Добірка наукової літератури з теми "Thermomechanical finite element"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Thermomechanical finite element".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Thermomechanical finite element"

1

Beynon, John H. "Finite–element modelling of thermomechanical processing." Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 357, no. 1756 (June 15, 1999): 1573–87. http://dx.doi.org/10.1098/rsta.1999.0390.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Liu, Donghuan, and Yinghua Liu. "Applications of Discontinuous Galerkin Finite Element Method in Thermomechanical Coupling Problems with Imperfect Thermal Contact." Mathematical Problems in Engineering 2013 (2013): 1–14. http://dx.doi.org/10.1155/2013/861417.

Повний текст джерела
Анотація:
Thermomechanical coupling problems with imperfect thermal contact are analyzed in the present paper with discontinuous Galerkin finite element method. The imperfect thermal contact condition is characterized by thermal contact resistance. The whole thermomechanical coupling problem is solved alternatively with the thermal subproblem and mechanical subproblem. Thermal contact resistance is introduced directly with the interface numerical flux of the present discontinuous Galerkin finite element method without using interface element as traditional continuous Galerkin finite element method does. Numerical results show the accuracy and feasibility of the present discontinuous Galerkin finite element method in solving thermomechanical coupling problems with imperfect thermal contact.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wang, Jun, Weihong Zhang, Jihong Zhu, Yingjie Xu, Xiaojun Gu, and Ziad Moumni. "Finite element simulation of thermomechanical training on functional stability of shape memory alloy wave spring actuator." Journal of Intelligent Material Systems and Structures 30, no. 8 (March 21, 2019): 1239–51. http://dx.doi.org/10.1177/1045389x19831356.

Повний текст джерела
Анотація:
Pre-service thermomechanical training is of great significance to achieve functional stability for shape memory alloy device. This article presents a finite element simulation of the training behavior of a shape memory alloy wave spring actuator using a thermomechanically coupled and finite-strain shape memory alloy model (Wang et al., 2017a). The model is implemented into ABAQUS/Explicit by means of a user-defined material subroutine VUMAT. The introduction of a finite-Hencky-strain return-mapping integration scheme substantially improves the numerical efficiency and stability. Model predictions are validated against the experimental data. The good agreement between both demonstrates the capabilities of the model of well describing the training behavior of shape memory alloy when subjected to large cyclic thermomechanical loading. Simulation results illustrate several primary thermomechanical characteristics during training process, such as the expansion of the phase transformation zone, the accumulation of the residual deformation, and the concentration of the internal stress. The present finite element approach provides a powerful tool in design and optimization of shape memory alloy wave spring actuator, especially to improve the geometric precision and to enhance the two-way shape memory effect.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Marghmaleki, Iman Soleimani, Y. Tadi Beni, Amin Reza Noghrehabadi, Asieh Sadat Kazemi, and Mohamadreza Abadyan. "Finite Element Simulation of Thermomechanical Spinning Process." Procedia Engineering 10 (2011): 3769–74. http://dx.doi.org/10.1016/j.proeng.2011.04.616.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Das, S., Eric J. Palmiere, and I. C. Howard. "Modelling Recrystallisation during Thermomechanical Processing Using CAFE." Materials Science Forum 467-470 (October 2004): 623–28. http://dx.doi.org/10.4028/www.scientific.net/msf.467-470.623.

Повний текст джерела
Анотація:
A common feature that stimulates modelling efforts across the various physical sciences is that complex microscopic behaviour underlies apparently simple macroscopic effects. Mathematical formulations attempt to capture the initial and evolving microstructural entities either implicitly or explicitly and link their effects to measurable macroscopic variables such as load or stress by averaging out any microscopic fluctuations. The implicit formulations that ignore the inherent spatial heterogeneity in the deforming domain form the basis of constitutive models for input to finite element (FE) systems. On the other hand, explicit formulations to capture and link microstructural entities rely on narrowing down the size of each finite element, thereby increasing the number of finite elements in the deforming domain, an effect accompanied by a rapid growth in computational time. The model described here, Cellular Automata based Finite Elements (CAFE), utilises the Cellular Automata technique to represent initial and evolving microstructural features (e.g., dislocation densities, grain sizes, etc.) in C-Mn steels at an appropriate length scale by linking the macro-scale process variables obtained using an overlying finite element mesh. Differences will be illustrated between single and two-pass hot rolling experiments.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nicholson, D. W., N. W. Nelson, B. Lin, and A. Farinella. "Finite Element Analysis of Hyperelastic Components." Applied Mechanics Reviews 51, no. 5 (May 1, 1998): 303–20. http://dx.doi.org/10.1115/1.3099007.

