Добірка наукової літератури з теми "Thermoelectric, Cu2SnS3, thermoelectric generators"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Thermoelectric, Cu2SnS3, thermoelectric generators".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Thermoelectric, Cu2SnS3, thermoelectric generators"
Cortel, Adolf. "Thermoelectric generators." Physics Education 42, no. 1 (December 21, 2006): 88–92. http://dx.doi.org/10.1088/0031-9120/42/1/012.
Повний текст джерелаSnyder, G. Jeffrey. "Small Thermoelectric Generators." Electrochemical Society Interface 17, no. 3 (September 1, 2008): 54–56. http://dx.doi.org/10.1149/2.f06083if.
Повний текст джерелаBeretta, D., M. Massetti, G. Lanzani, and M. Caironi. "Thermoelectric characterization of flexible micro-thermoelectric generators." Review of Scientific Instruments 88, no. 1 (January 2017): 015103. http://dx.doi.org/10.1063/1.4973417.
Повний текст джерелаPaul, D. J., A. Samarelli, L. Ferre Llin, Y. Zhang, J. M. R. Weaver, P. S. Dobson, S. Cecchi, et al. "Si/SiGe Thermoelectric Generators." ECS Transactions 50, no. 9 (March 15, 2013): 959–63. http://dx.doi.org/10.1149/05009.0959ecst.
Повний текст джерелаLi, Shan, and Qian Zhang. "Ionic Gelatin Thermoelectric Generators." Joule 4, no. 8 (August 2020): 1628–29. http://dx.doi.org/10.1016/j.joule.2020.07.020.
Повний текст джерелаBaranowski, Lauryn L., G. Jeffrey Snyder, and Eric S. Toberer. "Concentrated solar thermoelectric generators." Energy & Environmental Science 5, no. 10 (2012): 9055. http://dx.doi.org/10.1039/c2ee22248e.
Повний текст джерелаTöpfer, Jörg, Timmy Reimann, Thomas Schulz, Arne Bochmann, Beate Capraro, Stefan Barth, Andy Vogel, and Steffen Teichert. "Oxide multilayer thermoelectric generators." International Journal of Applied Ceramic Technology 15, no. 3 (November 6, 2017): 716–22. http://dx.doi.org/10.1111/ijac.12822.
Повний текст джерелаNoudem, J. G., S. Lemonnier, M. Prevel, E. S. Reddy, E. Guilmeau, and C. Goupil. "Thermoelectric ceramics for generators." Journal of the European Ceramic Society 28, no. 1 (January 2008): 41–48. http://dx.doi.org/10.1016/j.jeurceramsoc.2007.05.012.
Повний текст джерелаCheong, K. W., and J. H. Lim. "Numerical simulation of segmented ratio in bismuth telluride and skutterudites for waste heat recovery." Journal of Physics: Conference Series 2120, no. 1 (December 1, 2021): 012007. http://dx.doi.org/10.1088/1742-6596/2120/1/012007.
Повний текст джерелаZhang, Yujie, Chaogang Lou, Xiaojian Li, and Xin Li. "Thin film thermoelectric generators with semi-metal thermoelectric legs." AIP Advances 9, no. 5 (May 2019): 055027. http://dx.doi.org/10.1063/1.5090131.
Повний текст джерелаДисертації з теми "Thermoelectric, Cu2SnS3, thermoelectric generators"
Lohani, Ketan. "Development of Cu2SnS3 based thermoelectric materials and devices." Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/344345.
Повний текст джерелаAlothman, Abdulmohsen Abdulrahman. "Modeling and Applications of Thermoelectric Generators." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/79846.
Повний текст джерелаPh. D.
Glatz, Wulf. "Development of flexible micro thermoelectric generators." Tönning Lübeck Marburg Der Andere Verl, 2008. http://d-nb.info/989530639/04.
Повний текст джерелаTwaha, Ssennoga. "Regulation of power generated from thermoelectric generators." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/49544/.
Повний текст джерелаMontecucco, Andrea. "Efficiently maximising power generation from thermoelectric generators." Thesis, University of Glasgow, 2014. http://theses.gla.ac.uk/5213/.
Повний текст джерелаNaylor, Andrew J. "Towards highly-efficient thermoelectric power harvesting generators." Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/366984/.
Повний текст джерелаSmith, Kevin D. "An investigation into the viability of heat sources for thermoelectric power generation systems /." Online version of thesis, 2009. http://hdl.handle.net/1850/8266.
Повний текст джерелаWeinstein, Lee A. (Lee Adragon). "Improvements to solar thermoelectric generators through device design." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/85471.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 145-150).
A solar thermoelectric generator (STEG) is a device which converts sunlight into electricity through the thermoelectric effect. A STEG is nominally formed when a thermoelectric generator (TEG), a type of solid state heat engine, is placed between a solar absorber and a heat sink. When the solar absorber is illuminated by sunlight, it heats up and the TEG is subjected to a temperature gradient. Heat flows through the TEG, some of which is converted to electricity. Recent advancements have improved STEG efficiency considerably, however more work is required before STEGs will be able to compete commercially with other solar to electricity conversion technologies. This thesis explores two device level improvements to STEG systems. First, thin-film STEGs are explored as a method to potentially reduce the manufacturing costs of STEG systems. It is shown through modeling that thin-film STEGs have only a slight degradation in performance compared to bulk STEGs when identical materials properties are used. Two parameters are found which can guide device design for thin-film STEGs regardless of system size. Second, an optical cavity is investigated which can improve opto-thermal efficiency for STEGs or any other solar-thermal system. The cavity improves performance by specularly reflecting radiation from the absorber back to itself, reducing radiative losses. It is shown through modeling and with some preliminary experimental results that such a cavity has the potential to significantly improve the opto-thermal efficiency of solar-thermal systems and operate efficiently at high absorber temperatures without the use of extremely high optical concentration ratios.
by Lee A. Weinstein.
S.M.
Sandoz-Rosado, Emil Jose. "Investigation and development of advanced models of thermoelectric generators for power generation applications /." Online version of thesis, 2009. http://hdl.handle.net/1850/10795.
Повний текст джерелаMcEnaney, Kenneth. "Modeling of solar thermal selective surfaces and thermoelectric generators." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/65308.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (p. 101-107).
A thermoelectric generator is a solid-state device that converts a heat flux into electrical power via the Seebeck effect. When a thermoelectric generator is inserted between a solar-absorbing surface and a heat sink, a solar thermoelectric generator is created which converts sunlight into electrical power. This thesis describes the design and optimization of solar thermoelectric generators, with a focus on systems with high optical concentration which utilize multiple material systems to maximize efficiency over a large temperature difference. Both single-stage and cascaded (multi-stage) generators are considered, over an optical concentration range of 0.1 to 1000X. It is shown that for high-concentration Bi₂Te₃/skutterudite solar thermoelectric generators, conversion efficiencies of 13% are possible with current thermoelectric materials and selective surfaces. Better selective surfaces are needed to improve the efficiency of solar thermoelectric generators. In this thesis, ideal selective surfaces for solar thermoelectric generators are characterized. Non-ideal selective surfaces are also characterized, with emphasis on how the non-idealities affect the solar thernoelectric gencrator performance. Finally. the efficiency limit for solar thermoclectric generators with non-directional absorbers is presented.
by Kenneth McEnaney.
S.M.
Книги з теми "Thermoelectric, Cu2SnS3, thermoelectric generators"
Kalandarishvili, A. G. Istochniki rabochego tela dli͡a︡ termoėmissionnykh preobrazovateleĭ ėnergii. Moskva: Ėnergoatomizdat, 1986.
Знайти повний текст джерелаSini͡avskiĭ, V. V. Metody opredelenii͡a kharakteristik termoėmissionnykh tvėlov. Moskva: Ėnergoatomizdat, 1990.
Знайти повний текст джерелаBuri͡ak, Anatoliĭ Andreevich. Ocherki razvitii͡a termoėlektrichestva. Kiev: Nauk. dumka, 1988.
Знайти повний текст джерелаThermoelectric power generation: Symposium held November 26-29, 2007, Boston, Massachusetts, U.S.A. Warrendale, Pa: Materials Research Society, 2008.
Знайти повний текст джерелаSkipidarov, Sergey, and Mikhail Nikitin, eds. Thin Film and Flexible Thermoelectric Generators, Devices and Sensors. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45862-1.
Повний текст джерелаSarkisov, A. A. Termoėlektricheskie generatory s i͡a︡dernymi istochnikami teploty. Moskva: Ėnergoatomizdat, 1987.
Знайти повний текст джерелаKukharkin, N. E. Kosmicheskai︠a︡ i︠a︡dernai︠a︡ ėnergetika (i︠a︡dernye reaktory s termoėlektricheskim i termoėmissionnym preobrazovaniem--"Romashka" i "Eniseĭ"). Moskva: IzdAt, 2012.
Знайти повний текст джерелаBaranov, A. P. Sudovye sistemy ėlektrodvizhenii͡a︡ s generatorami pri͡a︡mogo preobrazovanii͡a︡ teploty: Rezhimy raboty i ikh modelirovanie. Leningrad: "Sudostroenie", 1991.
Знайти повний текст джерелаM, Tritt Terry, ed. Thermoelectric materials, 1998--the next generation materials for small-scale refrigeration and power generation applications: Symposium held November 30-December 3, 1998, Boston, Massachusetts, U.S.A. Warrendale, PA: Materials Research Society, 1999.
Знайти повний текст джерелаM, Tritt Terry, ed. Thermoelectric materials 2000: The next generation materials for small-scale refrigeration and power generation applications : symposium held April 24-27, 2000, San Francisco, Calif., U.S.A. Warrendale, Pa: Materials Research Society, 2001.
Знайти повний текст джерелаЧастини книг з теми "Thermoelectric, Cu2SnS3, thermoelectric generators"
Narducci, Dario, Peter Bermel, Bruno Lorenzi, Ning Wang, and Kazuaki Yazawa. "Solar Thermoelectric Generators." In Hybrid and Fully Thermoelectric Solar Harvesting, 45–61. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76427-6_3.
Повний текст джерелаStark, Ingo. "Micro Thermoelectric Generators." In Micro Energy Harvesting, 245–69. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527672943.ch12.
Повний текст джерелаLan, Yucheng, and Zhifeng Ren. "Solar Thermoelectric Power Generators." In Advanced Thermoelectrics, 735–68. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2017] | Series: Series in materials science and engineering: CRC Press, 2017. http://dx.doi.org/10.1201/9781315153766-22.
Повний текст джерелаNarducci, Dario, Peter Bermel, Bruno Lorenzi, Ning Wang, and Kazuaki Yazawa. "A Primer on Thermoelectric Generators." In Hybrid and Fully Thermoelectric Solar Harvesting, 11–43. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76427-6_2.
Повний текст джерелаNarducci, Dario, Peter Bermel, Bruno Lorenzi, Ning Wang, and Kazuaki Yazawa. "Hybrid Photovoltaic–Thermoelectric Generators: Materials Issues." In Hybrid and Fully Thermoelectric Solar Harvesting, 103–16. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76427-6_6.
Повний текст джерелаDani, Ines, Aljoscha Roch, Lukas Stepien, Christoph Leyens, Moritz Greifzu, and Marian von Lukowicz. "Energy Turnaround: Printing of Thermoelectric Generators." In IFIP Advances in Information and Communication Technology, 181–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41329-2_19.
Повний текст джерелаNovikov, S. V., E. Z. Parparov, and M. I. Fedorov. "Reliable Thermoelectric Generators for Space Missions." In Proceedings of the 11th European Conference on Thermoelectrics, 109–16. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07332-3_13.
Повний текст джерелаNarducci, Dario, Peter Bermel, Bruno Lorenzi, Ning Wang, and Kazuaki Yazawa. "A Primer on Photovoltaic Generators." In Hybrid and Fully Thermoelectric Solar Harvesting, 63–90. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76427-6_4.
Повний текст джерелаNarducci, Dario, Peter Bermel, Bruno Lorenzi, Ning Wang, and Kazuaki Yazawa. "Hybrid Photovoltaic–Thermoelectric Generators: Theory of Operation." In Hybrid and Fully Thermoelectric Solar Harvesting, 91–102. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76427-6_5.
Повний текст джерелаNonoguchi, Yoshiyuki. "Materials Design for Flexible Thermoelectric Power Generators." In Flexible and Stretchable Medical Devices, 139–60. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527804856.ch6.
Повний текст джерелаТези доповідей конференцій з теми "Thermoelectric, Cu2SnS3, thermoelectric generators"
"Thermoelectric generators." In IECON 2012 - 38th Annual Conference of IEEE Industrial Electronics. IEEE, 2012. http://dx.doi.org/10.1109/iecon.2012.6389125.
Повний текст джерелаCaillat, Thierry, Jean-Pierre Fleurial, and Alex Borshchevsky. "Development of high efficiency thermoelectric generators using advanced thermoelectric materials." In Space technology and applications international forum - 1998. AIP, 1998. http://dx.doi.org/10.1063/1.54794.
Повний текст джерелаDalala, Zakariya M. "Energy harvesting using thermoelectric generators." In 2016 IEEE International Energy Conference (ENERGYCON). IEEE, 2016. http://dx.doi.org/10.1109/energycon.2016.7514088.
Повний текст джерелаPaul, D. J., A. Samarelli, L. Ferre Llin, J. R. Watling, Y. Zhang, J. M. R. Weaver, P. S. Dobson, et al. "Prospects for SiGe thermoelectric generators." In 2013 14th International Conference on Ultimate Integration on Silicon (ULIS 2013). IEEE, 2013. http://dx.doi.org/10.1109/ulis.2013.6523478.
Повний текст джерелаMiodushevsky, Pavel. "High Energy Density Thermoelectric Generators." In 6th International Energy Conversion Engineering Conference (IECEC). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-5688.
Повний текст джерелаMassetti, Matteo. "3D printed Organic Thermoelectric Generators." In nanoGe Fall Meeting 2021. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.nfm.2021.145.
Повний текст джерелаSalvador, Catherine S., Angela Caliwag, Nathaniel Aldivar, Vince Angeles, and Mark Bernabe. "Modeling of Roof-Mountable Thermoelectric Generators." In 2017 25th International Conference on Systems Engineering (ICSEng). IEEE, 2017. http://dx.doi.org/10.1109/icseng.2017.75.
Повний текст джерелаXu, Xiaoqiang, Yongjia Wu, Lei Zuo, and Shikui Chen. "Multimaterial Topology Optimization of Thermoelectric Generators." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97934.
Повний текст джерелаChan, Walker R., Christopher M. Waits, John D. Joannopoulos, and Ivan Celanovic. "Thermophotovoltaic and thermoelectric portable power generators." In SPIE Defense + Security, edited by Thomas George, M. Saif Islam, and Achyut K. Dutta. SPIE, 2014. http://dx.doi.org/10.1117/12.2054173.
Повний текст джерелаLedesma, Edward M., Shervin Sammak, and Matthew M. Barry. "MODELING BRIDGMAN HEATING IN THERMOELECTRIC GENERATORS." In 5-6th Thermal and Fluids Engineering Conference (TFEC). Connecticut: Begellhouse, 2021. http://dx.doi.org/10.1615/tfec2021.cmd.036778.
Повний текст джерелаЗвіти організацій з теми "Thermoelectric, Cu2SnS3, thermoelectric generators"
Gomez, Alessandro. Development of Optimized Combustors and Thermoelectric Generators for Palm Power Generation. Fort Belvoir, VA: Defense Technical Information Center, October 2004. http://dx.doi.org/10.21236/ada427416.
Повний текст джерелаWeiss, H. V., and J. F. Vogt. Radioisotope Thermoelectric Generators Emplaced in the Deep Ocean, Recover or Dispose in Situ. Fort Belvoir, VA: Defense Technical Information Center, March 1986. http://dx.doi.org/10.21236/ada168027.
Повний текст джерелаSalvador, James. Development of Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1414341.
Повний текст джерелаShott, Gregory, and Dawn Reed. UNREVIEWED DISPOSAL QUESTION EVALUATION: Disposal of the Lawrence Livermore National Laboratory French Radioisotope Thermoelectric Generators at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada. Office of Scientific and Technical Information (OSTI), January 2020. http://dx.doi.org/10.2172/1601280.
Повний текст джерела[Radioisotope thermoelectric generators and ancillary activities]. Monthly technical progress report, 1 April--28 April 1996. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/233289.
Повний текст джерела(Design, fabricate, and provide engineering support for radiosotope thermoelectric generators for NASA's CRHF AND CASSINI missions). Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5772917.
Повний текст джерела