Добірка наукової літератури з теми "Thermal and thermomechanical simulation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Thermal and thermomechanical simulation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Thermal and thermomechanical simulation"

1

Svotina, Victoria V., Andrey I. Mogulkin, and Alexandra Y. Kupreeva. "Ion Source—Thermal and Thermomechanical Simulation." Aerospace 8, no. 7 (July 14, 2021): 189. http://dx.doi.org/10.3390/aerospace8070189.

Повний текст джерела
Анотація:
The main purpose of this work is to conduct ground development testing of the ion source intended for use the space debris contactless transportation system. In order to substantiate the operating capability of the developed ion source, its thermal and thermomechanical simulation was carried out. The ion source thermal model should verify the ion source operating capability under thermal loading conditions, and demonstrate the conditions for ion source interfacing with the systems of the service spacecraft with the ion source installed as a payload. The mechanical and mathematical simulation for deformation of the ion source ion-extraction system profiled electrodes under thermal loading in conjunction with the prediction of the strained state based on the numerical simulation of the ion source ion-extraction system units, making it possible to ensure the stability of the ion source performance. Good agreement between the thermal and thermo-mechanical ion source simulation results and experimental data has been demonstrated. It is shown that the developed ion source will be functional in outer space and can be used as an element of the space debris contactless transportation system into graveyard orbits.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

ZHANG, JINAO, JEREMY HILLS, YONGMIN ZHONG, BIJAN SHIRINZADEH, JULIAN SMITH, and CHENGFAN GU. "TEMPERATURE-DEPENDENT THERMOMECHANICAL MODELING OF SOFT TISSUE DEFORMATION." Journal of Mechanics in Medicine and Biology 18, no. 08 (December 2018): 1840021. http://dx.doi.org/10.1142/s0219519418400213.

Повний текст джерела
Анотація:
Modeling of thermomechanical behavior of soft tissues is vitally important for the development of surgical simulation of hyperthermia procedures. Currently, most literature considers only temperature-independent thermal parameters, such as the temperature-independent tissue specific heat capacity, thermal conductivity and stress–strain relationships for soft tissue thermomechanical modeling; however, these thermal parameters vary with temperatures as shown in the literature. This paper investigates the effect of temperature-dependent thermal parameters for soft tissue thermomechanical modeling. It establishes formulations for specific heat capacity, thermal conductivity and stress–strain relationships of soft tissues, all of which are temperature-dependent parameters. Simulations and comparison analyses are conducted, showing a different thermal-induced stress distribution of lower magnitudes when considering temperature-dependent thermal parameters of soft tissues.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hrevtsev, O., N. Selivanova, P. Popovych, L. Poberezhny, V. Sakhno, O. Shevchuk, L. Poberezhna, I. Murovanyi, A. Hrytsanchuk, and O. Romanyshyn. "Simulation of thermomechanical processes in disc brakes of wheeled vehicles." Journal of Achievements in Materials and Manufacturing Engineering 1, no. 104 (January 1, 2021): 11–20. http://dx.doi.org/10.5604/01.3001.0014.8482.

Повний текст джерела
Анотація:
Purpose: Ensuring the required operational reliability of disc brakes by forecasting their technical condition taking into account thermomechanical processes. Design/methodology/approach: Differential equations of rotation of a rigid body around a fixed axis are solved, it is established that the equations of motion and the equations of thermal conductivity are indirectly related. The use of these analytical dependences provides a better understanding of thermomechanical transients. Findings: The solution is obtained on the basis of the differential equation of thermal conductivity of the hyperbolic type, which does not allow an infinite velocity of propagation of temperature perturbations in contrast to the differential equation of thermal conductivity of the parabolic Fourier type. The obtained analytical dependences provide a better understanding of thermomechanical transients and develop a theoretical basis for determining stresses and heat fluxes in solving problems of reliability and durability of disc brakes. Research limitations/implications: The work uses generally accepted assumptions and limitations for thermomechanical calculations. Practical implications: It is shown, that transients in a mechanical system - a brake disk at impulse loadings cause emergence of thermal effects which arise under the influence of external loadings. Originality/value: The application of these analytical dependences provides a better understanding of thermomechanical transients and develops a theoretical basis for solving problems of reliability and durability of disc brakes.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yamashita, Hiroki, Rohit Arora, Hiroyuki Kanazawa, and Hiroyuki Sugiyama. "Reduced-order thermomechanical modeling of multibody systems using floating frame of reference formulation." Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 233, no. 3 (November 15, 2018): 617–30. http://dx.doi.org/10.1177/1464419318810886.

Повний текст джерела
Анотація:
In this study, a reduced-order thermomechanical coupling model, which accounts for the inertia coupling of the thermoelastic deformation and the large reference body motion, is proposed using the floating frame of reference formulation for the transient thermomechanical analysis of constrained multibody systems. In this approach, the reduced-order heat equations are fully embedded in the final form of the equations of motion. Accordingly, the transient thermal response as well as the resulting thermoelastic behavior of constrained multibody system can be predicted within the general multibody dynamics computer algorithm. It is demonstrated that appropriate selection of the thermal interface coordinates is crucial for describing the thermal modes (i.e. temperature distribution) induced by external heat sources using the Craig–Bampton component mode synthesis approach generalized for thermomechanical systems. Furthermore, a systematic procedure for imposing prescribed surface temperature given, for example, from thermal-fluid dynamics simulations is proposed for the thermomechanical floating frame of reference formulation. Using several numerical examples, simulation capabilities of the thermomechanical floating frame of reference formulation model are demonstrated for multibody dynamics applications. Numerical results show good agreement with the nonlinear thermomechanical finite element solutions considering the large rotational motion with substantial reduction in the model dimensionality and computational time.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Glaspell, Aspen, Jose Angel Diosdado De la Pena, Saroj Dahal, Sandesh Neupane, Jae Joong Ryu, and Kyosung Choo. "Heat Transfer and Structural Characteristics of Dissimilar Joints Joining Ti-64 and NiTi via Laser Welding." Energies 15, no. 19 (September 22, 2022): 6949. http://dx.doi.org/10.3390/en15196949.

Повний текст джерела
Анотація:
This study investigates the thermal-stress characteristics of a bi-metallic Ti-6Al-4V-Nitinol butt joints manufactured via laser welding. Particularly, the thermal profile along the weld interface and the deformation profile of the finished welded workpiece. A decoupled transient thermomechanical simulation model was constructed to recreate the welding process. This decoupled thermomechanical simulation model consisted of two transient simulation models. A transient thermal simulation model and a transient structural simulation model, with the thermal history of the transient thermal model being fed into the transient structural model. Both the thermal and structural portions of the model utilized temperature-dependent thermal and structural properties of Ti-6Al-4V and Nitinol. The temperature profile of the transient thermal-stress model aligns with the experimental thermal profile within 5% error. The deformation profile also matches the experimental results within 5% error. This approach to modeling laser welding can stand as a guide to predict both thermal and deformation profiles generated during the laser welding process.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Becker, Eric, Laurent Langlois, Véronique Favier, and Régis Bigot. "Thermomechanical Modelling and Simulation of C38 Thixoextrusion Steel." Solid State Phenomena 217-218 (September 2014): 130–37. http://dx.doi.org/10.4028/www.scientific.net/ssp.217-218.130.

Повний текст джерела
Анотація:
The present paper focuses the modelling and the simulation of a direct thixoextrusion test achieved on C38 semi-solid steel. Many parameters related to thermal, mechanical, material features are involved but are currently unknown. Consequently to validate the modelling and the simulation, it is important to get various experimental informations during the test and to correlate them with simulated results. In a previous paper (Becker et al, 2008), the force-displacement curve, the temperature within the die, the macro and micro structure obtained for different process parameters during thixoextrusion of C38 were investigated. In this work, those results are correlated to those obtained by simulations of the processing. The simulations were performed using the commercial software Forge®. The thermal modelling is based on the heat equation and the thermal boundary conditions involving the heat losses, the thermal conduction within the semi-solid slug and the die and the plastic dissipation as heat source. The latent heat associated to the liquid-solid phase transformation is not considered here. The constitutive equation of the material is given by a multi-scale modelling based on micromechanics and homogenization techniques, labelled as micro-macro modelling (Favier et al, 2009). Friction is modelled using the usual modified Tresca equation. The parameters of the model are determined (i) using literature results and (ii) to match various experimental measurements obtained during the test and described in Becker et al (2008) such as the die temperature during the test and the load-displacement curve. Comparisons between experimental and simulated reveal the presence of complex temperature field and the presence of zones having very low viscosities. These zones contribute actively to the semi-solid material flow.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Behseresht, Saeed, and Young Ho Park. "Additive Manufacturing of Composite Polymers: Thermomechanical FEA and Experimental Study." Materials 17, no. 8 (April 20, 2024): 1912. http://dx.doi.org/10.3390/ma17081912.

Повний текст джерела
Анотація:
This study presents a comprehensive approach for simulating the additive manufacturing process of semi-crystalline composite polymers using Fused Deposition Modeling (FDM). By combining thermomechanical Finite Element Analysis (FEA) with experimental validation, our main objective is to comprehend and model the complex behaviors of 50 wt.% carbon fiber-reinforced Polyphenylene Sulfide (CF PPS) during FDM printing. The simulations of the FDM process encompass various theoretical aspects, including heat transfer, orthotropic thermal properties, thermal dissipation mechanisms, polymer crystallization, anisotropic viscoelasticity, and material shrinkage. We utilize Abaqus user subroutines such as UMATHT for thermal orthotropic constitutive behavior, UEPACTIVATIONVOL for progressive activation of elements, and ORIENT for material orientation. Mechanical behavior is characterized using a Maxwell model for viscoelastic materials, incorporating a dual non-isothermal crystallization kinetics model within the UMAT subroutine. Our approach is validated by comparing nodal temperature distributions obtained from both the Abaqus built-in AM Modeler and our user subroutines, showing close agreement and demonstrating the effectiveness of our simulation methods. Experimental verification further confirms the accuracy of our simulation techniques. The mechanical analysis investigates residual stresses and distortions, with particular emphasis on the critical transverse in-plane stress component. This study offers valuable insights into accurately simulating thermomechanical behaviors in additive manufacturing of composite polymers.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Leppänen, Anton, Asko Kumpula, Joona Vaara, Massimo Cattarinussi, Juho Könnö, and Tero Frondelius. "Thermomechanical Fatigue Analysis of Cylinder Head." Rakenteiden Mekaniikka 50, no. 3 (August 21, 2017): 182–85. http://dx.doi.org/10.23998/rm.64743.

Повний текст джерела
Анотація:
The finite element simulation of a cylinder head has been carried out with Abaqus Standard using Z-mat material model, with thermal boundary conditions coming from combined conjugate heat transfer and gas-exchange simulations. The fatigue post-processing of results has been done with Z-post software using ONERA fatigue model. The resulting lifetime values have been found out to correspond well to observations from the field.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wang, Xiu Juan, Xiu Ting Zheng, Wei Zheng, and Si Zhu Wu. "Molecular Simulation of Polycarbonate and Thermomechanical Analysis." Applied Mechanics and Materials 556-562 (May 2014): 441–44. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.441.

Повний текст джерела
Анотація:
The influence of molecular structure of polycarbonate on performance was systematically investigated by both experiment and molecular simulation. Different types of polycarbonate molecular chain models were built and analyzed by molecular simulation method. By combining experimental and simulation results, it is concluded that the polycarbonate-OQ2720 has better thermal stability, mechanical properties and optical performance, which is a better choice for aviation materials and manufacturing process.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Alekseev, M. V., N. G. Sudobin, A. A. Kuleshov, and E. B. Savenkov. "Mathematical Simulation of Thermomechanics in an Impermeable Porous Medium." Herald of the Bauman Moscow State Technical University. Series Natural Sciences, no. 4 (91) (August 2020): 4–23. http://dx.doi.org/10.18698/1812-3368-2020-4-4-23.

Повний текст джерела
Анотація:
The paper reports on mathematically simulating behaviour of a porous medium featuring isolated interstices filled with a chemically active substance by using a mathematical model of thermomechanics in the matrix and thermochemical processes inside the pores. We used three-dimensional thermomechanical equations to describe the behaviour of the medium. A lumped-element model accounting for chemical reactions and phase equilibrium describes the processes in pores. We outline the mathematical model of the medium and the respective computational algorithm. We provide parametric computation results using realistic thermophysical and thermodynamical parameters, composition of the organic substance found inside pores (products of thermal decomposition of kerogen) and chemical reactions, which show that it is necessary to employ complex, interconnected models to simulate the process class under consideration
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "Thermal and thermomechanical simulation"

1

Nogales, Tenorio Sergio. "Numerical simulation of the thermal and thermomechanical behaviour of metal matrix composites /." Düsseldorf : VDI-Verl, 2008. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=017035682&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jia, Yabo. "Numerical simulation of steady states associated with thermomechanical processes." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEE007.

Повний текст джерела
Анотація:
De nombreux procédés de fabrication thermomécanique comme le laminage, le soudage ou encore l’usinage mettent en jeu soit des sollicitations mobiles par rapport à la matière fixe, soit de la matière mobile par rapport à des sollicitations fixes. Dans tous les cas, après un régime transitoire en général assez court, les champs thermiques, métallurgiques et mécaniques associés à ces procédés atteignent un état stationnaire. La recherche de ces états stationnaires à l’aide de la méthode des éléments finis classique nécessite de mettre en œuvre des modèles complexes et couteux où les sollicitations se déplacent par rapport à la matière (ou l’inverse). La recherche directe des états stationnaires a fait l’objet de nombreux travaux de recherche ces trente dernières années. Des méthodes sont aujourd’hui disponibles et pour certaines sont proposées dans des codes de calcul du commerce. Ainsi, une option de calcul dite repère mobile proposée par différents auteurs est disponible dans le logiciel SYSWELD. Cette méthode permet de calculer les états thermique, métallurgique et mécanique stationnaires associés à un procédé de soudage, en résolvant un problème de diffusion-convection en thermique et en intégrant, en mécanique, les équations constitutives du comportement du matériau le long des lignes de courant. Si cette méthode a été utilisée avec succès dans de nombreuses applications, elle présente néanmoins quelques limitations. Ainsi le maillage doit être structuré et la convergence des calculs est en général assez lente. Nous proposons dans cette thèse de résoudre le problème mécanique dans un repère lié aux sollicitations, en nous appuyant sur une méthode de calcul par éléments finis reposant sur l’intégration nodale et la technique SCNI (Stabilized Conforming Numerical Integration). Cette méthode permet l’utilisation de maillages en tétraèdres (ou triangles en 2D) sans rencontrer de problème de verrouillage volumique résultant de l’incompressibilité plastique associée au critère de plasticité de von Mises. Plutôt que de rechercher directement l’état stationnaire, l’idée générale est ici de construire l’état stationnaire à partir d’une analyse transitoire en faisant entrer pas à pas la matière par l’amont et en la faisant sortir par l’aval d’un maillage fixe par rapport aux sollicitations et de taille limitée. L’état stationnaire n’est donc atteint qu’au bout d’un certain temps d’analyse. Après une introduction générale (Chapitre 1) et un état de l’art sur les méthodes existantes (Chapitre 2), nous présentons une approche de simulation du mouvement de matière dans le cadre de la méthode des éléments finis classique sur un problème de soudage (Chapitre 3). Nous y proposons également des conditions aux limites thermiques pertinentes pour calculer directement la distribution de températures en régime stationnaire. La méthode des éléments finis reposant sur l’intégration nodale est ensuite décrite au Chapitre 4. Les avantages et inconvénients de la méthode sont discutés. La méthode est validée sur une application en grandes déformations élastoplastiques, un problème de flexion et une simulation thermomécanique de soudage. La méthode des éléments finis reposant sur l’intégration nodale est alors développée pour prendre en compte un mouvement de matière (Chapitre 5). Trois types de mouvement sont considérés : en translation, circulaire et en hélice. Différentes méthodes de transport de champ sont abordées et discutées ainsi que le couplage thermomécanique. Des perspectives à ce travail sont proposées au Chapitre 6. Les perspectives envisagées visent d’une part à améliorer la méthode proposée et d’autre part, à développer la méthode pour simuler d’autres procédés. Une première application de la méthode à la simulation de la coupe orthogonale y est présentée
In the numerous thermomechanical manufacturing processes such as rolling, welding, or even machining involve either moving loads with respect to the fixed material or moving material with respect to fixed loads. In all cases, after a transient regime which is generally quite short, the thermal, metallurgical, and mechanical fields associated with these processes reach a steady state. The search for these stationary states using the classical finite element method requires the implementation of complex and expensive models where the loads move with respect to the material (or vice versa). The steady-state simulation in one increment has been the subject of much researches over the past thirty years. Methods are now available and some are integrated into calculation codes commercial. Thus, a so-called Moving Reference Frame method proposed by various authors is available in the SYSWELD software. This method makes it possible to calculate the steady-state of thermal, metallurgical, and mechanical states associated with a welding process, by solving a thermal diffusion-convection problem in thermal-metallurgy and by integrating, in mechanics, the constitutive equations of the material along the streamline. Moreover, this method has been used successfully in many applications, it nevertheless has some limitations. Thus the mesh must be structured and the convergence of computations is generally quite slow. In this thesis, we propose to solve the mechanical problem in a frame linked to the solicitations, by relying on a finite element calculation method based on nodal integration and the SCNI (Stabilized Conforming Numerical Integration) technique. This method allows the use of tetrahedron meshes (or 2D triangles) without encountering a locking problem resulting from the plastic incompressibility associated with the von Mises plasticity criterion. Rather than directly calculating the steady-state, the general idea here is to construct the steady-state from a transient analysis by bringing material step by step upstream and by making it exit downstream of a fixed mesh related to the solicitations and of the limited mesh size. The steady-state is therefore only achieved after certain steps of analysis. Apart from a general introduction (Chapter 1) and a state of the art on the existing methods (Chapter 2), we present an approach of simulation of the movement of material within the framework of the classical finite element method on a welding problem (Chapter 3). We also provide relevant thermal boundary conditions for directly calculating the steady-state of temperature distribution. The finite element method based on the nodal integration technique is then described in Chapter 4. The advantages and disadvantages of the method are discussed. The nodal-integration-based finite element is validated by comparing its simulation results with classical finite element methods in large elastoplastic strains, a bending problem, and a thermomechanical simulation of welding. The nodal-integration-based finite element is then developed and applied to simulate material motion (Chapter 5). Three types of movement are considered: translational, circular, and helical. Different methods of field transport are approached and discussed as well as thermomechanical coupling. Perspectives for this work are presented in Chapter 6. The envisaged perspectives aim, on the one hand, to improve the proposed method and on the other hand, to develop the method to simulate other processes. A first application of the material motion method to the simulation of the orthogonal cut is presented there
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pimenta, Paulo Vicente de Cassia Lima. "Thermomechanical simulation of continuous casting process using element based finite-volume method." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13684.

Повний текст джерела
Анотація:
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior
The continuous casting technique in the last four decades has been large used for to production of semi-finished steel. The heat transfer is major mechanism and it occurs in various steps during the continuous casting. The quality of steel is directly related to the way the heat transfer occur because the thermal variations produce mechanical loads as well as contact forces which are generated through the rollers and shake of the mold. Such factors may cause defects such as fractures or cracks in the final product if the resulting stresses and strains exceed critical values. The technique must be improved in order to reduce the appearance of defects and the production time. For this a good understanding of physical phenomena involved during the solidification process is critical. The focus of this work is to apply the EbFVM (Element based Finite-Volume Method) approach to study the effects of linear tensions unidirectionally coupled with the temperature applied to continuous casting of the steel 1013D (0,3% of carbon) In the simulations we adopted some simplifications such as the Plane Strain and isotropic material. We also neglected the body forces contact with the rollers the liquid pressure on the walls of the steel ingot (ferrostatic pressure) and the convective effect. However despite of the simplifications adopted this work provides quantitative informations on the linear tensions accumulation that point out to areas of possible of cracks formations
A tÃcnica de lingotamento contÃnuo nas Ãltimas quatro dÃcadas à cada vez mais utilizada na produÃÃo de aÃo semiacabado. A transferÃncia de calor à o principal mecanismo dominante e ocorre em todas as etapas do processo. A qualidade do aÃo no lingotamento està diretamente relacionada à forma que ocorrem as trocas de calor pois as variaÃÃes tÃrmicas produzem carregamentos mecÃnicos assim como as forÃas de contato as quais sÃo geradas por intermÃdio dos rolos e da oscilaÃÃo do molde. Tais fatores podem causar defeitos como fraturas ou trincas no produto final caso as tensÃes e deformaÃÃes resultantes excedam valores crÃticos. O aprimoramento da tÃcnica tem a finalidade de evitar o surgimento de defeitos e reduzir o tempo de produÃÃo. Para isso à fundamental uma boa compreensÃo dos fenÃmenos fÃsicos envolvidos ao longo do processo de solidificaÃÃo. O foco deste trabalho à aplicar a abordagem do EbFVM (Element based Finite-Volume Method) no estudo dos efeitos das tensÃes lineares acopladas unidirecionalmente com a temperatura aplicado ao lingotamento contÃnuo do aÃo 1013D (0,3% de carbono) Nas simulaÃÃes adotou-se algumas simplificaÃÃes com o estado plano de tensÃes e isotropia do material. Descartando-se as forÃas de corpo o contato com os rolos a pressÃo do aÃo lÃquido nas paredes do lingote (pressÃo ferrostÃtica) e o efeito convectivo. Contudo apesar das simplificaÃÃes adotadas este trabalho traz informaÃÃes quantitativas quanto a formaÃÃo do acÃmulo das tensÃes lineares que apontam para regiÃes de possÃveis formaÃÃes de trincas
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rombo, Oskar. "Software Benchmark and Material Selection in an Exhaust Manifold : Thermo-mechanical fatigue simulation of an exhaust manifold in AVL Fire M." Thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik (from 2013), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-68662.

Повний текст джерела
Анотація:
Today, there is a great focus on downsizing the engines, this means that the engines are made smaller in size but retain the same power. This in combination with the drive to increase the power of the engines has led to the engine components being exposed to high thermal loads. Today’s engines also use very high cylinder pressure. The high thermal loads in combination with the high cylinder pressure have led to that the engine components are often very close to their material limits, so close that damage is common. This places high requirements on the materials, which makes the material selection a critical part of the engineering process.The main focus in this thesis work has been to develop and investigate a FEM model that can be used to quickly evaluate materials in an exhaust manifold that is exposed to thermo-mechanical fatigue (TMF). The model was then used to verify a material selection made for an existing exhaust manifold. One of AVL’s own software programs has also been evaluated, to see if it is a viable alternative to ABAQUS when preforming TMF simulations.The material selection made in this master thesis had the restriction that the exhaust manifold should not fail due to low cycle fatigue (LCF) when exposed to TMF. The goal has been to minimize the mass of the exhaust manifold by selecting a strong material with low density. The reason for this is because today there is a big focus on energy efficient cars with low emission levels. The simplest way to achieve this is to minimize the mass of the vehicle.The simulations conducted in this work has been performed in two different software’s, ABAQUS and AVL Fire M. In AVL Fire M flow simulations and steady-state heat transfer simulations have been performed. In ABAQUS, steady-state and transient heat transfer simulations and stress-strain simulations have been performed.The material selection process showed that Inconel 601 is the most suitable material for an exhaust manifold exposed to TMF. The simulations using Inconel 601 showed that this material will not fail due to LCF.The FEM model that was developed in this thesis was a lot faster compared to the existing TMF model used at AVL.CPU time for the existing model: 14 days 13 hours 14 minutes and 30 seconds (Core time).CPU time for the model developed in this thesis: 1 day 6 hours 37 minutes and 49 seconds (Core time).Two alternative models have been proposed for TMF simulations, one that uses the model developed in this thesis and one that is a combination of the existing model and the model developed in this work.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sahli, Mehdi. "Simulation and modelling of thermal and mechanical behaviour of silicon photovoltaic panels under nominal and real-time conditions." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAD036.

Повний текст джерела
Анотація:
Le travail présenté dans cette thèse porte sur le développement d’un modèle multi-physique numérique, destiné à étudier le comportement optique, électrique et thermique d’un module photovoltaïque. Le comportement optique a été évalué en utilisant des chaines de Markov. Le comportement électrique est obtenu pour les panneaux en Silicium à l’aide d’une méthode d’optimisation numérique. Le comportement thermique est développé en 1D sur l’épaisseur du module, et le modèle multi-physique a été faiblement couplé sous MATLAB. Le comportement sous des conditions nominales d’opération a été validé en utilisant les données déclarées par les constructeurs. Ce modèle a été utilisé pour effectuer une étude paramétrique sur l’effet des irradiances solaires en régime permanent. Le modèle a été validé pour des conditions d’utilisations réelles en comparant avec des mesures expérimentales de température et de puissance électrique. Une étude thermomécanique en 2D sous ABAQUS/CAE et se basant sur le modèle multi-physique a été effectué en conditions nominales d’opération, ainsi qu’en cycle de fatigue selon la norme 61215 pour prédire les contraintes qui sont imposées sur le panneau dans les deux cas mentionnés précédemment
The work presented in this thesis deals with the development of a numerical multi-physics model, designed to study the optical, electrical and thermal behaviour of a photovoltaic module. The optical behaviour was evaluated using stochastic modelling based on Markov chains, whereas the electrical behaviour was drawn specifically for Silicon based photovoltaic panels using numerical optimization methods. The thermal behaviour was developed in 1D over the thickness of the module, and the multi-physics module was weakly coupled in MATLAB. The behaviour of commercial panels under nominal operation conditions was validated using data declared by the manufacturers. This model was used to perform a parametric study on the effect of solar irradiances in steady state. It was also validated for real use conditions by comparing it to experimental temperature and electrical power output. A thermomechanical study in 2D in ABAQUS/CAE based in the multi-physics model was carried out in nominal operating conditions, as well as in fatigue thermal cycling according to the IEC 61215 Standard to predict the stresses that are imposed on the panel
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Feng, Wei. "Caractérisation expérimentale et simulation physique des mécanismes de dégradation des interconnexions sans plomb dans les technologies d’assemblage a trés forte densite d’intégration « boitier sur boitier »." Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14014/document.

Повний текст джерела
Анотація:
Les assemblages PoP pour « Package on Package » permettent d’augmenter fortement la densité d’intégration des circuits et systèmes microélectroniques, par superposition de plusieurs éléments semi-conducteurs actifs. Les interconnexions internes de ces systèmes sont alors soumises à des contraintes jamais atteintes. Nous avons pu identifier, caractériser, modéliser et simuler les mécanismes de défaillance potentiels propres à ces assemblages, et leur évolution : • Les gauchissements dans la phase d’assemblage du « PoP » et ses contraintes thermomécaniques sont plus importants que ceux de chacun des composants individuels. Un modèle analytique original a été construit et mis en ligne afin d’évaluer a priori ce gauchissement. • Les comportements hygroscopiques et hygromécaniques sont simulés et mesurés par une approche originale. L’assemblage « PoP » absorbe plus d’humidité que la somme des deux composants individuels, mais son gauchissement hygromécanique et ses contraintes hygromécaniques sont moins élevées. • Deux types d’essais de vieillissement accéléré sont réalisés pour étudier la fiabilité du « PoP » assemblé sur circuit imprimé : des cycles thermiques et des tests sous fort courant et température élevée. Dans ces deux types d’essais, l’assemblage d’un composant « top » sur un autre composant « bottom » pour former un PoP augmente les risques de défaillances. • L’évolution de la microstructure selon le type de vieillissement est comparée par des analyses physiques et physico-chimiques. Les fissures sont toujours situées dans l’interface substrat/billes, qui correspond aux zones critiques prédites par les simulations
The assemblies PoP (Package on Package) can greatly increase the integration density of microelectronic circuits and systems, by vertically combining discrete semiconductor elements. The interconnections of these systems suffer the stresses never reached before. We were able to identify, characterize, model and simulate the potential failure mechanisms of these assemblies and their evolution: • The warpage in the assembly phase and thermomechanical stress of "PoP" are more serious than the individual components. An original analytical model has been built and put online for pre-estimating this warpage. • The hygroscopic and hygromechanical behaviors are simulated and measured by an original method. The assembly "PoP" absorbs more moisture than the sum of the individual components, but its hygromechanical warpage and stress are smaller. • Two types of accelerated aging tests are performed to study the reliability of "PoP" at the board level: the thermal cycling and the testing under current and temperature. In both types of tests, assembly a component "top" on another component "bottom" to form a “PoP” increases the risk of failure. • The microstructure evolution depending on the type of aging is compared by the physical and physico-chemical analysis. The cracks are always located in the interface substrate/balls, which corresponds to the critical areas predicted by the simulations
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Guzman, Maldonado Eduardo. "Modélisation et simulation de la mise en forme des composites préimprégnés à matrice thermoplastiques et fibres continues." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI015/document.

Повний текст джерела
Анотація:
Les matériaux composites sont largement employés dans le domaine aérospatial grâce à leurs excellentes propriétés mécaniques, leur résistance aux chocs et à la fatigue, tout en restant plus légers que les matériaux conventionnels. Au cours des dernières années, l'industrie automobile a montré un intérêt croissant pour les procédés de fabrication et de transformation de matériaux composites à matrice thermoplastiques. Cela favorisé par le développement et l'optimisation des procèdes de mise en forme tels que le thermostampage, en vue de la réduction de temps de cycle. La modélisation et la simulation de ce procédé sont des étapes importantes pour la prédiction des propriétés mécaniques et de la faisabilité technique des pièces à géométrie complexe. Elles permettent d'optimiser les paramètres de fabrication et du procédé lui-même. À cette fin, ce travail propose une approche pour la simulation de la mise en forme des matériaux composites préimprégnés thermoplastiques. Un modèle viscohyperélastique avec une dépendance à la température a été proposé dans l'objectif de décrire le comportement du composite thermoplastique à l'état fondu. Et permets de faire des simulations de mise en forme à différentes températures. Au cours cette simulation, des calculs thermiques et mécaniques sont effectués de manière séquentielle afin d'actualiser les propriétés mécaniques avec l'évolution du champ température. L'identification des propriétés thermiques sont obtenues par homogénéisation à partir des analyses au niveau mésoscopique du matériau. La comparaison de la simulation avec le thermoformage expérimental d'une pièce représentative de l'industrie automobile analyse la pertinence de l'approche proposée
Pre-impregnated thermoplastic composites are widely used in the aerospace industry for their excellent mechanical properties, impact resistance and fatigue strength all at lower density than other common materials. In recent years, the automotive industry has shown increasing interest in the manufacturing processes of thermoplastic-matrix composites materials, especially in thermoforming techniques for their rapid cycle times and the possible use of pre-existing equipment. An important step in the prediction of the mechanical properties and technical feasibility of parts with complex geometry is the use of modelling and numerical simulations of these forming processes which can also be capitalized to optimize manufacturing practices.This work offers an approach to the simulation of thermoplastic prepreg composites forming. The proposed model is based on convolution integrals defined under the principles of irreversible thermodynamics and within a hyperelastic framework. The simulation of thermoplastic prepreg forming is achieved by alternate thermal and mechanical analyses. The thermal properties are obtained from a mesoscopic analysis and a homogenization procedure. The comparison of the simulation with an experimental thermoforming of a part representative of automotive applications shows the efficiency of the approach
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mostallino, Roberto. "Développement de diodes laser émettant à 975nm de très forte puissance, rendement à la prise élevé et stabilisées en longueur d’onde pour pompage de fibres dopées et réalisation de lasers à fibre." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0132/document.

Повний текст джерела
Анотація:
Cette thèse CIFRE adresse le développement de diodes laser, émettant à 975nm, de très forte puissance, rendement à la prise élevé, et stabilisées en longueur d’onde pour pompage de fibres dopées Er/Yb et réalisation de lasers à fibre. La thèse a été développée dans le cadre d’un partenariat étroit entre le Laboratoire IMS, le GIE III-V Lab, principal fondeur français de composants à semiconducteurs III-V pour des applications électroniques et photoniques, et THALES Research & Technology à Palaiseau en région parisienne. Un travail en profondeur de caractérisation et d’analyse a porté sur les aspects thermiques qui contribuent, en particulier,à limiter les niveaux de puissance optique de sortie. Dans ce cadre, nous avons réalisé un ensemble de caractérisations complémentaires au GIE III-V lab et à l’IMS nous permettant d’envisager des solutions correctives d’optimisation technologique portant en particulier sur la profondeur de gravure définissant la largeur de la zone d’émission et la nature du substrat dissipateur. Ces solutions ont été proposées à partir de modélisations physiques mises en oeuvre avec un simulateur dédié, propriété de III-V Lab et de simulations par éléments finis thermiques et thermomécaniques (approche multiphysique) de la structure microassemblée définitive. Ces travaux se sont prolongés par la fabrication et la caractérisation électro-optique et thermique de plusieurs structures verticales : LOC (Large Optical Cavity), SLOC (Super Large OpticalCavity) et AOC (Asymetrical Optical Cavity). Les diodes laser de type LOC et SLOC sont stabilisées en longueur d’onde en intégrant un réseau de Bragg (DFB). Une puissance optique de 8W avec une efficacité de 60% a été obtenue ; ce qui permet de situer ces travaux à l’état de l’art international notamment vis-à-vis de ceux publiés par l’Institut Ferdinand-Braun.L’originalité des travaux menés dans cette thèse nous a permis d’avoir accès à une bourse du Cluster européen « Laserlab » (The Integrated Initiative of European Laser Research Infrastructures), pour conduire des campagnes d’expérimentation à l’Institut Max Born à Berlin dans le groupe du Dr J.W. Tomm. Les travaux ont porté sur la caractérisation thermique de ces diodes laser de forte puissance émettant à 975nm, à double hétérostructure symétrique et asymétrique (SLOC et AOC), en utilisant des techniques complémentaires (microphotoluminescence,photoluminescence résolue en temps, spectroscopie de photocourant et mesures L-I pulsées) et permettant d’évaluer le type de contraintes résiduelles apportées par les étapes de report de la diode Laser ainsi que la cinétique de dégradation catastrophique de type COD
This PhD addresses the development of high-power laser diodes emitting at 975nm withhigh efficiency and wavelength stabilized using a Bragg grating. This thesis was conducted in the framework of a close partnership between IMS Laboratory, the GIE III-V lab, who is themain French founder of III-V semiconductor devices for electronic and photonic applications,and THALES Research & Technology in Palaiseau. An in-depth characterization and analysiswork has addressed thermal aspects that contribute, in particular, to limit the optical outputpower of a laser diode. In such a context, we have carried out a set of complementary characterizations both at III-V lab and IMS allowing us to provide some corrective solutionsfor technological optimization concerning the etching depth of the grooves that defines the emitting stripe of the laser diode and the nature of the submount acting as a thermocompensator.These solutions have been proposed from optical modelling implemented with a dedicated simulator, property of III-V lab, and thermal and thermomechanical (multiphysics approach) finite element simulations of the overall microassembled structure. All this work has resulted in the fabrication as well as electro-optical and thermal characterizations of three vertical structures namely LOC (Large Optical Cavity), SLOC (Super Large Optical Cavity)and AOC (Asymmetrical Optical Cavity). The LOC and SLOC vertical structures have been processed with a Fabry-Perot cavity and also including a Bragg grating (DFB architecture) while the AOC one was only fabricated with a Fabry-Perot cavity. State-of-the-art results aredemonstrated since in particular an optical power of 8W with an efficiency of 60% has been obtained that can be compared to those recently published by the Ferdinand-Braun Institute.The originality of the work carried out in this PhD has allowed us to receive a grant from the European Laserlab Cluster (The Integrated Initiative of the European Laser Research Infrastructures), to conduct dedicated experiments at the Max-Born Institute (Berlin) in thegroup of Dr. J.W. Tomm. The work aimed to characterize mechanical strain of the laser diode induced by the soldering process. Two vertical structures (SLOC and AOC) were investigated using complementary techniques (microphotoluminescence, time-resolved photoluminescence,photocurrent spectroscopy and pulsed L-I measurements), allowing to quantify the level of residual stress provided by the laser diode mounting process as well as the kinetics of the catastrophic degradation process (COD)
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Barth, Nicolas. "Sur la modélisation et la simulation du comportement mécanique endommageable de verres borosilicatés sous sollicitation thermique." Thesis, Strasbourg, 2013. http://www.theses.fr/2013STRAD016/document.

Повний текст джерела
Анотація:
On étudie le comportement thermomécanique de colis de déchets vitrifiés par modélisation multi- physiques. Les colis sont réalisés avec un conteneur en acier inoxydable dans lequel est coulé un verre borosilicaté. Pour le verre, la méthode des éléments finis est employée pour les calculs thermiques, la relaxation structurale du volume massique, le comportement viscoélastique et l’endommagement. Ces lois consécutives modélisent l’influence de la sollicitation thermique initiale. La relaxation structurale du verre, issue du modèle TNM-KAHR, permet la prise en compte d’effets fondamentaux quant à la transition vitreuse, en fonction des traitements thermiques expérimentaux et simulés. Lorsque le verre dépasse localement une criticité du champ de contrainte, on procède au couplage du calcul de structure viscoélastique, pour le verre solide en relaxation,avec la mécanique de l’endommagement qui réactualise la rigidité et les contraintes en mode I et en mode II. On applique cette méthodologie complète de simulation à l’issue des adaptations nécessaires au cas de blocs de verre massifs en solidification. Ces modèles permettent alors l’obtention de surfaces de fracturation quantifiées, dans le verre, à partir de l’énergie dissipée par le modèle d’endommagement
We study the thermomechanical behavior of vitrified waste packages by multiphysics modeling. The packages are manufactured by the cast of borosilicate glass into stainless steel canisters. The finite element method is used for the thermal computations.In the glass, the finite element analysis is also used to compute the specific volume evolution and the viscoelastic behavior, due to the structural relaxation of glass, as well as the simulation of the damage behavior. These consecutive behavior laws model theinfluence of the initial thermal response. Glass structural relaxation is computed using the TNM-KAHRmodel, which allows us to take into account fundamental phenomena of the glass transition, depending on the results of experimental and simulated thermal treatments. For the solid glass within this relaxation process, the stress may locally increase beyond critical values. The viscoelastic structure simulation is then coupled with continuum damage mechanics where stresses and stiffness are updated in mode I and mode II. We apply this simulation protocol after adopting conditions relative to the case of these manufactured bulky solidifying glass casts. The models then allow us to quantify the cracking surfaces inside the glass fromthe energy dissipated within the damagemodel
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Salmon, Fabien. "Simulation aéro-thermo-mécanique des effets du feu sur les parois d'un milieu confiné : application à l'étude des thermo-altérations de la grotte Chauvet-Pont d'Arc." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0041/document.

Повний текст джерела
Анотація:
En 1994, la découverte de la grotte Chauvet-Pont d'Arc (Ardèche, France) révéla des marquesthermiques, d'origine anthropique, uniques au monde. Elles sont les témoins de feux préhistoriqueseffectués dans la partie profonde de la cavité. La datation par thermoluminescence des chauffes estcohérente avec la première période de fréquentation humaine il y a entre 37 000 et 33 500 ans. Lesarchéologues ont identifié deux types de thermo-altérations : des changements de couleur et desécaillages. Les changements de couleur résultent de réactions chimiques s'opérant à hautetempérature dans le calcaire, rendant la roche rouge ou grise. Des essais ex situ ont montré que lacouleur rouge survient après une chauffe de 10 minutes à 250oC tandis qu'une température minimumde 350oC est nécessaire pour la couleur grise. Le phénomène d'écaillage provient de fortes contraintesmécaniques dans la roche causées par la dilatation thermique et des processus thermo-hydriques. Deplus, des particules de suie recouvrent encore une partie des parois dans les zones altérées. À partirde ces indices, l'objectif de la thèse est de caractériser les feux de la Galerie des Mégacéros qui sesitue dans la partie profonde de la grotte. L'estimation des quantités de bois, du nombre de feux etde la capacité à alimenter les foyers pourrait aider les archéologues à faire des hypothèses sur lafonction de ces feux.Pour des raisons de conservation, seule la simulation peut reproduire des feux dans la géométrie de lagrotte sans nécessiter sa reconstitution. Cette étude consiste à construire une modélisation numériquede feux confinés et des impacts thermiques résultants. Un couplage fluide-structure est donc développéà partir de deux logiciels open source : OpenFOAM et Cast3m. Le premier effectue la simulation descénarios de feux grâce au module FireFOAM. Le second réalise les calculs thermo-mécaniques dansle massif. Afin d'étendre le champ d'application initial de FireFOAM, des modèles numériques ontété implémentés dans le code. Ceux-ci concernent le dépôt de suie, l'évaluation des risques, lacorrection des mesures par thermocouple et une condition limite en température. De plus, quelquesexigences de modélisation améliorant la qualité des résultats sont détaillées dans le manuscrit. Lemodèle ainsi développé est validé sur des feux expérimentaux exécutés dans une ancienne carrière decalcaire dont les dimensions sont proches de celles de la Galerie des Mégacéros. Du pin sylvestre, quicorrespond à l'essence dont sont issus les échantillons de charbon analysés de la grotte, est utilisécomme combustible. La combustion aboutit à des thermo-altérations analogues à celles observéesdans la grotte Chauvet-Pont d'Arc. Des écaillages et des changements de couleur se sont produits auplafond et aux parois de la carrière. La comparaison avec la simulation est effectuée à partir desmesures de températures, de vitesses ainsi que de concentrations de gaz et de particules.Le modèle numérique est ensuite appliqué à la simulation de feux dans la géométrie de la Galerie desMégacéros. Toutes les zones altérées de cette galerie sont traitées et les scénarios qui ont pu se produiresont précisés. Ces travaux fournissent ainsi une vue d'ensemble de la localisation et de l'intensité desfeux dans cette partie de la grotte. De plus, l'adéquation avec les conditions de vie est indiquée pourles feux les plus puissants. Ces informations pourraient aider les archéologues dans la compréhensiondes fonctions de ces feux
In 1994, the discovery of the Chauvet-Pont d'Arc cave (Ardèche, France) revealed singularanthropogenic thermal marks on walls. They are the witnesses of high intensity prehistorical firescarried out deep in the cavity. The thermoluminescence evaluation of the heating ages is consistentwith the earlier period of human occupation between 37,000 and 33,500 years ago. The archaeologistsidentified two kinds of thermo-alterations : colour changes and spallings. The colour changes resultfrom high-temperature chemical reactions in limestone, turning rock red or grey. Ex situ tests showedthat red colour happens after heating at 250oC for ten minutes while at least 350oC is necessary forgrey. Spalling stems from high stresses in rock due to restrained thermal expansion and thermohydricprocesses. In addition, part of the walls near thermo-altérations is still covered with soot. From theseclues, this investigation aims to characterize the fires of the Megaloceros Gallery which is located inthe deep part of the cave. Estimating the amounts of wood, the fires number and the ability tosupply the hearths could help make assumptions about the function of these fires.For the sake of conservation, only simulation can reproduce fires in the cave geometry withoutrequiring any reconstruction. This study is to set up a numerical modelling of fires in confinedgeometries and the induced thermal impacts on walls. A fluid-structure coupling is then developedfrom two free open source codes : OpenFOAM and Cast3m. The former manages the simulation offire scenarios through the FireFOAM tool. The latter handles the thermo-mechanical calculations inthe rock mass. To extend the initial scope of FireFOAM, some numerical models have beenimplemented in the code. This relates to soot deposit, danger assessment, thermocouple correctionand a thermal boundary condition. In addition, some modelling requirements improving the qualityof the results are detailed in the manuscript. The advanced model is then validated on experimentalfires in a former limestone quarry which has dimensions close to the Megaloceros Gallery ones. Thesame fuel (pinus sylvestris) as the one identified in the cave is burnt. The combustion led to similarthermo-alterations as those observed in the Chauvet-Pont d'Arc cave. Spallings and colour changesoccurred on the ceiling and walls of the quarry. The comparison with simulation is carried out thanksto the measurement of temperatures, velocities, soot deposits, gases and particles concentrations.The numerical model is then applied to the simulation of fires in the Megaloceros Gallery geometry.All the impacted areas of this gallery are considered and the scenarios that may have occurred arespecified. This investigation then provides an overview of the fires locations and intensities in thispart of the cave. Moreover, the compatibility with living conditions is indicated for the most powerfulfires. These information could help for archaeologists in the understanding of the functions of these fires
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Книги з теми "Thermal and thermomechanical simulation"

1

International, Conference on Thermal Process Modelling and Computer Simulation (2nd 2003 Nancy France). 2nd International Conference on Thermal Process Modelling and Computer Simulation: Proceedings : Nancy, France, March 31-April 2, 2003. Les Ulis, France: EDP Sciences, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

H, Aliabadi M., ed. Thermomechanical fatigue and fracture. Southampton: WIT Press, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Taya, Minoru. Metal matrix composites: Thermomechanical behavior. Oxford: Pergamon, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

E, Kennedy F., United States. Office of Naval Research., and Workshop on Thermomechanical Effects in Sliding Systems (3rd : 1984 : Dartmouth College), eds. Thermomechanical effects in sliding systems. Lausanne: Elsevier Sequoia S.A., 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sluzalec, Andrzej. Theory of thermomechanical processes in welding. Dordrecht: Springer, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bontcheva, Nikolina. Metal behaviour and predictive simulation in thermomechanical processing. Sofia: Prof. Marin Drinov Academic Publishing House, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Dutré, Willie L. Simulation of Thermal Systems. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3216-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Center, Goddard Space Flight, ed. Thermomechanical properties of polymeric materials and related stresses. Greenbelt, Md: National Aeronautics and Space Administration, Goddard Space Flight Center, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Castelli, Michael G. Improved techniques for thermomechanical testing in support of deformation in modeling. [Washington, DC: National Aeronautics and Space Administration, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mills, G. L. BASG thermomechanical pump helium II transfer tests. Moffet Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Частини книг з теми "Thermal and thermomechanical simulation"

1

Barfusz, Oliver, Felix Hötte, Stefanie Reese, and Matthias Haupt. "Pseudo-transient 3D Conjugate Heat Transfer Simulation and Lifetime Prediction of a Rocket Combustion Chamber." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 265–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_17.

Повний текст джерела
Анотація:
Abstract Rocket engine nozzle structures typically fail after a few engine cycles due to the extreme thermomechanical loading near the nozzle throat. In order to obtain an accurate lifetime prediction and to increase the lifetime, a detailed understanding of the thermomechanical behavior and the acting loads is indispensable. The first part is devoted to a thermally coupled simulation (conjugate heat transfer) of a fatigue experiment. The simulation contains a thermal FEM model of the fatigue specimen structure, RANS simulations of nine cooling channel flows and a Flamelet-based RANS simulation of the hot gas flow. A pseudo-transient, implicit Dirichlet–Neumann scheme is utilized for the partitioned coupling. A comparison with the experiment shows a good agreement between the nodal temperatures and their corresponding thermocouple measurements. The second part consists of the lifetime prediction of the fatigue experiment utilizing a sequentially coupled thermomechanical analysis scheme. First, a transient thermal analysis is carried out to obtain the temperature field within the fatigue specimen. Afterwards, the computed temperature serves as input for a series of quasi-static mechanical analyses, in which a viscoplastic damage model is utilized. The evolution and progression of the damage variable within the regions of interest are thoroughly discussed. A comparison between simulation and experiment shows that the results are in good agreement. The crucial failure mode (doghouse effect) is captured very well.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Martin, Katharina, Dennis Daub, Burkard Esser, Ali Gülhan, and Stefanie Reese. "Numerical Modelling of Fluid-Structure Interaction for Thermal Buckling in Hypersonic Flow." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 341–55. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_22.

Повний текст джерела
Анотація:
Abstract Experiments have shown that a high-enthalpy flow field might lead under certain mechanical constraints to buckling effects and plastic deformation. The panel buckling into the flow changes the flow field causing locally increased heating which in turn affects the panel deformation. The temperature increase due to aerothermal heating in the hypersonic flow causes the metallic panel to buckle into the flow. To investigate these phenomena numerically, a thermomechanical simulation of a fluid-structure interaction (FSI) model for thermal buckling is presented. The FSI simulation is set up in a staggered scheme and split into a thermal solid, a mechanical solid and a fluid computation. The structural solver Abaqus and the fluid solver TAU from the German Aerospace Center (DLR) are coupled within the FSI code ifls developed at the Institute of Aircraft Design and Lightweight Structures (IFL) at TU Braunschweig. The FSI setup focuses on the choice of an equilibrium iteration method, the time integration and the data transfer between grids. To model the complex material behaviour of the structure, a viscoplastic material model with linear isotropic hardening and thermal expansion including material parameters, which are nonlinearly dependent on temperature, is used.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Liu, Hui, Markus Meurer, and Thomas Bergs. "Three-Dimensional Modeling of Thermomechanical Tool Loads During Milling Using the Coupled Eulerian-Lagrangian Formulation." In Lecture Notes in Production Engineering, 318–30. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-34486-2_23.

Повний текст джерела
Анотація:
AbstractMilling is a complex process where machining quality is influenced by tool geometry, chip flow, temperature, and wear. In recent years, the rapid development of computer technology has enabled the use of finite element simulation methods to study the relationship between the machining results and various process parameters. In this study, a three-dimensional thermal coupled Euler-Lagrange milling model is proposed. This approach provided unique advantages in terms of stability and computational speed. The simulation results showed a good agreement with the corresponding experimental cutting tests and provided further information on the heat source distribution characteristics, which form a basis for further theoretical investigations.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wagner, Matthias. "Thermomechanical Analysis." In Thermal Analysis in Practice, 187–209. München, Germany: Carl Hanser Verlag GmbH & Co. KG, 2018. http://dx.doi.org/10.1007/978-1-56990-644-6_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wagner, Matthias. "Thermomechanical Analysis." In Thermal Analysis in Practice, 187–209. München: Carl Hanser Verlag GmbH & Co. KG, 2017. http://dx.doi.org/10.3139/9781569906446.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Brown, Michael E. "Thermomechanical analysis (TMA)." In Introduction to Thermal Analysis, 63–68. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1219-9_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ehrenstein, Gottfried W., Gabriela Riedel, and Pia Trawiel. "Thermomechanical Analysis (TMA)." In Thermal Analysis of Plastics, 172–208. München: Carl Hanser Verlag GmbH & Co. KG, 2004. http://dx.doi.org/10.3139/9783446434141.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Polizzotto, Castrenze, and Guido Borino. "Shakedown Under Thermomechanical Loads." In Encyclopedia of Thermal Stresses, 4317–33. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_675.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yigit, Faruk, and Louis G. Hector. "Thermomechanical Growth Instability in Solidification." In Encyclopedia of Thermal Stresses, 5970–86. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_690.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tamma, Kumar K. "Nonclassical Thermomechanical Models: Numerical Formulations." In Encyclopedia of Thermal Stresses, 3307–17. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_766.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Thermal and thermomechanical simulation"

1

Geng, Phil, Ligang Wang, Francisco Colorado Alonso, Min Pei, Chuanlou Felix Wang, John He, Jimmy Chuang, et al. "Dynamic Testing and Simulation of Chassis Attached Remote Modular Heat Sink." In 2024 23rd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 1–9. IEEE, 2024. http://dx.doi.org/10.1109/itherm55375.2024.10709605.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Parbat, Sarwesh N., David J. Apigo, Haoyun Qiu, Pouya Kabirzadeh, Rishav Roy, Syed Faisal, Nenad Miljkovic, and Todd Salamon. "An Integrated Simulation Framework for Thermal-Mechanical Performance Analysis of Two-phase Microchannel Evaporators." In 2024 23rd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 1–10. IEEE, 2024. http://dx.doi.org/10.1109/itherm55375.2024.10709519.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wu, Jiahong, Carrie Chen, Pang Wei, Jun Zhang, Ying-Shan Lo, Checa Hung, Liwen Guo, et al. "The Study on Improving CFD Simulation Accuracy for Heat Sink Design Optimization in Single-Phase Immersion Cooling System." In 2024 23rd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 1–7. IEEE, 2024. http://dx.doi.org/10.1109/itherm55375.2024.10709521.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

David, Milnes P., Pranay Nagrani, Anil Yuksel, and Yuanchen Hu. "Simulation Study of Single-phase Immersion Cooling of a Single Server and a Cluster of Servers in a Tank." In 2024 23rd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 1–7. IEEE, 2024. http://dx.doi.org/10.1109/itherm55375.2024.10709532.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Vesely, Zdenek, and Milan Honner. "THE 3D SIMULATION OF THERMOMECHANICAL PROCESSES IN THE INDUSTRIAL PUSHER-TYPE FURNACE." In Thermal Sciences 2000. Proceedings of the International Thermal Science Seminar Bled. Connecticut: Begellhouse, 2000. http://dx.doi.org/10.1615/ichmt.2000.thersieprocvol2thersieprocvol1.260.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gavrikov, A. A., A. M. Khodakov, and V. I. Smirnov. "SIMULATION OF THERMAL AND THERMOMECHANICAL PROCESSES IN TRANSISTOR MODULES." In Actual problems of physical and functional electronics. Ulyanovsk State Technical University, 2023. http://dx.doi.org/10.61527/appfe-2023.18-20.

Повний текст джерела
Анотація:
In modern electronic devices, transistor modules are widely used, consisting of several crystals mounted on a common substrate. They are designed for switching significant currents and voltages, for example, when controlling electric motors. The pattern of heat distribution in the crystals, the adhesive layer and the substrate will make it possible to determine the optimal location of the crystals on the substrate and minimize their mutual influence.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

van Dijk, Marius, Saskia Huber, Hans Walter, Olaf Wittler, and Martin Schneider-Ramelow. "Numerical simulation of transient thermomechanical ageing effects." In 2022 23rd International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE). IEEE, 2022. http://dx.doi.org/10.1109/eurosime54907.2022.9758865.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Vesely, Zdenek, and Milan Honner. "Abstract of "THE 3D SIMULATION OF THERMOMECHANICAL PROCESSES IN THE INDUSTRIAL PUSHER-TYPE FURNACE"." In Thermal Sciences 2000. Proceedings of the International Thermal Science Seminar Bled. Connecticut: Begellhouse, 2000. http://dx.doi.org/10.1615/ichmt.2000.thersieprocvol2.340.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Khlifa, Sana Ben, Napo Bonfoh, Paul Lipinski, Manuel Fendler, Stephane Bernabe, and Herve Ribot. "Thermomechanical characterization of electronic components." In 11th International. Conference on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE 2010). IEEE, 2010. http://dx.doi.org/10.1109/esime.2010.5464592.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ebbinghaus, Hanna, Gregor Feiertag, and Sebastian Walser. "Simulation of thermomechanical stress of a MEMS microphone." In 2018 19th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE). IEEE, 2018. http://dx.doi.org/10.1109/eurosime.2018.8369892.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Thermal and thermomechanical simulation"

1

Baker, Michael Sean, David S. Epp, Justin Raymond Serrano, Allen D. Gorby, and Leslie Mary Phinney. Thermomechanical measurements on thermal microactuators. Office of Scientific and Technical Information (OSTI), January 2009. http://dx.doi.org/10.2172/976937.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ortega, A. R. A two-dimensional thermomechanical simulation of a gas metal arc welding process. Office of Scientific and Technical Information (OSTI), August 1990. http://dx.doi.org/10.2172/6768141.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Warnick, J. S., E. Shor, and J. R. Schott. Thermal infrared scene simulation. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/5035759.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Semiatin, S. L., S. V. Shevchenko, O. M. Ivasishin, M. G. Glavicic, Y. B. Chun, and S. K. Hwang. Modeling and Simulation of Texture Evolution During the Thermomechanical Processing of Titanium Alloys (PREPRINT). Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada490161.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hodge, N., R. Ferencz, and J. Solberg. Implementation of a Thermomechanical Model in Diablo for the Simulation of Selective Laser Melting. Office of Scientific and Technical Information (OSTI), October 2013. http://dx.doi.org/10.2172/1108835.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Radhakrishnan, B., G. Sarma, and T. Zacharia. Coupled finite element-Monte Carlo simulation of microstructure and texture evolution during thermomechanical processing. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/676877.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Akau, R. L., J. P. Freshour, and S. L. Wilde. Thermal environmental tests on space simulation chamber. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5727703.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

White, D. Electro-Thermal-Mechanical Simulation Capability Final Report. Office of Scientific and Technical Information (OSTI), February 2008. http://dx.doi.org/10.2172/928537.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ovrebo, Gregory K. Thermal Simulation of Four Die-Attach Materials. Fort Belvoir, VA: Defense Technical Information Center, January 2008. http://dx.doi.org/10.21236/ada477276.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Armero, Francisco. Analysis and Numerical Simulation of Strain Localization in Inelastic Solids Under Fully Coupled Thermomechanical and Poroplastic Conditions. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada380940.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії