Добірка наукової літератури з теми "Thermal field model"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Thermal field model".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Thermal field model"
Dmitriev, A. N., and Yu V. Pakharukov. "Thermoelectric model of the Earth's magnetic field." Oil and Gas Studies, no. 2 (June 11, 2021): 39–52. http://dx.doi.org/10.31660/0445-0108-2021-2-39-52.
Повний текст джерелаLiu, Hong, Jin Guo Li, and Yong Tian Wang. "Fast Computing Model for Thermal Field of Auto Lamp." Key Engineering Materials 364-366 (December 2007): 783–88. http://dx.doi.org/10.4028/www.scientific.net/kem.364-366.783.
Повний текст джерелаRajendran, S., C. C. Chao, D. P. Hill, J. P. Kalejs, and Vern Overbye. "Magnetic and thermal field model of EFG system." Journal of Crystal Growth 109, no. 1-4 (February 1991): 82–87. http://dx.doi.org/10.1016/0022-0248(91)90160-7.
Повний текст джерелаDrahoš, Peter, Vladimír Kutiš, and Róbert Lenický. "Thermocouple Sensor Influence on Temperature Field in SMA Actuator." Applied Mechanics and Materials 394 (September 2013): 50–56. http://dx.doi.org/10.4028/www.scientific.net/amm.394.50.
Повний текст джерелаWang, Jingxia, Yusheng Hu, Ming Cheng, Biao Li, and Bin Chen. "Bidirectional Coupling Model of Electromagnetic Field and Thermal Field Applied to the Thermal Analysis of the FSPM Machine." Energies 13, no. 12 (June 14, 2020): 3079. http://dx.doi.org/10.3390/en13123079.
Повний текст джерелаSuh, S. W. "A Hybrid Near-Field/Far-Field Thermal Discharge Model for Coastal Areas." Marine Pollution Bulletin 43, no. 7-12 (July 2001): 225–33. http://dx.doi.org/10.1016/s0025-326x(01)00074-1.
Повний текст джерелаKarma, Alain, and Wouter-Jan Rappel. "Phase-field model of dendritic sidebranching with thermal noise." Physical Review E 60, no. 4 (October 1, 1999): 3614–25. http://dx.doi.org/10.1103/physreve.60.3614.
Повний текст джерелаZubert, Mariusz, Tomasz Raszkowski, Agnieszka Samson, Marcin Janicki, and Andrzej Napieralski. "The distributed thermal model of fin field effect transistor." Microelectronics Reliability 67 (December 2016): 9–14. http://dx.doi.org/10.1016/j.microrel.2016.09.021.
Повний текст джерелаSinelnikov, D., D. Bulgadaryan, V. Kurnaev, and M. Lobov. "The model of thermal field emission from tungsten fuzz." Journal of Physics: Conference Series 941 (December 2017): 012024. http://dx.doi.org/10.1088/1742-6596/941/1/012024.
Повний текст джерелаJensen, Kevin L., Patrick G. O’Shea, and Donald W. Feldman. "Generalized electron emission model for field, thermal, and photoemission." Applied Physics Letters 81, no. 20 (November 11, 2002): 3867–69. http://dx.doi.org/10.1063/1.1521491.
Повний текст джерелаДисертації з теми "Thermal field model"
Bawana, Niyem Mawenbe. "Thermal Response in a Field Oriented Controlled Three-phase Induction Motor." Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7740.
Повний текст джерелаHuang, Zhida. "SIMULATION OF METAL GRAIN GROWTH IN LASER POWDER BED FUSION PROCESS USING PHASE FIELD THERMAL COUPLED MODEL." Case Western Reserve University School of Graduate Studies / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=case1554391043588225.
Повний текст джерелаMacGinitie, Laura A. "Electrical and thermal modulation of protein synthesis in cartilage : a model for field effects on biological tissues." Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/17222.
Повний текст джерелаTitle as it appears in M.I.T. Graduate List, Feb. 1988: Electrical and thermal modulation of protein synthesis in cartilage--a model for electric field effects on biological tissues.
Bibliography: leaves 264-281.
by Laura A. MacGinitie.
Ph.D.
Spiegel, Colleen. "Mathematical modeling of polymer exchange membrane fuel cells." [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002730.
Повний текст джерелаSeaman, Shane Thomas. "Material Related Effects on the Structural Thermal Optical Performance of a Thermally Tunable Narrowband Interferometric Spectral Filter." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/90799.
Повний текст джерелаDoctor of Philosophy
LiDAR (an acronym for Light Detection and Ranging) is a technology that can be used to measure properties of the atmosphere. It is similar to radar, but uses much smaller light waves rather than larger radio waves, enabling more detailed information to be obtained. High Spectral Resolution Lidar (HSRL) is a lidar technique that uses a high precision optical filter to distinguish between light that scatters from particulates (such as dust, smoke, or fog) and light that scatters from molecules (such as oxygen, nitrogen, or carbon dioxide) in the atmosphere. By separating the two types of backscattered light, higher accuracy measurements are possible that will enable improvements in climate models, air quality measurements, and climate forecasting. A spaceborne HSRL instrument can provide great impact in these areas by enabling near-continuous measurements across the Earth; however, the optical filter technology has typically been too complex for reliable long-duration spaceflight due to the need for complicated and expensive additional hardware. In this research, a high-performance HSRL optical filter that can be reliably operated by simply monitoring and adjusting the temperature has been designed, built, and tested. The greatly-reduced operational complexity has been made possible through a new process that enables more accurate prediction of the complicated interactions between the materials of the optical filter. This process is based on a combination of high-accuracy characterization of the materials and detailed structural-thermal-optical-performance (STOP) modeling. The overall design process, fabrication procedures, and characterization of the optical filter are presented.
上原, 拓也, Takuya UEHARA, 貴洋 辻野 та Takahiro TSUJINO. "フェーズフィールドモデルを用いた変態‐熱‐応力連成解析の定式化". 日本機械学会, 2006. http://hdl.handle.net/2237/9012.
Повний текст джерелаHasan, Md Mahmudul. "Thermal comfort conditions and perception by staff and patients in a Swedish health care center : A measurement and survey field study for summer conditions." Thesis, Högskolan i Gävle, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-34161.
Повний текст джерелаBagnoli, Annalisa. "Diffuse interface models for tumour growth within a non-isothermal Cahn-Hilliard theory for phase separation: thermodynamics, chemotaxis and stability." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14120/.
Повний текст джерелаCastellví, Fernández Quim. "Non-focal non-thermal electrical methods for cancer treatment." Doctoral thesis, Universitat Pompeu Fabra, 2017. http://hdl.handle.net/10803/586217.
Повний текст джерелаLa majoria del mètodes físics d'ablació tumoral es basen en produir dany tèrmic de manera focalitzada. Tot i ser considerats una alternativa habitual a la resecció quirúrgica, el principi tèrmic de funcionament, comporta un risc per la preservació d'estructures vitals adjacents a la zona de tractament, tals com grans vasos o nervis. A més, el fet de ser focals, fa impracticable la seva aplicació en cas de múltiples nòduls o tumors de difícil accés. Aquesta tesi explora tractaments elèctrics no basats en temperatura, capaços de ser aplicats de manera no focal. S'han investigat dos tractaments: El primer, proposat per altres fa pocs anys, està basat en aplicar permanentment camps elèctrics alterns de baixa magnitud a través d'elèctrodes superficials. Aquí, aquest tractament s'ha estudiat in vivo tant per avaluar la seva eficàcia com per discernir si aquesta resideix en la temperatura. El segon tractament es basa en el fenomen d'electroporació i persegueix el tractament de nòduls hepàtics. En els tractaments basats en electroporació, s’apliquen breus camps elèctrics de gran magnitud per tal de permeabilitzar la membrana cel·lular. Això permet la penetració d’agents quimioterapèutics o produeix directament la mort cel·lular. En lloc d'utilitzar, com és habitual, agulles per tal d'aplicar el tractament, aquí s'explora tractar tot el fetge de forma no localitzada, fent servir grans elèctrodes plans i paral·lels. Utilitzant solucions d'alta conductivitat elèctrica, es pretén magnificar selectivament el camp elèctric sobre els tumors, sent així capaços de destruir tots els tumors i alhora preservar el teixit sà. El tractament proposat per els tumors hepàtics, requereix d'un equip generador actualment no disponible. El presentat treball inclou el disseny d'una nova topologia de generadors capaç de complir amb els requisits.
上原, 拓也, Takuya UEHARA, 貴洋 辻野 та Takahiro TSUJINO. "フェーズフィールドモデルによる析出相内部の応力変化と残留応力のシミュレーション". 日本機械学会, 2006. http://hdl.handle.net/2237/9013.
Повний текст джерелаКниги з теми "Thermal field model"
Nicol, Fergus. Thermal comfort: A handbook for field studies toward an adaptive model. London: University ofEast London, on behalf of the UK Collaborative Group on Thermal Comfort, 1993.
Знайти повний текст джерелаMiller, Robert T. Field observations, preliminary model analysis, and aquifer thermal efficiency: Cyclic injection, storage, and withdrawal of heated water in a sandstone aquifer at St. Paul, Minnesota. Washington: U.S. G.P.O., 1993.
Знайти повний текст джерелаAnholt, Robert. Electrical and thermal characterization of MESFETs, HEMTs, and HBTs. Boston: Artech House, 1995.
Знайти повний текст джерелаservice), SpringerLink (Online, ed. From Gravity to Thermal Gauge Theories: The AdS/CFT Correspondence: The AdS/CFT Correspondence. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Знайти повний текст джерелаS̆imunić, Dina. Thermal and stimutalting effects of time-varying magnetic fields during MRI. Aachen: Shaker, 1995.
Знайти повний текст джерелаMagdalena, Nuñez, ed. Progress in electrochemistry research. Hauppauge, N.Y: Nova Science Publishers, 2005.
Знайти повний текст джерелаLorenzo, Pareschi, and Russo Giovanni, eds. Modelling and numerics of kinetic dissipative systems. Hauppauge, N.Y: Nova Science Publishers, 2005.
Знайти повний текст джерелаP, Norris Charles, ed. Surface science: New research. Hauppauge, N.Y: Nova Science Publishers, 2005.
Знайти повний текст джерелаN, Linke A., ed. Progress in chemical physics research. Hauppauge, N.Y: Nova Science Publishers, 2005.
Знайти повний текст джерелаMagdalena, Nuñez, ed. Trends in electrochemistry research. New York: Nova Science Publishers, 2005.
Знайти повний текст джерелаЧастини книг з теми "Thermal field model"
Denny, Allen, Neelkanth Kirloskar, Babu Rao Ponangi, Rex Joseph, and V. Krishna. "Electro-Thermal Model for Field Effective Transistors." In Recent Advances in Hybrid and Electric Automotive Technologies, 277–84. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2091-2_21.
Повний текст джерелаJensen, Kevin L. "A Thermal-Field-Photoemission Model and Its Application." In Modern Developments in Vacuum Electron Sources, 345–85. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47291-7_8.
Повний текст джерелаSvehla, Drazen. "Model of Solar Radiation Pressure and Thermal Re-radiation." In Geometrical Theory of Satellite Orbits and Gravity Field, 269–95. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76873-1_19.
Повний текст джерелаLiu, Hong, Jin Guo Li, and Yong Tian Wang. "Fast Computing Model for Thermal Field of Auto Lamp." In Optics Design and Precision Manufacturing Technologies, 783–88. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-458-8.783.
Повний текст джерелаSun, Zichao, Weicun Zhang, and Yan Liu. "Research on the Temperature Field and Thermal Roll Shape of Cold Rolling Model." In Proceedings of the 11th International Conference on Modelling, Identification and Control (ICMIC2019), 475–84. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0474-7_45.
Повний текст джерелаWu, Weige, and Gang Liu. "Modeling and Validation of Thermal-Fluid Field of Transformer Winding Based on a Product-Level Heating and Cooling Model." In Modeling and Application of Electromagnetic and Thermal Field in Electrical Engineering, 665–85. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0173-9_16.
Повний текст джерелаMartin, Katharina, Dennis Daub, Burkard Esser, Ali Gülhan, and Stefanie Reese. "Numerical Modelling of Fluid-Structure Interaction for Thermal Buckling in Hypersonic Flow." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 341–55. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_22.
Повний текст джерелаBarfusz, Oliver, Felix Hötte, Stefanie Reese, and Matthias Haupt. "Pseudo-transient 3D Conjugate Heat Transfer Simulation and Lifetime Prediction of a Rocket Combustion Chamber." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 265–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_17.
Повний текст джерелаZhao, Junwei, Xuming Mao, Ruhua Wang, Wenjiang Wang, Zhenwei Zhang, and Hongjun Xue. "Numerical Simulation of Inner Hydro-field and Comfortable Evaluation Based on Human Thermal Comfortable Model in Cockpit." In Informatics in Control, Automation and Robotics, 543–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25899-2_73.
Повний текст джерелаGentilal, Nichal, Ricardo Salvador, and Pedro Cavaleiro Miranda. "A Thermal Study of Tumor-Treating Fields for Glioblastoma Therapy." In Brain and Human Body Modeling 2020, 37–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45623-8_3.
Повний текст джерелаТези доповідей конференцій з теми "Thermal field model"
Ababneh, Mohammed T., Frank M. Gerner, Pramod Chamarthy, Peter de Bock, Shakti Chauhan, and Tao Deng. "Thermo-Fluid Model for High Thermal Conductivity Thermal Ground Planes." In ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75185.
Повний текст джерелаSchaich, David, Raghav G. Jha, and Anosh Joseph. "Thermal phase structure of a supersymmetric matrix model." In 37th International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2020. http://dx.doi.org/10.22323/1.363.0069.
Повний текст джерелаPardo, F., P. Lopez, D. Cabello, and M. Balsi. "FPGA Implementation of 3-D Thermal Model Simulator." In 2006 International Conference on Field Programmable Logic and Applications. IEEE, 2006. http://dx.doi.org/10.1109/fpl.2006.311278.
Повний текст джерелаJia, Wangkun, Brian T. Helenbrook, and Ming-C. Cheng. "Thermal modeling of multi-gate field effect transistors based on a reduced order model." In 2014 30th Semiconductor Thermal Measurement & Management Symposium (SEMI-THERM). IEEE, 2014. http://dx.doi.org/10.1109/semi-therm.2014.6892245.
Повний текст джерелаLin, M. C. "A self-consistent general thermal field emission model." In 2012 IEEE 39th International Conference on Plasma Sciences (ICOPS). IEEE, 2012. http://dx.doi.org/10.1109/plasma.2012.6383346.
Повний текст джерелаLin, M. C. "A self-consistent general thermal field emission model." In 2012 IEEE Thirteenth International Vacuum Electronics Conference (IVEC). IEEE, 2012. http://dx.doi.org/10.1109/ivec.2012.6262201.
Повний текст джерелаYifeng, Wang, Yuan Kejian, Liu Yongzhi, and Liu Shuang. "A 3-D Thermal Field Model in Phosphate Glass." In 2006 International Conference on Communications, Circuits and Systems. IEEE, 2006. http://dx.doi.org/10.1109/icccas.2006.285053.
Повний текст джерелаPinto Fortkamp, Fábio, Jader Barbosa, and Jaime Lozano. "Analytical model of the magnetic field generated by nested infinite Halbach cylinders." In 16th Brazilian Congress of Thermal Sciences and Engineering. ABCM, 2016. http://dx.doi.org/10.26678/abcm.encit2016.cit2016-0220.
Повний текст джерелаMaranda, W., and M. Piotrowicz. "Extraction of thermal model parameters for field-installed photovoltaic module." In 2010 27th International Conference on Microelectronics (MIEL 2010). IEEE, 2010. http://dx.doi.org/10.1109/miel.2010.5490512.
Повний текст джерелаSaito, Hana, Mari Carmen Banuls, Krzysztof Cichy, J. Ignacio Cirac, and Karl Jansen. "Thermal evolution of the 1-flavour Schwinger model with using Matrix Product States." In The 33rd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.251.0283.
Повний текст джерелаЗвіти організацій з теми "Thermal field model"
Doughty, C., and Aharon, Tsang, Chin-Fu Nir. Seasonal thermal energy storage in unsaturated soils: Model development and field validation. Office of Scientific and Technical Information (OSTI), June 1991. http://dx.doi.org/10.2172/10176364.
Повний текст джерелаWang, D. Far-field model of the regional influence of effluent plumes from ocean thermal energy conversion (OTEC) plants. Office of Scientific and Technical Information (OSTI), July 1985. http://dx.doi.org/10.2172/5451995.
Повний текст джерелаDavidson, R. C., P. Stoltz, and C. Chen. Intense nonneutral beam propagation in a periodic solenoidal field using a macroscopic fluid model with zero thermal emittance. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/304187.
Повний текст джерелаClausen, Jay, Michael Musty, Anna Wagner, Susan Frankenstein, and Jason Dorvee. Modeling of a multi-month thermal IR study. Engineer Research and Development Center (U.S.), July 2021. http://dx.doi.org/10.21079/11681/41060.
Повний текст джерелаVanderGheynst, Jean, Michael Raviv, Jim Stapleton, and Dror Minz. Effect of Combined Solarization and in Solum Compost Decomposition on Soil Health. United States Department of Agriculture, October 2013. http://dx.doi.org/10.32747/2013.7594388.bard.
Повний текст джерелаDoyle, Jesse D., Nolan R. Hoffman, and M. Kelvin Taylor. Aircraft Arrestor System Panel Joint Improvement. U.S. Army Engineer Research and Development Center, August 2021. http://dx.doi.org/10.21079/11681/41342.
Повний текст джерелаGreenberg, H., M. Sutton, M. Sharma, and A. Barnwell. REPOSITORY NEAR-FIELD THERMAL MODELING UPDATEINCLUDING ANALYSIS OF OPEN MODE DESIGN CONCEPTS - DRAFT REV. M. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1056623.
Повний текст джерелаLiu, H. H., L. Li, L. Zheng, J. E. Houseworth, and J. Rutqvist. Investigations of Near-Field Thermal-Hydrologic-Mechanical-Chemical Models for Radioactive Waste Disposal in Clay/Shale Rock. Office of Scientific and Technical Information (OSTI), June 2011. http://dx.doi.org/10.2172/1050698.
Повний текст джерелаBaral, Aniruddha, Jeffrey Roesler, M. Ley, Shinhyu Kang, Loren Emerson, Zane Lloyd, Braden Boyd, and Marllon Cook. High-volume Fly Ash Concrete for Pavements Findings: Volume 1. Illinois Center for Transportation, September 2021. http://dx.doi.org/10.36501/0197-9191/21-030.
Повний текст джерелаChen, Z., S. E. Grasby, C. Deblonde, and X. Liu. AI-enabled remote sensing data interpretation for geothermal resource evaluation as applied to the Mount Meager geothermal prospective area. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330008.
Повний текст джерела