Добірка наукової літератури з теми "Thermochemistry of Molecules and Processes"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Thermochemistry of Molecules and Processes".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Thermochemistry of Molecules and Processes"

1

Pilling, S., G. A. Carvalho, H. A. de Abreu, B. R. L. Galvão, C. H. da Silveira, and M. S. Mateus. "Understanding the Molecular Kinetics and Chemical Equilibrium Phase of Frozen CO during Bombardment by Cosmic Rays by Employing the PROCODA Code." Astrophysical Journal 952, no. 1 (July 1, 2023): 17. http://dx.doi.org/10.3847/1538-4357/acdb4a.

Повний текст джерела
Анотація:
Abstract Within the cold regions of space, ices that are enriched with carbon monoxide (CO) molecules are exposed to ionizing radiation, which triggers new reactions and desorption processes. Laboratory studies on astrochemical ices employing different projectiles have revealed the appearance of several new species. In this study, we employed the upgraded PROCODA code, which involves a calculation phase utilizing thermochemistry data, to map the chemical evolution of pure CO ice irradiated by cosmic-ray analogs. In the model, we have considered 18 different chemical species (six observed: CO, CO2, C3, O3, C2O, and C5O3; 12 unobserved: C, O, C2, O2, CO3, C3O, C4O, C5O, C2O2, C2O3, C3O2, and C4O2) coupled at 156 reaction routes. Our best-fit model provides effective reaction rates (effective rate constants, (ERCs)), branching ratios for reactions within reaction groups, several desorption parameters, and the characterization of molecular abundances at the chemical equilibrium (CE) phase. The most abundant species within the ice at the CE phase were atomic oxygen (68.2%) and atomic carbon (18.2%), followed by CO (11.8%) and CO2 (1.6%). The averaged modeled desorption yield and rate were 1.3e5 molecules ion−1 and 7.4e13 molecules s−1, respectively, while the average value of ERCs in the radiation-induced dissociation reactions was 2.4e-1 s−1 and for the bimolecular reactions it was 4.4e-24 cm3 molecule−1 s−1. We believe that the current kinetics study can be used in future astrochemical models to better understand the chemical evolution of embedded species within astrophysical ices under the presence of an ionizing radiation field.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Marques, Esteban A., Stefan De Gendt, Geoffrey Pourtois, and Michiel J. van Setten. "Benchmarking First-Principles Reaction Equilibrium Composition Prediction." Molecules 28, no. 9 (April 22, 2023): 3649. http://dx.doi.org/10.3390/molecules28093649.

Повний текст джерела
Анотація:
The availability of thermochemical properties allows for the prediction of the equilibrium compositions of chemical reactions. The accurate prediction of these can be crucial for the design of new chemical synthesis routes. However, for new processes, these data are generally not completely available. A solution is the use of thermochemistry calculated from first-principles methods such as Density Functional Theory (DFT). Before this can be used reliably, it needs to be systematically benchmarked. Although various studies have examined the accuracy of DFT from an energetic point of view, few studies have considered its accuracy in predicting the temperature-dependent equilibrium composition. In this work, we collected 117 molecules for which experimental thermochemical data were available. From these, we constructed 2648 reactions. These experimentally constructed reactions were then benchmarked against DFT for 6 exchange–correlation functionals and 3 quality of basis sets. We show that, in reactions that do not show temperature dependence in the equilibrium composition below 1000 K, over 90% are predicted correctly. Temperature-dependent equilibrium compositions typically demonstrate correct qualitative behavior. Lastly, we show that the errors are equally caused by errors in the vibrational spectrum and the DFT electronic ground state energy.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cipriani, Maicol, and Oddur Ingólfsson. "HF Formation through Dissociative Electron Attachment—A Combined Experimental and Theoretical Study on Pentafluorothiophenol and 2-Fluorothiophenol." International Journal of Molecular Sciences 23, no. 5 (February 23, 2022): 2430. http://dx.doi.org/10.3390/ijms23052430.

Повний текст джерела
Анотація:
In chemoradiation therapy, dissociative electron attachment (DEA) may play an important role with respect to the efficiency of the radiosensitizers used. The rational tailoring of such radiosensitizers to be more susceptive to DEA may thus offer a path to increase their efficiency. Potentially, this may be achieved by tailoring rearrangement reactions into the DEA process such that these may proceed at low incident electron energies, where DEA is most effective. Favorably altering the orbital structure of the respective molecules through substitution is another path that may be taken to promote dissociation up on electron capture. Here we present a combined experimental and theoretical study on DEA in relation to pentafluorothiophenol (PFTP) and 2-fluorothiophenol (2-FTP). We investigate the thermochemistry and dynamics of neutral HF formation through DEA as means to lower the threshold for dissociation up on electron capture to these compounds, and we explore the influence of perfluorination on their orbital structure. Fragment ion yield curves are presented, and the thermochemical thresholds for the respective DEA processes are computed as well as the minimum energy paths for HF formation up on electron capture and the underlying orbital structure of the respective molecular anions. We show that perfluorination of the aromatic ring in these compounds plays an important role in enabling HF formation by further lowering the threshold for this process and through favorable influence on the orbital structure, such that DEA is promoted. We argue that this approach may offer a path for tailoring new and efficient radiosensitizers.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hoyermann, Karlheinz, and Johann Seeba. "A direct study of the reaction of benzyl radicals with molecular oxygen: Kinetics and thermochemistry." Symposium (International) on Combustion 25, no. 1 (January 1994): 851–58. http://dx.doi.org/10.1016/s0082-0784(06)80719-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Machado, Hugo G., Flávio O. Sanches-Neto, Nayara D. Coutinho, Kleber C. Mundim, Federico Palazzetti, and Valter H. Carvalho-Silva. "“Transitivity”: A Code for Computing Kinetic and Related Parameters in Chemical Transformations and Transport Phenomena." Molecules 24, no. 19 (September 25, 2019): 3478. http://dx.doi.org/10.3390/molecules24193478.

Повний текст джерела
Анотація:
The Transitivity function, defined in terms of the reciprocal of the apparent activation energy, measures the propensity for a reaction to proceed and can provide a tool for implementing phenomenological kinetic models. Applications to systems which deviate from the Arrhenius law at low temperature encouraged the development of a user-friendly graphical interface for estimating the kinetic and thermodynamic parameters of physical and chemical processes. Here, we document the Transitivity code, written in Python, a free open-source code compatible with Windows, Linux and macOS platforms. Procedures are made available to evaluate the phenomenology of the temperature dependence of rate constants for processes from the Arrhenius and Transitivity plots. Reaction rate constants can be calculated by the traditional Transition-State Theory using a set of one-dimensional tunneling corrections (Bell (1935), Bell (1958), Skodje and Truhlar and, in particular, the deformed ( d -TST) approach). To account for the solvent effect on reaction rate constant, implementation is given of the Kramers and of Collins–Kimball formulations. An input file generator is provided to run various molecular dynamics approaches in CPMD code. Examples are worked out and made available for testing. The novelty of this code is its general scope and particular exploit of d -formulations to cope with non-Arrhenius behavior at low temperatures, a topic which is the focus of recent intense investigations. We expect that this code serves as a quick and practical tool for data documentation from electronic structure calculations: It presents a very intuitive graphical interface which we believe to provide an excellent working tool for researchers and as courseware to teach statistical thermodynamics, thermochemistry, kinetics, and related areas.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

RAGHAVACHARI, KRISHNAN, BORIS STEFANOV, and LARRY CURTISS. "Accurate density functional thermochemistry for larger molecules." Molecular Physics 91, no. 3 (June 20, 1997): 555–59. http://dx.doi.org/10.1080/00268979709482745.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

RAGHAVACHARI, By KRISHNAN, BORIS B. STEFANOV, and LARRY A. CURTISS. "Accurate density functional thermochemistry for larger molecules." Molecular Physics 91, no. 3 (June 1997): 555–60. http://dx.doi.org/10.1080/002689797171445.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Haworth, Naomi L., Michael B. Sullivan, Angela K. Wilson, Jan M. L. Martin, and Leo Radom. "Structures and Thermochemistry of Calcium-Containing Molecules." Journal of Physical Chemistry A 109, no. 40 (October 2005): 9156–68. http://dx.doi.org/10.1021/jp052889h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bouchoux, Guy, Danielle Leblanc, William Bertrand, Terance B. McMahon, Jan E. Szulejko, Florence Berruyer-Penaud, Otilia Mó, and Manuel Yáñez. "Protonation Thermochemistry of Selected Hydroxy- and Methoxycarbonyl Molecules." Journal of Physical Chemistry A 109, no. 51 (December 2005): 11851–59. http://dx.doi.org/10.1021/jp054955l.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Griller, David, J. A. Martinho Simoes, P. Mulder, B. A. Sim, and D. D. M. Wayner. "Unifying the solution thermochemistry of molecules, radicals, and ions." Journal of the American Chemical Society 111, no. 20 (September 1989): 7872–76. http://dx.doi.org/10.1021/ja00202a031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Thermochemistry of Molecules and Processes"

1

Bryan, William Alexander. "Ultrafast processes in small molecules." Thesis, University College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248347.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lee, Matthew Colin John. "Correlations between MO Eigenvectors and the Thermochemistry of Simple Organic Molecules, Related to Empirical Bond Additivity Schemes." The University of Waikato, 2008. http://hdl.handle.net/10289/2623.

Повний текст джерела
Анотація:
A bondingness term is further developed to aid in heat of formation (ΔfHº) calculations for C, N, O and S containing molecules. Bondingness originated from qualitative investigations into the antibonding effect in the occupied MOs of ethane. Previous work used a single parameter for bondingness to calculate ΔfHº in an alkane homologous series using an additivity scheme. This work modifies the bondingness algorithm and uses the term to parameterise a test group of 345 molecules consisting of 17 subgroups that include alkanes, alkenes, alkynes, alcohols, ethers, aldehydes, ketones, carboxylic acids, esters, amines, amides, diazenes, nitriles, nitroalkanes, nitrates, thiols and benzenoids. Comparing experimental with calculated ΔfHº values, a standard deviation for the residuals of 6.3 kJ mol 1 can be achieved using bondingness with a simple steric repulsion term (SSR) in a bond additivity scheme, and a standard deviation of 5.2 kJ mol 1 can be achieved using a Lennard-Jones potential. The method is compared with the group method of Pedley, which for a slightly smaller set of 338 molecules, a subset of the test set of 345 molecules, gives a standard deviation of 7.0 kJ mol 1. Bondingness, along with SSR or a Lennard-Jones potential, is parameterised in the lowest level of ab initio (HF-SCF) or semiempirical quantum chemical calculations. It therefore may be useful in determining the ΔfHº values for the largest molecules that are amenable to quantum chemical calculation. As part of our analysis we calculated the difference between the lowest energy conformer and the average energy of a mixture populated with higher energy conformers. This is the difference between the experimental ΔfHº value and the ΔfHº calculated for a single conformer. Example calculations which we have followed are given by Dale and Eliel et al.. Dale calculates the energy difference for molecules as large as hexane using relative energies based on the number of 1,4 gauche interactions. We have updated these values with constant increments ascertained by Klauda et al. as well as ab initio MP2 cc-pVDZ relative energies and have included calculations for heptane and octane.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Vidonne, Annick. "Integrating replication processes with mechanically interlocked molecules." Thesis, St Andrews, 2009. http://hdl.handle.net/10023/913.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Toliautas, Stepas. "Electronic excitation processes of photoactive organic molecules." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20140929_100526-37294.

Повний текст джерела
Анотація:
Evolution of the electronic excitation is a general process that can be used to explain many natural and artificial phenomena, such as photosynthesis in plants and bacteria, biological mechanism of vision, and operating principles of optomechanical and optoelectronic devices. This process is theoretically modeled by solving the time-dependent Schroedinger equation. However, such treatment is too computationally expensive to be used for practical molecular systems. Therefore, either models of the structure of the systems or the solving procedure itself must be simplified to get the desired results. The main goal of the research presented in this dissertation was to study processes caused by the electronic excitation in photoactive molecules using computational methods of electronic structure (i. e. solving the simpler time-independent Schroedinger equation) and to construct the potential energy surface models describing the energy relaxation in the investigated molecules. It is shown that the results of different investigations performed using the same procedure provide explanations of different phenomena in various compounds, such as: proton transfer in polar solvent, performed by a functional group of the bacteriorhodopsin protein; optomechanical cycle of the indolo-benzoxazine compound; efficient phosphorescence of the silicon-based organic polymer; and optical properties of organometallic emitter compound with additional charge-carrier groups.
Elektroninio sužadinimo evoliucija šviesai jautriose molekulėse yra reiškinys, kuriuo remiantis įmanoma nagrinėti daugelį natūralių ir dirbtinių procesų: augalų ir bakterijų fotosintezę, regos mechanizmą, optomechaninių bei optoelektroninių prietaisų (pavyzdžiui, organinių šviestukų) veikimą. Teoriškai šis reiškinys modeliuojamas sprendžiant laikinę Šriodingerio lygtį. Deja, toks sprendimas realiems, praktiškai panaudojamiems junginiams šiandien yra per sudėtingas uždavinys, todėl jį tenka keisti supaprastinant nagrinėjamų junginių modelius arba sprendimo metodiką. Šioje disertacijoje aprašomų tyrimų tikslas buvo elektroninės struktūros skaičiavimų metodais (t. y. sprendžiant paprastesnę nuostoviąją Šriodingerio lygtį) ištirti elektroninio sužadinimo sukeltus procesus fotoaktyviose molekulėse ir sudaryti sužadinimo relaksaciją apibūdinančius potencinės energijos paviršių modelius. Parodoma, jog ta pačia metodika atliekamų tyrimų rezultatai paaiškina įvairiuose junginiuose vykstančius reiškinius: bakteriorodopsino baltymo funkcinės grupės vykdomą protono pernašą poliniame tirpiklyje, indolo-benzoksazino junginio optomechaninį ciklą, našią fosforescenciją organiniame silicio polimere bei šviestukams naudojamo metaloorganinio komplekso su prijungtomis krūvininkų pernašos grupėmis ypatybes.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Platt, Sean P. "Interactions of the Naphthalene Radical Cation with Polar and Unsaturated Molecules in the Gas Phase." VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4210.

Повний текст джерела
Анотація:
Characterizing the interactions of solvent molecules with ions is fundamental in understanding the thermodynamics of solution chemistry. These interactions are difficult to observe directly in solution because the number of solvent molecules far exceed that of ions. This lend the gas phase to be the ideal medium in the study ion-solvent interactions on a molecular level. Ionized polycyclic aromatic hydrocarbon (PAH) molecules can readily form hydrogen bonds with neutral solvent molecules in aqueous and interstellar medium. Previous research has been done for stepwise solvation of small molecules such as benzene+, pyridine, and phenylacetylene. The similarity in these results show that these organic ions can be considered prototypical model systems for aromatic ion-neutral solvent interactions. The goal of this dissertation is to demonstrate that naphthalene can act as a prototypical model of PAH ions for ion-solvent interactions. Two types of experiments are considered throughout this dissertation using ion mobility mass spectrometry: (1) ion-neutral equilibrium thermochemistry and (2) mobility measurements. For thermochemistry experiments, the naphthalene radical cation was injected into the drift cell containing helium and/or neutral solvent vapor and the enthalpy and entropy changes were measured by varying the drift cell temperature and measuring the equilibrium constants. The results of these studies showed that small polar molecules bind to naphthalene with similar energy based on the measured by the enthalpy changes. Unsaturated aliphatic molecules behave similarly, but with much lower binding energy. Aromatic ions tend to bind to the naphthalene with lower binding energy than that observed with the benzene ion. The results for small polar molecules were compared to similar studies using the phenyl cation. The second series of experiments required the coexpansion of the naphthalene and benzene or pyridine. Injecting theses dimers into the drift cell allowed the measurement of reduced mobility on the dimers at a series of temperatures. These were used to calculate the average collision cross section and thus give insight in to the structure of these aromatic dimers. Structures were determined by comparing these results to those predicted by DFT calculations.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Suárez, Rojas Noslen. "Strong-field processes in atoms and polyatomic molecules." Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/461458.

Повний текст джерела
Анотація:
In this thesis, we develop a general theory to describe the dynamics of electrons that are ionized when an atom or molecule is exposed to a strong low frequency laser field. Our approach extends and improves the well-established theoretical strong-field approximation (SFA). Additionally, our modified strong field approximation (MSFA) can be extended in a natural way from atomic systems to a more complex molecules and multielectron systems. Our scheme involves two innovative aspects: (i) First, the bound-continuum and rescattering matrix elements can be analytically computed for both atomic and multicenter molecular systems, using a nonlocal short range (SR), but separable, potential. When compared with the standard models, these analytical derivations make possible to directly examine how the ATI and HHG spectra depend on the driven media and laser-pulse features. Furthermore, our model allows us to disentangle the different processes contributing to the total spectra, amongst other capabilities, and it allows us to adjust both the internuclear separation and atomic or molecular potential in a direct and simple way. Furthermore, we can turn on and off contributions having distinct physical origins or corresponding to different mechanisms that correspond to (1) direct tunneling ionization; (2) electron escattering/recombining on the center of origin; and, finally, (3) electron rescattering/recombining on a different center. (ii) Second, the multicenter matrix elements in our theory are free from nonphysical coordinate-systemdependent terms; this is accomplished by adapting the coordinate system to the center from which the corresponding time-dependent wave function originates. Having established the basic formalism, we then study the HHG and ATI processes for a variety of atomic and molecular systems. We compare the SFA results with the full numerical solutions of the timedependent Schrödinger equation (TDSE), when available, within the few-cycle pulse regime. We show how our MSFA can be used to look inside the underlying physics of those phenomena. With our tool it is possible to investigate the interference features, ubiquitously present in every strong-field phenomenon involving a multicenter target, or to describe laser-induced electron diffraction (LIED) measurements retrieving molecular structural information from the photoelectron spectra. Our approach paves the way to study the HHG and ATI processes in much more complex molecular targets. Additionally, it potentially can be extended to study these kind of recombination and rescattering scenarios in solid targets.
En esta tesis, desarrollamos una teoría general para describir la dinámica de ionización de electrones cuando un átomo o molécula está expuesto a un campo externo fuerte y de longitud de onda larga. Nuestra teoría: la aproximación de campo fuerte modificada (MSFA), es capaz de describir la interacción de un pulso de luz, no sólo con átomos sino también con moléculas y sólidos. La MSFA está construida como una extensión natural y consecuente del modelo atómico, describiendo desde los sistemas más simples hasta las moléculas más complejas, incluyendo sistemas de muchos electrones. Nuestro enfoque abarca dos aspectos innovadores: (i) En primer lugar, los elementos de matriz que describen la dispersión e interacciones de electrones en el continuo se calculan analíticamente, tanto para sistemas atómicos como moleculares. Esto se logra utilizando un tipo de potencial de corto alcance (SR), no local y separable. En comparación con los modelos estándares, estas derivaciones analíticas permiten examinar directamente cómo los espectros ATI y HHG dependen de las características del pulso láser. Nuestra derivación analítica permite diferenciar los diferentes procesos que contribuyen al espectro total, además de que nos permite fijar la distancia internuclear y el potencial atómico o molecular de una manera directa y sencilla. También es posible activar y desactivar las contribuciones que tienen diferentes orígenes físicos o que corresponden a diferentes mecanismos como, (1) ionización directa por túnel; (2) dispersión/recombinación de electrones en el átomo de ionización; y, por último, (3) dispersión/recombinación de electrones en un átomo distinto al de ionización. (ii) En segundo lugar, en nuestra teoría los elementos matriciales de los sistemas multi-atómicos se encuentran libres de calibraciones no físicas y son independientes del sistema de coordenadas. Esto se consigue adaptando el sistema de coordenadas al átomo del que se origina la correspondiente función de onda dependiente del tiempo. Una vez establecido el formalismo básico del MSFA, estudiamos los procesos de HHG y ATI para una gran variedad de sistemas atómicos y moleculares. Comparamos los resultados del MSFA con las soluciones numéricas de la ecuación de Schrödinger dependiente del tiempo (TDSE), cuando sea posible. Demostramos que nuestro modelo de MSFA puede ser utilizado para estudiar la física de los procesos fundamentales que están detrás de HHG y ATI. Con esta herramienta es posible investigar los procesos de interferencia, inherentes a todos los fenómenos de campo fuerte, en sistemas multi-céntricos. También es posible describir mediciones experimentales de difracción de electrones inducida por láser (LIED), permitiendo recuperar información estructural mediante el análisis de los espectros de fotoelectrones. Nuestro modelo abre el camino para estudiar los procesos de HHG y ATI en sistemas de moléculas complejas. Además tiene la potencialidad de poder ser fácilmente extendido para estudiar procesos de recombinación y dispersión, no sólo en moléculas grandes, sino también en sólidos.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Andrews, S. R. "Studies of double ionization and related electronic processes in molecules." Thesis, Swansea University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.635784.

Повний текст джерела
Анотація:
The major objective of these investigations was to develop a high-resolution double-charge-transfer spectrometer in order to measure vertical double-ionization energies of molecules, and to develop a thoeretical method to predict these energies economically. An overview of experimental techniques that have been used for the measurement of double-ionization energies is given in chapter 1; their advantages and restrictions are discussed and a brief review of double-charge-transfer spectroscopy studies to date is made. The various theoretical methods that are available for the studies of these processes are discussed in chapter 2, and a semi-empirical method based on the MSXα method is developed and tested for its effectiveness in predicting the complex singlet- and triplet-state energy distributions that exist in molecular dications; NH_3 and NO_2 were chosen for this purpose. Chapter 3 then describes in more detail the double-charge-transfer experiment, the spectrometers used in the studies presented in this thesis, and the modifications to that equipment. The next three chapters are devoted to the studies of double ionization of a wide variety of molecular dications. In chapter 4, theoretical predictions and interpretations of previous experimental results are presented; double-ionization energies of water, chloromethanes, iodomethanes and three metal hexacarbonyls (Cr, Mo, W) are predicted. This is followed in chapter 5 by joint theoretical and experimental studies initially of the triplet-state energies of ethane, allene and 1,1-dimethyl allene with the MS9 spectrometer, and then of ethyne, propyne and various alkyl-substituted amines with the high-resolution Finnigan 8230 spectrometer. The results are interpreted using the above semi-empirical theoretical technique. Finally, the possibility of studying singlet-state energies at high resolution is investigated in chapter 6, with joint experimental measurements and theoretical predictions of singlet-state energies of ethene, ethyne, propyne and allene being presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kowerko, Danny. "Dynamic Processes in Functionalised Perylene Bisimide Molecules, Semiconductor Nanocrystals and Assemblies." Doctoral thesis, Universitätsbibliothek Chemnitz, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-64194.

Повний текст джерела
Анотація:
Funktionalisierte organische Perylenbisimidfarbstoffe (PBI) und aus Cadmiumselenid bestehende Halbleiternanokristalle werden hinsichtlich physikalischer sowie chemischer Wechselwirkungsprozesse miteinander und mit ihrer Umgebung mittels zeitaufgelöster optischer Spektroskopie untersucht. Im Mittelpunkt der Studien an diesem organisch/anorganischen Modellsystem nanoskopischer Größe steht die Aggregatbildungskinetik und die Identifikation und Quantifizierung von Transferpozessen. Die Anbindung der gut löslichen PBI-Farbstoffe an die Oberfläche solcher Halbleiternanokristalle mittels spezieller Ankergruppen wird durch Selbstorganisation in Lösung realisiert. Die Kombination von Absorptions- und zeitaufgelöster Fluoreszenzspektroskopie zeigt einen unterschiedlich starken Einfluss von Liganden und Farbstoffen auf die Fluoreszenzlöschung der Nanokristalle und belegt, dass Resonanzenergietransfer zum Farbstoff nur in sehr geringem Maße die physikalische Ursache der Fluoreszenzlöschung ist. Die Anzahl adsorbierter Farbstoffe und die Stärke der Fluoreszenzlöschung eines einzelnen Farbstoffmoleküls werden aus zeitaufgelösten Einzelmolekülexperimenten an immobilisierten Emittern gewonnen, welche den direkten spektroskopischen Zugang zur Verteilung gebundener und freier Farbstoffe/Nanokristalle erlaubt. Darüber hinaus werden ankergruppen- und umgebungsspezifische Einflüsse auf die Konformations- und Orientierungsdynamik von Perylenbisimidmolekülen dargestellt. Abschließend werden photo-physikalische Gemeinsamkeiten chemisch unterschiedlich hervorgerufener Fluoreszenzlöschungsprozesse herausgearbeitet und im Kontext von Einzelkristall-Blinkprozessen diskutiert.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chen, Tao. "Ions colliding with molecules and molecular clusters : fragmentation and growth processes." Doctoral thesis, Stockholms universitet, Fysikum, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-117114.

Повний текст джерела
Анотація:
In this work we will discuss fragmentation and molecular growth processes in collisions of Polycyclic Aromatic Hydrocarbon (PAH) molecules, fullerenes, or their clusters with atoms or atomic ions. Simple collision models as well as molecular structure calculations are used to aid the interpretations of the present and other experimental results. Fragmentation features at center-of-mass collision energies around 10 keV are dominated by interactions between the fast ion/atom and the electron cloud in the molecules/clusters (electronic stopping processes). This electronic excitation energy is rapidly distributed on the vibrational degrees of freedom of the molecule or of the molecules in a cluster and may result in fragmentation. Here, the fragmentation is statistical and favors the lowest-energy dissociation channels which are losses of intact molecules from clusters, H- and C2H2-losses from isolated PAHs, and C2-loss from fullerene monomers. We will also discuss the possibility of formation of molecular H2 direct from native PAHs which reach high enough energies when interacting with ions, electrons, or photons. For the experiments at lower center of mass collision energies (~100 eV) a single atom may be knocked out in close atom-atom interaction. Such non-statistical fragmentation are due to nuclear stopping processes and gives highly reactive fragments which may form covalent bonds with other molecules in a cluster on very short time scales (picoseconds). This process may be important when considering the formation of new species. For collision between 12 keV Ar2+ and clusters of pyrene (C16H10) molecules, new molecules, e.g. C17H10+, C30H18+, C31H19+, etc are detected. We also observe molecular fusion processes for He and Ar ions colliding with clusters of C60 molecules. These and related molecular fusion processes may play a key role for understanding molecular growth processes under certain astrophysical conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Schell, Felix [Verfasser]. "Sub-Femtosecond Processes in Molecules Studied by Coincidence Spectroscopy / Felix Schell." Berlin : Freie Universität Berlin, 2020. http://d-nb.info/1219070319/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Thermochemistry of Molecules and Processes"

1

(Mazen), Al-Ghoul M., ed. Chemical thermodynamics: With examples for nonequilibrium processes. Hackensack, NJ: World Scientific, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

1927-, Ikan Raphael, ed. Natural and laboratory-simulated thermal geochemical processes. Dordrecht: Kluwer Academic Publishers, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Theory of multiphoton processes. New York: Plenum Press, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

United States. National Aeronautics and Space Administration., ed. Removal of oxygen from electronic materials by vapor-phase processes. [Washington, DC: National Aeronautics and Space Administration, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

1940-, Cantrell C. D., ed. Multiple-photon excitation and dissociation of polyatomic molecules. Berlin: Springer-Verlag, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chowdhury, Debashish. Stochastic Transport in Complex Systems: From Molecules to Vehicles. San Diego: Elsevier Science [Imprint], 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

International, Conference on Multiphoton Processes (5th 1990 Paris France). Multiphoton processes: Proceedings of the 5th International Conference on Multiphoton Processes, Paris, France, September, 24-28, 1990. Gif-sur-Yvette [France]: CEA, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

N, Lomova T., and Zaikov Gennadiĭ Efremovich, eds. Chemical processes with participation of biological and related compounds: Biophysical and chemical aspects of porphyrins, pigments, drugs, biodegradable polymers and nanofibers. Leiden: Brill, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

N, Lomova T., and Zaikov Gennadiĭ Efremovich, eds. Chemical processes with participation of biological and related compounds: Biophysical and chemical aspects of porphyrins, pigments, drugs, biodegradable polymers and nanofibers. Leiden: Brill, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

D, Lazar Mihaela, ed. Processes in isotopes and molecules (PIM 2011): Cluj Napoca, Romania, 29 September-1 October 2011. Melville, N.Y: American Institute of Physics, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Thermochemistry of Molecules and Processes"

1

Sack, Richard O., Denton S. Ebel, and Michael J. O’Leary. "Tennahedrite Thermochemistry and Metal Zoning." In Chemical Transport in Metasomatic Processes, 701–31. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4013-0_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Akulin, V. M., and N. V. Karlov. "Laser Thermochemistry. Processes on a Surface." In Intense Resonant Interactions in Quantum Electronics, 269–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-61241-1_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bohme, Diethard K. "Growing Molecules with Ion/Molecule Reactions." In Structure/Reactivity and Thermochemistry of Ions, 219–46. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3787-1_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

McMahon, T. B. "Assignment of Absolute Gas Phase Basicities of Small Molecules." In Structure/Reactivity and Thermochemistry of Ions, 305–20. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3787-1_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kaifu, Norio. "Interstellar Molecules." In Molecular Processes in Space, 205–31. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0591-0_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Koch, Wolfram, and Helmut Schwarz. "Experimental and Theoretical Studies of Small Organic Dications, Molecules with Highly Remarkable Properties." In Structure/Reactivity and Thermochemistry of Ions, 413–65. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3787-1_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Steinmetz, Marc, Andreas Hansen, Stephan Ehrlich, Tobias Risthaus, and Stefan Grimme. "Accurate Thermochemistry for Large Molecules with Modern Density Functionals." In Topics in Current Chemistry, 1–23. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/128_2014_543.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Martin, Jan M. L. "Ab Initio Thermochemistry Beyond Chemical Accuracy for First-and Second-Row Compounds." In Energetics of Stable Molecules and Reactive Intermediates, 373–415. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4671-5_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ueta, Masayasu, Hiroshi Kanzaki, Koichi Kobayashi, Yutaka Toyozawa, and Eiichi Hanamura. "Theoretical Aspects of Excitonic Molecules." In Excitonic Processes in Solids, 20–115. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82602-3_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

van Dishoeck, Ewine F. "Photodissociation Processes of Astrophysical Molecules." In Astrochemistry, 51–65. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4774-0_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Thermochemistry of Molecules and Processes"

1

Gibson, John K. "Thermochemistry of Transuranium Actinide Oxide Molecules Investigated by FTICR-MS." In PLUTONIUM FUTURES - THE SCIENCE: Third Topical Conference on Plutonium and Actinides. AIP, 2003. http://dx.doi.org/10.1063/1.1594541.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

BOHR, HENRIK, PER GREISEN, and BARRY MALIC. "EXCITED STATE PROCESSES IN PHOTOSYNTHESIS MOLECULES." In Proceedings of the 31st International Workshop. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812836625_0034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fleischer, Heidi, and Kerstin Thurow. "Compound-oriented Measurement Processes: Elements, Molecules, Structures." In 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2020. http://dx.doi.org/10.1109/i2mtc43012.2020.9128468.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

DEMTRÖDER, W., M. KEIL, T. PLATZ, and H. WENZ. "ENERGY TRANSFER PROCESSES IN ATOMS AND MOLECULES." In Proceedings of the 16th Course of the International School of Atomic and Molecular Spectroscopy. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810960_0003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Becker, Uwe. "Photoelectron emission from oriented molecules." In X-RAY AND INNER-SHELL PROCESSES: 18th International Conference. AIP, 2000. http://dx.doi.org/10.1063/1.1302754.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Grishina, Antonina D., Anatoly V. Vannikov, Galina O. Khazova, Marine G. Tedoradze, and Yurij I. Koltsov. "Photochemical processes in photoresists containing electron donor molecules." In Optical Information Science and Technology, edited by Andrei L. Mikaelian. SPIE, 1998. http://dx.doi.org/10.1117/12.301424.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

"Preface: Processes in Isotopes and Molecules (PIM 2015)." In 10TH INTERNATIONAL CONFERENCE PROCESSES IN ISOTOPES AND MOLECULES (PIM 2015). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4938432.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lazar, Mihaela Diana, and Sorina Garabagiu. "Preface: Processes in Isotopes and Molecules (PIM 2013)." In PROCESSES IN ISOTOPES AND MOLECULES (PIM 2013). AIP, 2013. http://dx.doi.org/10.1063/1.4833684.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lazar, Mihaela D., and Mihaela D. Lazar. "Preface: Processes in Isotopes and Molecules (PIM 2011)." In PROCESSES IN ISOTOPES AND MOLECULES (PIM 2011). AIP, 2012. http://dx.doi.org/10.1063/1.3681952.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cowan, P. L. "Polarization and anisotropy of x-ray emission from molecules." In X-ray and inner-shell processes. AIP, 1990. http://dx.doi.org/10.1063/1.39854.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Thermochemistry of Molecules and Processes"

1

Morse, Michael D., and Peter B. Armentrout. Spectroscopy, Thermochemistry, and Reactivity of Lanthanide and Actinide Molecules. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1048544.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

McKoy, Vincent. Electrondriven processes in polyatomic molecules. Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1347212.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cole, John, Gabriel da Silva, Joseph W. Bozzelli, and William Anderson. Thermochemistry and Kinetics for Designer Molecules Additives to Energetic Materials for Improved Performance: Thermal Generation of Hydrazine. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada483181.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Laurent, Guillaume. Real-time observation of multi-electron processes in atoms and diatomic molecules. Office of Scientific and Technical Information (OSTI), February 2022. http://dx.doi.org/10.2172/1846629.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

McCurdy, C. William. Ultrafast Processes in Atoms and Molecules: Integrated treatment of electronic and nuclear motion in ultrashort XUV pulses. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1413524.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bhatnagar, R. Infrared and visible laser double resonance studies of vibrational energy transfer processes in polyatomic molecules. [Chromyl chloride solutions]. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/7265931.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bhatnagar, R. Infrared and visible laser double resonance studies of vibrational energy transfer processes in polyatomic molecules. Final report, June 15, 1988--June 14, 1991. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10176492.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Becker, Kurt H., C. William McCurdy, Thomas M. Orlando, and Thomas N. Rescigno. Current status and future perspectives of electron interactions with molecules, clusters, surfaces, and interfaces [Workshop on Fundamental challenges in electron-driven chemistry; Workshop on Electron-driven processes: Scientific challenges and technological opportunities]. Office of Scientific and Technical Information (OSTI), September 2000. http://dx.doi.org/10.2172/809935.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Friedman, Shmuel, Jon Wraith, and Dani Or. Geometrical Considerations and Interfacial Processes Affecting Electromagnetic Measurement of Soil Water Content by TDR and Remote Sensing Methods. United States Department of Agriculture, 2002. http://dx.doi.org/10.32747/2002.7580679.bard.

Повний текст джерела
Анотація:
Time Domain Reflectometry (TDR) and other in-situ and remote sensing dielectric methods for determining the soil water content had become standard in both research and practice in the last two decades. Limitations of existing dielectric methods in some soils, and introduction of new agricultural measurement devices or approaches based on soil dielectric properties mandate improved understanding of the relationship between the measured effective permittivity (dielectric constant) and the soil water content. Mounting evidence indicates that consideration must be given not only to the volume fractions of soil constituents, as most mixing models assume, but also to soil attributes and ambient temperature in order to reduce errors in interpreting measured effective permittivities. The major objective of the present research project was to investigate the effects of the soil geometrical attributes and interfacial processes (bound water) on the effective permittivity of the soil, and to develop a theoretical frame for improved, soil-specific effective permittivity- water content calibration curves, which are based on easily attainable soil properties. After initializing the experimental investigation of the effective permittivity - water content relationship, we realized that the first step for water content determination by the Time Domain Reflectometry (TDR) method, namely, the TDR measurement of the soil effective permittivity still requires standardization and improvement, and we also made more efforts than originally planned towards this objective. The findings of the BARD project, related to these two consequential steps involved in TDR measurement of the soil water content, are expected to improve the accuracy of soil water content determination by existing in-situ and remote sensing dielectric methods and to help evaluate new water content sensors based on soil electrical properties. A more precise water content determination is expected to result in reduced irrigation levels, a matter which is beneficial first to American and Israeli farmers, and also to hydrologists and environmentalists dealing with production and assessment of contamination hazards of this progressively more precious natural resource. The improved understanding of the way the soil geometrical attributes affect its effective permittivity is expected to contribute to our understanding and predicting capability of other, related soil transport properties such as electrical and thermal conductivity, and diffusion coefficients of solutes and gas molecules. In addition, to the originally planned research activities we also investigated other related problems and made many contributions of short and longer terms benefits. These efforts include: Developing a method and a special TDR probe for using TDR systems to determine also the soil's matric potential; Developing a methodology for utilizing the thermodielectric effect, namely, the variation of the soil's effective permittivity with temperature, to evaluate its specific surface area; Developing a simple method for characterizing particle shape by measuring the repose angle of a granular material avalanching in water; Measurements and characterization of the pore scale, saturation degree - dependent anisotropy factor for electrical and hydraulic conductivities; Studying the dielectric properties of cereal grains towards improved determination of their water content. A reliable evaluation of the soil textural attributes (e.g. the specific surface area mentioned above) and its water content is essential for intensive irrigation and fertilization processes and within extensive precision agriculture management. The findings of the present research project are expected to improve the determination of cereal grain water content by on-line dielectric methods. A precise evaluation of grain water content is essential for pricing and evaluation of drying-before-storage requirements, issues involving energy savings and commercial aspects of major economic importance to the American agriculture. The results and methodologies developed within the above mentioned side studies are expected to be beneficial to also other industrial and environmental practices requiring the water content determination and characterization of granular materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chamovitz, Daniel A., and Zhenbiao Yang. Chemical Genetics of the COP9 Signalosome: Identification of Novel Regulators of Plant Development. United States Department of Agriculture, January 2011. http://dx.doi.org/10.32747/2011.7699844.bard.

Повний текст джерела
Анотація:
This was an exploratory one-year study to identify chemical regulators of the COP9 signalosome. Chemical Genetics uses small molecules to modify or disrupt the function of specific genes/proteins. This is in contrast to classical genetics, in which mutations disrupt the function of genes. The underlying concept is that the functions of most proteins can be altered by the binding of a chemical, which can be found by screening large libraries for compounds that specifically affect a biological, molecular or biochemical process. In addition to screens for chemicals which inhibit specific biological processes, chemical genetics can also be employed to find inhibitors of specific protein-protein interactions. Small molecules altering protein-protein interactions are valuable tools in probing protein-protein interactions. In this project, we aimed to identify chemicals that disrupt the COP9 signalosome. The CSN is an evolutionarily conserved eight-subunit protein complex whose most studied role is regulation of E3 ubiquitinligase activity. Mutants in subunits of the CSN undergo photomorphogenesis in darkness and accumulate high levels of pigments in both dark- and light-grown seedlings, and are defective in a wide range of important developmental and environmental-response pathways. Our working hypothesis was that specific molecules will interact with the CSN7 protein such that binding to its various interacting proteins will be inhibited. Such a molecule would inhibit either CSN assembly, or binding of CSN-interacting proteins, and thus specifically inhibit CSN function. We used an advanced chemical genetic screen for small-molecule-inhibitors of CSN7 protein-protein interactions. In our pilot study, following the screening of ~1200 unique compounds, we isolated four chemicals which reproducibly interfere with CSN7 binding to either CSN8 or CSN6.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії