMcGrath, Tom, Wendy Coulson, and James McCarthy. PR-312-18209-E01 Methane Emissions from Compressors in Transmission and Storage Subpart W Sources. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 2019. http://dx.doi.org/10.55274/r0011630.
Повний текст джерелаCoulson, Wendy, Tom McGrath, and James McCarthy. PR-312-16202-R03 Methane Emissions from Transmission and Storage Subpart W Sources. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 2019. http://dx.doi.org/10.55274/r0011619.
Повний текст джерелаMcGrath, Panek, and McCarthy. L52356 Nomenclature for Natural Gas Transmission and Storage Greenhouse Gas Emissions. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), May 2012. http://dx.doi.org/10.55274/r0010015.
Повний текст джерелаMcCarthy, James. PR-312-18209-E05 Compressor and Facility Leak EFs for T and S - Clarifying Different Program Approaches. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 2024. http://dx.doi.org/10.55274/r0000050.
Повний текст джерелаCoulson, Wendy, and James McCarthy. PR-312-16202-R02 GHG Emission Factor Development for Natural Gas Compressors. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), May 2018. http://dx.doi.org/10.55274/r0011488.
Повний текст джерелаStulen. L51628 A Transient Far-Field Model of the Acoustic Emission in Buried Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 1986. http://dx.doi.org/10.55274/r0011317.
Повний текст джерелаCrocker, Raju, and Yang. L51796 Document CEM Experience in Natural Gas Transmission Industry. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 1999. http://dx.doi.org/10.55274/r0010426.
Повний текст джерела