Повний текст джерела
Анотація:
Finite element analysis of hyperelastic components poses severe obstacles owing to features such as large deformation and near-incompressibility. In recent years, outstanding issues have, to a considerable extent, been addressed in the form of the hyperelastic element available in commercial finite element codes. The current review article, which updates and expands a 1990 article in Rubber Reviews, is intended to serve as a brief exposition and selective survey of the recent literature. Published simulations are listed. Rubber constitutive models and the measurement of their parameters are addressed. The underlying incremental variational formulation is sketched for thermomechanical response of compressible, incompressible and near-incompressible elastomers. Coupled thermomechanical effects and broad classes of boundary conditions, such as variable contact, are encompassed. Attention is given to advanced numerical techniques such as arc length methods. Remaining needs are assessed. This review article contains 142 references.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

El Amri, Abdelouahid, M. El Yakhloufi Haddou, and Abdelaltif Khamlichi. "Finite Element Simulation of Complex Thermomechanical Fatigue Evolution." Materials Science Forum 883 (January 2017): 32–36. http://dx.doi.org/10.4028/www.scientific.net/msf.883.32.

Повний текст джерела
Анотація:
Fatigue failures occur due to the application of fluctuating stresses that are much lower than the stress required to cause failure during a single application of stress. The process is dangerous because a single application of the load would not produce any ill effects, and a conventional stress analysis might lead to assumption of safety that does not exist. The fatigue process is thought to begin at an internal or surface flaw here the stresses are concentrated, and consists initially of shear flow along slip planes. The mechanisms of fatigue-crack propagation are examined with particular emphasis on the similarities and differences between cyclic crack growth in ductile materials, such as metals, and corresponding behavior in brittle materials, such as intermetallic and ceramics. Fatigue, as understood by materials technologists, is a process in which damage accumulates due to the repetitive application of leads that may be well below the yield point.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Fleischhauer, R., R. Behnke, and M. Kaliske. "A thermomechanical interface element formulation for finite deformations." Computational Mechanics 52, no. 5 (May 3, 2013): 1039–58. http://dx.doi.org/10.1007/s00466-013-0862-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mitrofanov, A. V., V. I. Babitsky, and V. V. Silberschmidt. "Thermomechanical finite element simulations of ultrasonically assisted turning." Computational Materials Science 32, no. 3-4 (March 2005): 463–71. http://dx.doi.org/10.1016/j.commatsci.2004.09.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Michel, R., R. Kreißig, and H. Ansorge. "Thermomechanical finite element analysis (FEA) of spin extrusion." Forschung im Ingenieurwesen 68, no. 1 (July 2003): 19–24. http://dx.doi.org/10.1007/s10010-003-0103-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Thermomechanical finite element"

1

Kim, Chun-Sam. "Finite element method evaluation of thermomechanical responses of fluid-saturated porous media under finite deformation /." The Ohio State University, 1991. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487687115926948.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pimenta, Paulo Vicente de Cassia Lima. "Thermomechanical simulation of continuous casting process using element based finite-volume method." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13684.

Повний текст джерела
Анотація:
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior
The continuous casting technique in the last four decades has been large used for to production of semi-finished steel. The heat transfer is major mechanism and it occurs in various steps during the continuous casting. The quality of steel is directly related to the way the heat transfer occur because the thermal variations produce mechanical loads as well as contact forces which are generated through the rollers and shake of the mold. Such factors may cause defects such as fractures or cracks in the final product if the resulting stresses and strains exceed critical values. The technique must be improved in order to reduce the appearance of defects and the production time. For this a good understanding of physical phenomena involved during the solidification process is critical. The focus of this work is to apply the EbFVM (Element based Finite-Volume Method) approach to study the effects of linear tensions unidirectionally coupled with the temperature applied to continuous casting of the steel 1013D (0,3% of carbon) In the simulations we adopted some simplifications such as the Plane Strain and isotropic material. We also neglected the body forces contact with the rollers the liquid pressure on the walls of the steel ingot (ferrostatic pressure) and the convective effect. However despite of the simplifications adopted this work provides quantitative informations on the linear tensions accumulation that point out to areas of possible of cracks formations
A tÃcnica de lingotamento contÃnuo nas Ãltimas quatro dÃcadas à cada vez mais utilizada na produÃÃo de aÃo semiacabado. A transferÃncia de calor à o principal mecanismo dominante e ocorre em todas as etapas do processo. A qualidade do aÃo no lingotamento està diretamente relacionada à forma que ocorrem as trocas de calor pois as variaÃÃes tÃrmicas produzem carregamentos mecÃnicos assim como as forÃas de contato as quais sÃo geradas por intermÃdio dos rolos e da oscilaÃÃo do molde. Tais fatores podem causar defeitos como fraturas ou trincas no produto final caso as tensÃes e deformaÃÃes resultantes excedam valores crÃticos. O aprimoramento da tÃcnica tem a finalidade de evitar o surgimento de defeitos e reduzir o tempo de produÃÃo. Para isso à fundamental uma boa compreensÃo dos fenÃmenos fÃsicos envolvidos ao longo do processo de solidificaÃÃo. O foco deste trabalho à aplicar a abordagem do EbFVM (Element based Finite-Volume Method) no estudo dos efeitos das tensÃes lineares acopladas unidirecionalmente com a temperatura aplicado ao lingotamento contÃnuo do aÃo 1013D (0,3% de carbono) Nas simulaÃÃes adotou-se algumas simplificaÃÃes com o estado plano de tensÃes e isotropia do material. Descartando-se as forÃas de corpo o contato com os rolos a pressÃo do aÃo lÃquido nas paredes do lingote (pressÃo ferrostÃtica) e o efeito convectivo. Contudo apesar das simplificaÃÃes adotadas este trabalho traz informaÃÃes quantitativas quanto a formaÃÃo do acÃmulo das tensÃes lineares que apontam para regiÃes de possÃveis formaÃÃes de trincas
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chen, Kuo-Hsiang. "Probabilistic finite-element modeling of fluid-infiltrated porous media under thermomechanical loadings /." The Ohio State University, 1995. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487929745333332.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Delhelay, Davinder Singh. "Nonlinear finite element analysis of the coupled thermomechanical behaviour of turbine disc assemblies." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0001/MQ46072.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Basaran, Cemalettin. "Finite element thermomechanical analysis of electronic packaging problems using disturbed state constitutive models." Diss., The University of Arizona, 1994. http://hdl.handle.net/10150/186961.

Повний текст джерела
Анотація:
In this dissertation a finite element procedure using the Disturbed State Concept constitutive models is proposed for the thermomechanical analysis of electronics packaging problems. First, microelectronics packaging types and the problems facing the electronics industry are discussed. Next, the literature in the field of constitutive models and the finite element procedures available for microelectronics packaging materials and interfaces is reviewed. The previous formulation of the Disturbed State Concept is modified so that different stresses and different strains are allowed in the intact and the fully adjusted parts of the material. Furthermore, the thermo elasto-viscoplastic with disturbance constitutive model is improved to handle the continuous temperature change and the hold time. These last features enhance the model so that it can be used in a finite element code to simulate the behavior of the microelectronics packaging materials and interfaces in temperature cycling. A new finite element procedure is developed to implement the improved Disturbed State Concept formulation. The finite element procedure includes a wide range of material models, starting from the linear elastic to thermo elasto-viscoplastic with disturbance. In order to eliminate the finite element mesh sensitivity encountered in strain-softening materials, a new procedure is proposed. The Disturbed State Average Strain method reduces or eliminates the finite element mesh sensitivity. This is proved through a number of example problems. The proposed finite element procedure is verified against a number of sets of experimental data obtained from the literature.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gennick, Kendall. "Finite element modeling and simulation of thermomechanical processing of particle reinforced metal matrix composites." Monterey, California. Naval Postgraduate School, 1997. http://hdl.handle.net/10945/8410.

Повний текст джерела
Анотація:
Approved for public release; distribution is unlimited
During the consolidation phase, reinforcement particles of Metal Matrix Composites (MMC's) tend to be non uniformly distributed. The result is that the material properties of the composite materials are not as good as those originally desired. Through large amounts of straining, homogeneity can be achieved. Finite element models of MMC's undergoing different thermomechanical processes (TMP's) to true strains of approximately 1.2 were generated. The models consist of particle clusters within the particle-depleted matrix. The particle clusters were modeled by either a smeared model in which the particles refine the grains in the cluster, or a discrete model of the particles within clusters. The smeared and discrete models qualitatively agreed with each other. The results suggest that the best TMP to reach a state of reinforcement particle homogeneity was a hot worked, low strain rate TMP
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Barua, Ananda. "Mesoscale computational prediction and quantification of thermomechanical ignition behavior of polymer-bonded explosives (PBXs)." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49028.

Повний текст джерела
Анотація:
This research aims at understanding the conditions that lead to reaction initiation of polymer-bonded explosives (PBXs) as they undergo mechanical and thermal processes subsequent to impact. To analyze this issue, a cohesive finite element method (CFEM) based finite deformation framework is developed and used to quantify the thermomechanical response of PBXs at the microstructure level. This framework incorporates the effects of large deformation, thermomechanical coupling, failure in the forms of micro-cracks in both bulk constituents and along grain/matrix interfaces, and frictional heating. A novel criterion for the ignition of heterogeneous energetic materials under impact loading is developed, which is used to quantify the critical impact velocity, critical time to ignition, and critical input work at ignition for non-shock conditions as functions of microstructure of granular HMX and PBX. A threshold relation between impact velocity and critical input energy at ignition for non-shock loading is developed, involving an energy cutoff and permitting the effects of microstructure and loading to be accounted for. Finally, a novel approach for computationally predicting and quantifying the stochasticity of the ignition process in energetic materials is developed, allowing prediction of the critical time to ignition and the critical impact velocity below which no ignition occurs based on basic material properties and microstructure attributes. Results are cast in the form of the Weibull distribution and used to establish microstructure-ignition behavior relations.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Turner, Travis Lee. "Thermomechanical Response of Shape Memory Alloy Hybrid Composites." Diss., Virginia Tech, 2000. http://hdl.handle.net/10919/29771.

Повний текст джерела
Анотація:
This study examines the use of embedded shape memory alloy (SMA)actuators for adaptive control of the themomechanical response of composite structures. Control of static and dynamic responses are demonstrated including thermal buckling, thermal post-buckling, vibration, sonic fatigue, and acoustic transmission. A thermomechanical model is presented for analyzing such shape memory alloy hybrid composite (SMAHC) structures exposed to thermal and mechanical loads. Also presented are (1) fabrication procedures for SMAHC specimens, (2) characterization of the constituent materials for model quantification, (3) development of the test apparatus for conducting static and dynamic experiments on specimens with and without SMA, (4) discussion of the experimental results, and (5) validation of the analytical and numerical tools developed in the study. The constitutive model developed to describe the mechanics of a SMAHC lamina captures the material nonlinearity with temperature of the SMA and matrix material if necessary. It is in a form that is amenable to commercial finite element (FE) code implementation. The model is valid for constrained, restrained, or free recovery configurations with appropriate measurements of fundamental engineering properties. This constitutive model is used along with classical lamination theory and the FE method to formulate the equations of motion for panel-type structures subjected to steady-state thermal and dynamic mechanical loads. Mechanical loads that are considered include acoustic pressure, inertial (base acceleration), and concentrated forces. Four solution types are developed from the governing equations including thermal buckling, thermal post-buckling, dynamic response, and acoustic transmission/radiation. These solution procedures are compared with closed-form and/or other known solutions to benchmark the numerical tools developed in this study. Practical solutions for overcoming fabrication issues and obtaining repeatable specimens are demonstrated. Results from characterization of the SMA constituent are highlighted with regard to their impact on thermomechanical modeling. Results from static and dynamic tests on a SMAHC beam specimen are presented, which demonstrate the enormous control authority of the SMA actuators. Excellent agreement is achieved between the predicted and measured responses including thermal buckling, thermal post-buckling, and dynamic response due to inertial loading. The validated model and thermomechanical analysis tools are used to demonstrate a variety of static and dynamic response behaviors associated with SMAHC structures. Topics of discussion include the fundamental mechanics of SMAHC structures, control of static (thermal buckling and post-buckling) and dynamic responses (vibration, sonic fatigue, and acoustic transmission), and SMAHC design considerations for these applications. The dynamic response performance of a SMAHC panel specimen is compared to conventional response abatement approaches. SMAHCs are shown to have significant advantages for vibration, sonic fatigue, and noise control.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rolseth, Anton, and Anton Gustafsson. "Implementation of thermomechanical laser welding simulation : Predicting displacements of fusing A AISI304 T-JOINT." Thesis, Högskolan i Skövde, Institutionen för ingenjörsvetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-19946.

Повний текст джерела
Анотація:
Laser welding is an advanced joining technique with the capability to form deep, narrow, and precise welds. Numerical models are used to simulate the process in attempts of predicting distortions and stresses in the material. This is done to reduce physical testing, optimize processes and enable integrated product- and process development. The Virtual Manufacturing Process research group at University of Skövde wishes to increase their knowledge on modeling options of thermomechanical simulations to grant local industries these benefits. A numerical model for the laser welding process was developed in ABAQUS. This was done by examining the macrograph structure of a simple weld and applied to a stainless-steel T-joint welding application. The macrograph data was used to calibrate a mathematical heat source model. User subroutine DFLUX was used to enable movement of the heat source and element activation was used to simulate the fusion of the two parts. A T-joint welding experiment was carried out to measure deflection and the result was compared to numerical simulations. Different combinations of heat source models, coupling type and element activation was compared in relation to predicting the deflection. Computational time and modeling complexity for the techniques was also considered.The results showed that a 3D Gaussian heat source model will imitate the keyhole weld achieved superior to the compared 2D model. The 3D model provides greater flexibility since it enables combinations of any geometrical bodies. It was shown that element activation has a significant contribution on part stiffness and thus resulting distortions. To implement element activation a fully coupled analysis is required. The deflection of the fully coupled 3D simulation with element activation showed a 9% deviance in deflection compared with experiments.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ismail, Dahman, and Alexis Andrei. "Thermomechanical stress analysis of the main insulation system of traction electrical machines." Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-20305.

Повний текст джерела
Анотація:
More efficiency heavy-duty vehicles are developed with higher range, updated electronic and mechanical parts. The fuel efficiency and pollution of carbon dioxide need to be lower to achieve new EU regulations. The global population increases with an increased number of heavy-duty vehicles. This, in turn, increases the emission. By taking the electrical and mechanical parts to the next step, the global emission problems can be massively reduced. Electrical machines are the next step towards a cleaner future. The main goal of this study to investigate the electrical machine’s insulation system. Thermo-mechanical stresses due to thermal cycling affect the electrical machines and its sub-components. By using a FEM application with simplified models of the electrical machine, results are obtained and discussed. Specifically, if 2D-models are sufficient enough to represent a 3D-model. How good different 2D-models can represent the 3D-model is compared and discussed in this study. A physical experimental analysis is done to verify and calibrate the FE-models. Which one of the less frequent higher amplitude or more frequent, lower amplitude thermal cycling affects the insulation system most is determined. The simulations could be done with either, coupled-temperature displacement analysis or sequentially coupled analysis. Coupled-temperature displacement is the fastest method to use in the simulation models. A 3D-model is the best way to describe an object and is therefore implemented. Two additional 2D-models are developed for faster computation and to investigate if the models can represent the three-dimensional geometry. All the models have specific boundary conditions to make the models more simplified. Sensitivity studies have been done to determine which parameter affects the induced thermo-mechanical stresses the most. A physical experimental setup is also implemented to validate and calibrate the simulation model. The result of the 3D-model is most accurate when simulating a three-dimensional object. Simulation results have shown that epoxy, one of the main components in the insulation system, is most critical in terms of reaching breakdown first, followed by paper insulation and copper coating. This is a typical result of all three simulation models. Whereas it is concluded that some 2D-models can present the 3D-model, others can’t. The dependent factor is the different cross-section of the electrical machine. The physical experiment shows similar results between simulation in terms of strain at a lower temperature, and the deviation gets larger as the temperature increases. The 3D-model is the model that has the best representation of a real electrical machine as it accounts for all the normal and shear stress components in all directions, but also because it has better boundary conditions compared to the 2D-models. The 2D-model in XY-plane has shown similar results to the 3D-model. One of the main insulation system components, epoxy, is exposed to the highest stresses compared to its yield and ultimate strength, followed by the paper insulation and copper coating. The sensitivity study has concluded that the axial length of the stator does not affect the stress amplitudes. The most critical parameter that affects the thermo-mechanical stresses is the temperature amplitude, the materials CTE and the thickness of the jointed layer. All maximum stress amplitudes of all the components are located at the free end.
Mer effektiva tunga fordon utvecklas med högre räckvidd, uppdaterade elektroniska och mekaniska delar. Bränsleeffektiviteten och föroreningen av koldioxid måste vara lägre för att uppnå nya EU-förordningar. Antalet tunga fordon ökar i takt med att den globala befolkningen ökar, detta leder i sin tur till ökad utsläpp av bland annat koldioxid. Genom att ta de elektriska och mekaniska delarna till nästa steg kan de globala utsläppsproblemen minskas massivt. Elektriska maskiner för framdrivning är nästa steg mot en renare framtid. Studiens huvudmål för att undersöka den elektriska maskinens isoleringssystem. Termomekaniska påfrestningar på grund av termisk cykling påverkar de elektriska maskinerna och dess delkomponenter. Genom att använda en FEM-applikation med förenklade modeller av den elektriska maskinen erhålls och diskuteras resultat. Specifikt om 2D-modeller är tillräckliga för att representera en 3D-modell. Hur tillräckligt de olika 2D-modeller kan representera 3D-modellen jämförs och diskuteras i denna studie. Ett fysiskt experiment utförs för att validera och kalibrera FEA-modellerna. Vilken av de mindre frekventa cykler med högre amplitud eller mer frekventa cyckler med lägre amplitud påverkar isoleringssystemet mest har undersökts. Simuleringarna kan göras med antingen, temperatur kopplad förskjutnings analys eller sekventiellt kopplad analys. Temperatur kopplad kopplad förskjutning är den snabbaste metoden att använda i simuleringsmodellerna. En 3D-modell är det bästa sättet att beskriva ett objekt och har därför implementerats. Ytterligare två, 2Dmodeller är framtagna i FEM-miljö för snabbare beräkning och för att undersöka om 2D-modellerna kan representera den tredimensionella geometrin. Samtliga tre modeller har specifika randvillkor för att förenkla modellerna. Känslighetsstudier görs för att bestämma vilken parameter som påverkar de inducerade termomekaniska spänningarna mest. Ett fysiskt experiment har utförsts för att validera och kalibrera simuleringsmodellerna. Resultatet visar att 3D-modellen representerar ett tre dimensonellt objekt bäst. Simuleringsresultat har visat att epoxy, som är en av huvudkomponenterna i isoleringssystemet, är mest kritisk när det gäller att först nå brott- och sträckgräns, följt av pappersisolering och koppar beläggningen. Detta är ett typiskt resultat av alla tre simuleringsmodeller. Slutsatsen visar att vissa 2D-modeller kan presentera 3D-modellen, andra kan inte. Den beroende faktorn beror på ur vilket tvärsnitt man tittar på den elektriska maskinen. Det fysiska experimentet visar liknande resultat jämfört med simuleringen när det gäller belastning vid en lägre temperatur, och avvikelsen blir större när temperaturen ökar. 3D-modellen, är den modell som har den bästa representationen av en riktig elektrisk maskin eftersom den inkluderar normal- och skjuvspänningskomponenter i alla riktningar. Anledningen är att den har bättre randvillkor jämfört med 2Dmodellerna. 2D-modellen i XY-planet har visat liknande resultat som 3D-modellen. En av huvudkomponenterna i isoleringssystemet, epoxy, utsätts för de högsta spänningarna jämfört med dess sträck- och den brottgräns, följt av pappersisolering och koppar beläggning. Känslighetsstudien har kommit fram till att statorns axiella längd inte påverkar spänningsamplituderna. Den mest kritiska parametern som påverkar de termomekaniska spänningarna är temperatur amplituden, materialens CTE och tjockleken på det skarvade skiktet. Alla maximala spänningsamplituder för samtliga tre komponenter är belägna i den fria änden.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Thermomechanical finite element"

1

Dhondt, Guido. The Finite Element Method for Three-Dimensional Thermomechanical Applications. Chichester, UK: John Wiley & Sons, Ltd, 2004. http://dx.doi.org/10.1002/0470021217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dhondt, Guido. The Finite Element Method for Three-Dimensional Thermomechanical Applications. New York: John Wiley & Sons, Ltd., 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Delhelay, Davinder Singh. Nonlinear finite element analysis of the coupled thermomechanical behaviour of turbine disc assemblies. Ottawa: National Library of Canada, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gennick, Kendall. Finite element modeling and simulation of thermomechanical processing of particle reinforced metal matrix composites. Monterey, Calif: Naval Postgraduate School, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Oden, J. Tinsley. [Analysis and development of finite element methods for the study of nonlinear thermomechanical behavior of structural components]. [Washington, D.C: National Aeronautics and Space Administration, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Finite element analysis: Thermomechanics of solids. 2nd ed. Boca Raton, FL: CRC Press, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nicholson, D. W. Finite element analysis: Thermomechanics of solids. 2nd ed. Boca Raton: CRC Press, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nicholson, D. W. Finite element analysis: Thermomechanics of solids. 2nd ed. Boca Raton: CRC Press, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hsu, Tai-Ran. The Finite Element Method in Thermomechanics. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-011-5998-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

The finite element method in thermomechanics. Boston: Allen & Unwin, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Thermomechanical finite element"

1

Feulvarch, Eric, Jean-Christophe Roux, and Jean-Michel Bergheau. "Finite Element Modeling of Friction Stir Welding." In Thermomechanical Industrial Processes, 155–86. Hoboken, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118578759.ch3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hsu, Tai-Ran. "Application of Thermomechanical analyses in Industry." In The Finite Element Method in Thermomechanics, 274–95. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-011-5998-2_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bruchon, Julien, and Daniel Pino Muñoz. "Finite Element Approach to the Sintering Process at the Grain Scale." In Thermomechanical Industrial Processes, 247–304. Hoboken, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118578759.ch5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

He, Chunyan, Zhen Yang, Pan Zhang, Shaoguang Li, Meysam Naeimi, and Zili Li. "A Finite Element Thermomechanical Analysis of Polygonal Wear." In Lecture Notes in Mechanical Engineering, 533–41. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07305-2_53.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Huang, C. J., and E. Ghassemieh. "3D Coupled Thermomechanical Finite Element Analysis of Ultrasonic Consolidation." In THERMEC 2006, 2651–56. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-428-6.2651.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Schacht, Charles Arthur. "Needed Fundamental Thermomechanical Material Properties for Thermomechanical Finite Element Analysis of Refractory Structures." In Ceramic Transactions Series, 93–101. 735 Ceramic Place, Westerville, Ohio 43081: The American Ceramic Society, 2012. http://dx.doi.org/10.1002/9781118370940.ch5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bellet, M., N. Soyris, and J. L. Chenot. "3D Finite Element Analysis of Thermomechanical Processes. Application to Forging and Casting." In Finite Inelastic Deformations — Theory and Applications, 389–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84833-9_34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gopinath, N. K., V. Vignesh, Yogendra Singh, Manoj Kumar K. Devaraj, and D. Roy Mahapatra. "Thermomechanical Deformation Behavior of a Hypersonic Waverider Using Finite Element Method." In 30th International Symposium on Shock Waves 1, 251–55. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-46213-4_41.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dimitrienko, Yu I. "Finite-Element Method for Modeling of Thermomechanical Phenomena in Composite Shells Under High Temperatures." In Thermomechanics of Composite Structures under High Temperatures, 339–415. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-7494-9_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sivachev, S. M., and L. L. Myagkov. "Thermomechanical Fatigue Analysis of Diesel Engine Piston: Finite Element Simulation and Lifetime Prediction Technique." In Lecture Notes in Mechanical Engineering, 109–17. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22041-9_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Thermomechanical finite element"

1

Guolin Wang, Jianjun Wu, and Meilin Zhu. "Finite element analysis of tire thermomechanical coupling rolling resistance." In 2011 International Conference on Electric Information and Control Engineering (ICEICE). IEEE, 2011. http://dx.doi.org/10.1109/iceice.2011.5776947.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Helm, Dirk, and Peter Haupt. "Shape memory alloys: thermomechanical modeling and finite element simulations at finite strains." In SPIE's 7th Annual International Symposium on Smart Structures and Materials, edited by Christopher S. Lynch. SPIE, 2000. http://dx.doi.org/10.1117/12.388237.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hutapea, Parsaoran, Joachim L. Grenestedt, Mitul Modi, Michael Mello, and Kristopher Frutschy. "Prediction of Microelectronic Substrate Warpage Using Homogenized Thermomechanical Finite Element Models." In ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/ipack2005-73122.

Повний текст джерела
Анотація:
High-density microelectronic substrates, used in organic CPU packages, are comprised of several polymer, fiber-weave, and copper layers and are filled with a variety of complex features such as traces, micro-vias, Plated-Through-Holes (PTH), and adhesion holes. When subjected to temperature changes, these substrates may warp, driven by the mismatch in Coefficients of Thermal Expansion (CTE) of the constituent materials. This study focused on predicting substrate warpage in an isothermal condition. The numerical approach consisted of three major steps: estimating homogenized (effective) thermomechanical properties of the features; calculating effective properties of discretized layers using the effective properties of the features; and assembling the layers to create 2D Finite Element (FE) plate models and to calculate warpage of the whole substrates. The effective properties of the features were extracted from 3D unit cell FE models, and closed-form approximate expressions were developed using the numerical results, curve fitting, and some simple bounds. The numerical approach was applied to predict warpage of production substrates, analyzed, and validated against experimentally measured stiffness and CTEs. In this paper, the homogenization approach, numerical predictions, and experimental validation are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lin, Baojiu, and David W. Nicholson. "Finite Element Analysis of Thermomechanical Contact of an Elastomeric O-Ring Seal." In ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-gt-106.

Повний текст джерела
Анотація:
This study concerns the development of a finite element model to support design improvements in elastomeric seals subject to high temperature and pressure, such as in aircraft engines. Existing finite element codes familiar to the authors do not couple thermal and mechanical fields, nor do they implement thermomechanical contact models suitable for highly deformable materials. Recently, the authors have introduced a thermohyperelastic constitutive model for near-incompressible elastomers. In two subsequent studies, using the constitutive model, a method has been introduced for finite element analysis of coupled thermomechanical response, including boundary contributions due to large deformation and variable contact. A new thermomechanical contact model has also been introduced to accommodate the softness of elastomers. The method has been implemented in a special purpose code which concerns a seal compressed into a well. Several computations are used to validate the code. Simulations of a seal in an idealized geometry indicate rapid pressure increase with increasing compression and temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wang, Shiyong, Yafeng Wang, Ying Zhang, Xin Sun, and De Zhang. "Finite Element Analysis of Thermomechanical Performance of High Voltage Cable under Bending." In 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). IEEE, 2019. http://dx.doi.org/10.1109/iaeac47372.2019.8997857.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dietrich, Sascha, Matthias Pander, Martin Sander, Stefan H. Schulze, and Matthias Ebert. "Mechanical and thermomechanical assessment of encapsulated solar cells by finite-element-simulation." In SPIE Solar Energy + Technology, edited by Neelkanth G. Dhere, John H. Wohlgemuth, and Kevin Lynn. SPIE, 2010. http://dx.doi.org/10.1117/12.860661.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ozturk, B., P. Gromala, C. Silber, K. M. B. Jansen, and L. J. Ernst. "Finite strain thermomechanical material characterization of adhesives used in automotive electronics for quantitative finite element simulations." In 2014 IEEE 16th Electronics Packaging Technology Conference (EPTC). IEEE, 2014. http://dx.doi.org/10.1109/eptc.2014.7028258.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sparks, Stephanie A., J. Ryan Thigpen, and Jeff Lee. "EVALUATING GNEISS DOME THERMAL EVOLUTION USING 2-D COUPLED THERMOMECHANICAL FINITE-ELEMENT MODELING." In 66th Annual GSA Southeastern Section Meeting - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017se-290026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Conti, Fosca, E. Liu, Sri Krishna Bhogaraju, Bernhard Wunderle, and Gordon Elger. "Finite Element simulations and Raman measurements to investigate thermomechanical stress in GaN-LEDs." In 2020 IEEE 8th Electronics System-Integration Technology Conference (ESTC). IEEE, 2020. http://dx.doi.org/10.1109/estc48849.2020.9229843.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cho, H. K. "Finite Element Analysis on the Behavior of Laminated Composite Shells With Embedded Shape Memory Alloy Wires." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41860.

Повний текст джерела
Анотація:
Motivated by needs such as those in the aerospace industry, this paper demonstrates the thermomechanical characteristics of static and dynamic (frequency) behaviors of laminated composite shells with embedded shape memory alloy (SMA) wire subjected to temperature environments. Numerical analysis for SMA fiber reinforced composite laminates is performed by synergizing finite element method with Brison’s model [1,2] of SMA constitutive law. A nonlinear finite element procedure with respect to shape memory alloy hybrid composite (SMAHC) shell has been developed which incorporates a thermodynamically derived constitutive law for SMA behavior. Present illustrative applications involve rectangular laminated panels clamped along one side, although the method is applicable to more complicated laminates, geometries and boundary conditions. Panel geometry is discretized into specially-developed 3D degenerated eight-node laminated composite shell elements. General shell theory, involving incremental nonlinear finite element equilibrium that includes large deformations with Green-Lagrange strains, is employed. Several test cases which depend on volume fraction of SMA, temperature and ply angles are presented to illustrate the thermomechanical behavior of SMAHC. The results of numerical analysis show the ability of the suggested procedure to compute the thermomechanical behavior of SMAHC due to SMA’s internal phase transformations with stress and temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Thermomechanical finite element"

1

Radhakrishnan, B., G. Sarma, and T. Zacharia. Coupled finite element-Monte Carlo simulation of microstructure and texture evolution during thermomechanical processing. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/676877.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kennedy, J. M., P. A. Pfeiffer, and A. H. Marchertas. TEMP-STRESS---A thermomechanical finite element program for the analysis of plane and axisymmetric reinforced/prestressed concrete structures: User`s manual. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/714560.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії