Добірка наукової літератури з теми "Therapeutic ion"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Therapeutic ion".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Therapeutic ion"

1

Hutchings, Catherine J., Paul Colussi, and Theodore G. Clark. "Ion channels as therapeutic antibody targets." mAbs 11, no. 2 (December 10, 2018): 265–96. http://dx.doi.org/10.1080/19420862.2018.1548232.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Peixoto, Pablo M., Shin-Young Ryu, and Kathleen W. Kinnally. "Mitochondrial ion channels as therapeutic targets." FEBS Letters 584, no. 10 (February 20, 2010): 2142–52. http://dx.doi.org/10.1016/j.febslet.2010.02.046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Matsufuji, Naruhiro, Tetsuharu Matsuyama, Shinji Sato, and Toshiyuki Kohno. "Recombination characteristics of therapeutic ion beams on ion chamber dosimetry." International Journal of Modern Physics: Conference Series 44 (January 2016): 1660218. http://dx.doi.org/10.1142/s2010194516602180.

Повний текст джерела
Анотація:
In heavy ion radiotherapy, ionization chambers are regarded as a standard for determining the absorbed dose given to patients. In ion dosimetry, it is necessary to correct the radiation quality, which depends on the initial recombination effect. This study reveals for the radiation quality dependence of the initial recombination in air in ion dosimetry. Ionization charge was measured for the beams of protons at 40–160 MeV, carbon at 21–400 MeV/n, and iron at 23.5–500 MeV/n using two identical parallel-plate ionization chambers placed in series along the beam axis. The downstream chamber was used as a monitor operated with a constant applied voltage, while the other chamber was used for recombination measurement by changing the voltage. The ratio of the ionization charge measured by the two ionization chambers showed a linear relationship with the inverse of the voltage in the high-voltage region. The initial recombination factor was estimated by extrapolating the obtained linear relationship to infinite voltage. The extent of the initial recombination was found to increase with decreasing incident energy or increasing atomic number of the beam. This behavior can be explained with an amorphous track structure model: the increase of ionization density in the core region of the track due to decreasing kinetic energy or increasing atomic number leads to denser initial ion production and results in a higher recombination probability. For therapeutic carbon ion beams, the extent of the initial recombination was not constant but changed by 0.6% even in the target region. This tendency was quantitatively well reproduced with the track-structure based on the initial recombination model; however, the transitional change in the track structure is considered to play an important role in further understanding of the characteristics of the initial recombination.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zamponi, Gerald W. "Welcome to “Ion Channels: Key Therapeutic Targets”." Future Medicinal Chemistry 2, no. 5 (May 2010): 689–90. http://dx.doi.org/10.4155/fmc.10.184.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lambert, Mélanie, Véronique Capuano, Andrea Olschewski, Jessica Sabourin, Chandran Nagaraj, Barbara Girerd, Jason Weatherald, Marc Humbert, and Fabrice Antigny. "Ion Channels in Pulmonary Hypertension: A Therapeutic Interest?" International Journal of Molecular Sciences 19, no. 10 (October 14, 2018): 3162. http://dx.doi.org/10.3390/ijms19103162.

Повний текст джерела
Анотація:
Pulmonary arterial hypertension (PAH) is a multifactorial and severe disease without curative therapies. PAH pathobiology involves altered pulmonary arterial tone, endothelial dysfunction, distal pulmonary vessel remodeling, and inflammation, which could all depend on ion channel activities (K+, Ca2+, Na+ and Cl−). This review focuses on ion channels in the pulmonary vasculature and discusses their pathophysiological contribution to PAH as well as their therapeutic potential in PAH.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nisar, Areeba, Zubair Ahmed, and Hsiangkuo Yuan. "Novel Therapeutic Targets for Migraine." Biomedicines 11, no. 2 (February 15, 2023): 569. http://dx.doi.org/10.3390/biomedicines11020569.

Повний текст джерела
Анотація:
Migraine, a primary headache disorder involving a dysfunctional trigeminal vascular system, remains a major debilitating neurological condition impacting many patients’ quality of life. Despite the success of multiple new migraine therapies, not all patients achieve significant clinical benefits. The success of CGRP pathway-targeted therapy highlights the importance of translating the mechanistic understanding toward effective therapy. Ongoing research has identified multiple potential mechanisms in migraine signaling and nociception. In this narrative review, we discuss several potential emerging therapeutic targets, including pituitary adenylate cyclase-activating polypeptide (PACAP), adenosine, δ-opioid receptor (DOR), potassium channels, transient receptor potential ion channels (TRP), and acid-sensing ion channels (ASIC). A better understanding of these mechanisms facilitates the discovery of novel therapeutic targets and provides more treatment options for improved clinical care.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Selvaraj, Chandrabose, Gurudeeban Selvaraj, Satyavani Kaliamurthi, William C. Cho, Dong-Qing Wei, and Sanjeev Kumar Singh. "Ion Channels as Therapeutic Targets for Type 1 Diabetes Mellitus." Current Drug Targets 21, no. 2 (January 22, 2020): 132–47. http://dx.doi.org/10.2174/1389450119666190920152249.

Повний текст джерела
Анотація:
Ion channels are integral proteins expressed in almost all living cells and are involved in muscle contraction and nutrient transport. They play a critical role in the normal functioning of the excitable tissues of the nervous system and regulate the action potential and contraction events. Dysfunction of genes encodes ion channel proteins, which disrupt the channel function and lead to a number of diseases, among which is type 1 diabetes mellitus (T1DM). Therefore, understanding the complex mechanism of ion channel receptors is necessary to facilitate the diagnosis and management of treatment. In this review, we summarize the mechanism of important ion channels and their potential role in the regulation of insulin secretion along with the limitations of ion channels as therapeutic targets. Furthermore, we discuss the recent investigations of the mechanism regulating the ion channels in pancreatic beta cells, which suggest that ion channels are active participants in the regulation of insulin secretion.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Janssen, Luke J. "Membrane Currents in Airway Smooth Muscle: Mechanisms and Therapeutic Implications." Canadian Respiratory Journal 4, no. 1 (1997): 13–20. http://dx.doi.org/10.1155/1997/253424.

Повний текст джерела
Анотація:
Electrophysiological and pharmacological techniques were used to characterize the membrane conductance changes underlying spasmogen-evoked depolarization in airway smooth muscle (ASM). Changes included a transient activation of chloride ion channels and prolonged suppression of potassium ion channels; both changes are triggered by release of internally sequestered calcium ion and in turn cause opening of voltage-dependent calcium channels. The resultant influx of calcium ions contributes to contraction as well as to refilling of the internal calcium ion pool. Bronchodilators, on the other hand, act in part through activation of potassium channels, with consequent closure of calcium channels. The tools used to study ion channels in ASM are described, and the investigations of the roles of ion channels in ASM physiology (autacoid-evoked depolarization and hyperpolarization) and pathophysiology (airway hyperresponsiveness) are summarized. Finally, how the relationship between ion channels and ASM function/dysfunction may relate to the treatment of asthma and related breathing disorders is discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Griffin, Michaela, Raheela Khan, Surajit Basu, and Stuart Smith. "Ion Channels as Therapeutic Targets in High Grade Gliomas." Cancers 12, no. 10 (October 21, 2020): 3068. http://dx.doi.org/10.3390/cancers12103068.

Повний текст джерела
Анотація:
Glioblastoma multiforme (GBM) is a lethal brain cancer with an average survival of 14–15 months even with exhaustive treatment. High grade gliomas (HGG) represent the leading cause of CNS cancer-related death in children and adults due to the aggressive nature of the tumour and limited treatment options. The scarcity of treatment available for GBM has opened the field to new modalities such as electrotherapy. Previous studies have identified the clinical benefit of electrotherapy in combination with chemotherapeutics, however the mechanistic action is unclear. Increasing evidence indicates that not only are ion channels key in regulating electrical signaling and membrane potential of excitable cells, they perform a crucial role in the development and neoplastic progression of brain tumours. Unlike other tissue types, neural tissue is intrinsically electrically active and reliant on ion channels and their function. Ion channels are essential in cell cycle control, invasion and migration of cancer cells and therefore present as valuable therapeutic targets. This review aims to discuss the role that ion channels hold in gliomagenesis and whether we can target and exploit these channels to provide new therapeutic targets and whether ion channels hold the mechanistic key to the newfound success of electrotherapies.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ben-Johny, Manu, and David T. Yue. "Calmodulin regulation (calmodulation) of voltage-gated calcium channels." Journal of General Physiology 143, no. 6 (May 26, 2014): 679–92. http://dx.doi.org/10.1085/jgp.201311153.

Повний текст джерела
Анотація:
Calmodulin regulation (calmodulation) of the family of voltage-gated CaV1-2 channels comprises a prominent prototype for ion channel regulation, remarkable for its powerful Ca2+ sensing capabilities, deep in elegant mechanistic lessons, and rich in biological and therapeutic implications. This field thereby resides squarely at the epicenter of Ca2+ signaling biology, ion channel biophysics, and therapeutic advance. This review summarizes the historical development of ideas in this field, the scope and richly patterned organization of Ca2+ feedback behaviors encompassed by this system, and the long-standing challenges and recent developments in discerning a molecular basis for calmodulation. We conclude by highlighting the considerable synergy between mechanism, biological insight, and promising therapeutics.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Therapeutic ion"

1

Li, Sheng Nan. "Investigation on ion channel interactions and neuroprotective activities of novel peptides from medicinal coral." Thesis, University of Macau, 2018. http://umaclib3.umac.mo/record=b3952134.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hartmann, Bernadette [Verfasser], and Wolfgang [Akademischer Betreuer] Schlegel. "A Novel Approach to Ion Spectroscopy of Therapeutic Ion Beams Using a Pixelated Semiconductor Detector / Bernadette Hartmann ; Betreuer: Wolfgang Schlegel." Heidelberg : Universitätsbibliothek Heidelberg, 2013. http://d-nb.info/1177809451/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Breithaupt, Bernadette [Verfasser], and Wolfgang [Akademischer Betreuer] Schlegel. "A Novel Approach to Ion Spectroscopy of Therapeutic Ion Beams Using a Pixelated Semiconductor Detector / Bernadette Hartmann ; Betreuer: Wolfgang Schlegel." Heidelberg : Universitätsbibliothek Heidelberg, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-156907.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rinaldi, Ilaria [Verfasser], and Katia [Akademischer Betreuer] Parodi. "Investigation of novel imaging methods using therapeutic ion beams / Ilaria Rinaldi ; Betreuer: Katia Parodi." Heidelberg : Universitätsbibliothek Heidelberg, 2011. http://d-nb.info/1179230353/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Richards, Duncan B. "Human platelet ion flux and aggregation as pharmacodynamic surrogate markers for therapeutic hypothesis testing in patients with heart failure." Thesis, University of Oxford, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.404200.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lau, Khim Heng. "Development and application of high-resolution secondary ion mass spectrometry analysis of therapeutic and imaging molecules in cells and tissue sections." Thesis, University of Oxford, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.543023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hoppe, Alexander [Verfasser], Aldo R. [Akademischer Betreuer] Boccaccini, and Uwe [Akademischer Betreuer] Gbureck. "Bioactive Glass Derived Scaffolds with Therapeutic Ion Releasing Capability for Bone Tissue Engineering / Alexander Hoppe. Gutachter: Aldo R. Boccaccini ; Uwe Gbureck." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2014. http://d-nb.info/1065004966/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Brecht, Ellliott James. "Neuropeptide Modulation of the Large Conductance Potassium (BK) Channel in the Auditory System: Therapeutic Implications for Age-Related Hearing Loss." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6641.

Повний текст джерела
Анотація:
The auditory temporal processing deficits associated with age-dependent hearing decline have been increasingly attributed to issues beyond peripheral hearing loss. Age-related hearing loss (ARHL), also known as presbycusis, is linked with changes in the expression of both excitatory and inhibitory neurotransmitters in the central auditory system. There are also age-related changes in the expression and function of the ion channels which mediate action potential firing. The slow, Ca2+ activated, K+ channels of the BK-type are essential in controlling both neurotransmitter release and neural communication via alteration of action potential durations, firing frequency, and neural adaptation. There are many subsets of this type of ion channel located throughout the body, and though it is evident that these channels are involved in cellular activation within the peripheral auditory system, little is known about their contribution to auditory processing in the brain. There is a need for further understanding of the functional involvement and mechanisms of neurotransmitter loss and how this relates to the BK channel and auditory disorders such as presbycusis and tinnitus (the perception of a phantom sound). My research focused on investigating how the downregulation of neurotransmitter production and the reductions in BK channel expression affect ARHL. I also evaluated a custom BK-channel modulating peptide as a path towards a possible therapeutic intervention for age-related hearing loss. This custom peptide is especially useful because it reduces the potential for serious side effects, due to mechanisms which best mimic natural occurring peptide systems. The initial investigation described in this dissertation measured auditory system changes in aged mice that occurred following a drug-induced increase in the availability of the inhibitory neurotransmitter GABA. This increase in GABA decreased minimum response thresholds in the auditory midbrain of aged mice, bringing them to levels seen in young adult animals. The other changes that occurred following increased GABA availability were increased acoustically driven neuronal firing rates, frequency-dependent decreases in spontaneous rates, and increases in the symmetry of the receptive fields. The return of clear and fine-tuned acoustically-evoked responses in aged mice was a major finding of this experiment. The second phase of the dissertation built on this demonstration that modulation of the aged auditory system was possible by changing neurotransmitter levels. This second portion of the study focused on how a novel potent neuropeptide (LS3), which increases the probability of the BK channel remaining in the closed conformational state, might invoke alterations in auditory-evoked responses. First, the LS3 neuropeptide was used to modify addictive behavior in the C. Elegans; followed by evaluation of in vitro changes to a human cell line. This study then confirmed that LS3 is a potent BK channel modulator with a greater affinity than those known toxins classified as high-affinity toxins. In vivo testing demonstrated that LS3 could rapidly cross the blood-brain barrier (BBB) following systemic injections, where it altered auditory evoked activity in a manner similar to that of the direct application to the dura over the midbrain. This work demonstrates that the BK channel is highly responsible for the control of auditory-evoked neurological processes, and that a potent BK channel modulator may be useful for the treatment of certain neurological disorders. The third study was designed to confirm that the BK channel plays an important role in sound-evoked activity generated in the auditory midbrain, by testing the effects of a general BK channel pore blocker, PAX. The results established that the BK channel is vital for sound processing in the midbrain of young adult mice, and is responsible for the maintenance of receptive field properties. I also evaluated the role it plays in temporal processing, which is an underlying mechanism for the processing of neurologically-relevant complex acoustic signals such as speech. Here, blocking of the channel increased (worsened) the threshold for the detection of a silent gap-in-noise and the neural recovery functions that occurred following the stimuli. The fourth study significantly expanded the in vivo testing of the custom peptide channel blocker, LS3, and added a behavioral measure of changes to auditory perception in addition to the electrophysiology recordings. The auditory-evoked receptive fields from midbrain neurons were modulated in a dose-dependent manner following the application of LS3. The neural recordings took place in the inferior colliculus, where the dorsal region responds to low-frequency sounds and ventral areas to high frequencies. The LS3-induced suppression or enhancement of evoked responses was different for the various tonotopic regions of the auditory midbrain. The improvements shown in receptive fields and improvement in auditory perception indicates a plausible route for direct translational treatment of auditory disorders through small custom peptide therapeutics. These studies provide supportive information about how auditory evoked responses in the midbrain, including the coding of different sound features, are affected by the down-regulation of a key inhibitory neurotransmitter (GABA), and how GABA-dependent neural evoked responses are altered in older mice through the modulation of BK channel activity.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ciraldo, Francesca E. [Verfasser], Aldo R. [Akademischer Betreuer] Boccaccini, and Brovarone Chiara [Gutachter] Vitale. "Design, processing and characterization of mesoporous glass coatings with therapeutic ion release capability / Francesca Ciraldo ; Gutachter: Chiara Vitale Brovarone ; Betreuer: Aldo R. Boccaccini." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2021. http://d-nb.info/1225122635/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ciraldo, Francesca [Verfasser], Aldo R. [Akademischer Betreuer] Boccaccini, and Brovarone Chiara [Gutachter] Vitale. "Design, processing and characterization of mesoporous glass coatings with therapeutic ion release capability / Francesca Ciraldo ; Gutachter: Chiara Vitale Brovarone ; Betreuer: Aldo R. Boccaccini." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2021. http://d-nb.info/1225122635/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Therapeutic ion"

1

European Organization for Nuclear Research. Proton-ion medical machine study: PIMMS. Geneva: CERN, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Proton and carbon ion therapy. Boca Raton: Taylor & Francis, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

International Commission on Radiation Units and Measurements, ed. Relative biological effectiveness in ion beam therapy. Vienna: International Atomic Energy Agency, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pavlovic, Márius. Transport of ion-therapy beams in rotating gantries. New York: Nova Science Publishers, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pavlovic, Márius. Transport of ion-therapy beams in rotating gantries. Hauppauge, N.Y: Nova Science Publishers, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Japan) NIRS Research Center for Charged Particle Therapy Symposium (7th 2007 Chiba. NIRS International Symposium on progress in heavy Ion radiotherapy: November 30 & December 1, 2007, NIRS. Edited by Kanai Tatsuaki 1948- and Hōshasen Igaku Sōgō Kenkyūjo (Japan). Chiba, Japan: National Institute of Radiological Sciences, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Moyers, Michael Farley. Practical implementation of light ion beam treatments. Madison, Wisconsin: Medical Physics Publishing, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Agency, International Atomic Energy, and International Commission on Radiation Units and Measurements., eds. Dose reporting in ion beam therapy: Proceedings of a meeting organized jointly by the International Atomic Energy Agency and the International Commission on Radiation Units and Measurements, Inc. and held in Ohio, United States of America, 18-20 March 2006. Vienna: International Atomic Energy Agency, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Margaret, Christensen, Delmar Learning, and Nicholas J. Kaufman Productions, eds. Therapeutic communication. Clifton Park, NY: Thomas Delmar Learning, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

M, Vanhoutte Paul, Paoletti Rodolfo, Govoni Stefano 1950-, Fondazione Giovanni Lorenzini, and New York Academy of Sciences., eds. Calcium antagonists: Pharmacology and clinical research. New York, N.Y: New York Academy of Sciences, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Therapeutic ion"

1

Rathore, Anurag S., and Vishwanath Hebbi. "Ion Exchange Chromatographic Methods for of." In Therapeutic Antibodies, 179–86. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1450-1_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fazal-Ur-Rehman and Sheeba Nuzhat Khan. "Therapeutic Applications of Ion Exchange Resins." In Ion Exchange Technology II, 149–68. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4026-6_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bednenko, Janna, Paul Colussi, Sunyia Hussain, Yihui Zhang, and Theodore Clark. "Therapeutic Antibodies Targeting Potassium Ion Channels." In Pharmacology of Potassium Channels, 507–45. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/164_2021_464.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Power, Maureen. "Preparation of Monoclonal Antibodies Using Ion Exchange Chromatography." In Diagnostic and Therapeutic Antibodies, 289–93. Totowa, NJ: Humana Press, 2000. http://dx.doi.org/10.1385/1-59259-076-4:289.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ashrafuzzaman, Mohammad. "Channelopathies and Ion Channels as Therapeutic Targets." In Biophysics and Nanotechnology of Ion Channels, 193–241. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003010654-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fang, Liang, and Wenting Song. "Related Topic: Ion-Pair Strategy." In Skin Permeation and Disposition of Therapeutic and Cosmeceutical Compounds, 241–48. Tokyo: Springer Japan, 2017. http://dx.doi.org/10.1007/978-4-431-56526-0_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Liu, Yani, and KeWei Wang. "Exploiting the Diversity of Ion Channels: Modulation of Ion Channels for Therapeutic Indications." In Concepts and Principles of Pharmacology, 187–205. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/164_2019_333.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nagy, Istvan, Dominic Friston, João Sousa Valente, Jose Vicente Torres Perez, and Anna P. Andreou. "Pharmacology of the Capsaicin Receptor, Transient Receptor Potential Vanilloid Type-1 Ion Channel." In Capsaicin as a Therapeutic Molecule, 39–76. Basel: Springer Basel, 2014. http://dx.doi.org/10.1007/978-3-0348-0828-6_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mohan, C. Gopi, Ashish Pandey, and Jignesh Mungalpara. "Therapeutic Potential of N-Type Voltage-Gated Ca2+ Channel." In Ion Channels and Their Inhibitors, 289–308. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19922-6_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mani, Bharath K., Lyubov I. Brueggemann, Sarkis Morales-Vidal, Christopher M. Loftus, and Kenneth L. Byron. "Kv7 Potassium Channels as Therapeutic Targets in Cerebral Vasospasm." In Vascular Ion Channels in Physiology and Disease, 191–214. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29635-7_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Therapeutic ion"

1

Fukumura, A., T. Hiraoka, Y. Noda, T. Tomitani, M. Takeshita, T. Kanai, T. Murakami, et al. "Measurements of charge-changing cross sections for therapeutic ion beams." In NUCLEAR PHYSICS IN THE 21st CENTURY:International Nuclear Physics Conference INPC 2001. AIP, 2002. http://dx.doi.org/10.1063/1.1469935.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rohman, Fadli, Umi Azizah, and Bambang Prihandoko. "Study of electrochemical performance of amorphous carbon-coated graphite for Li-ion battery." In PROCEEDINGS FROM THE 14TH INTERNATIONAL SYMPOSIUM ON THERAPEUTIC ULTRASOUND. Author(s), 2017. http://dx.doi.org/10.1063/1.4978113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Priegnitz, Marlen, Fine Fiedler, Daniela Kunath, Kristin Laube, Katia Parodi, Florian Sommerer, and Wolfgang Enghardt. "A novel approach for predicting the positron emitter distributions produced during therapeutic ion irradiation." In 2008 IEEE Nuclear Science Symposium and Medical Imaging conference (2008 NSS/MIC). IEEE, 2008. http://dx.doi.org/10.1109/nssmic.2008.4774294.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Saksono, Nelson, Indah Puspita, and Tulus Sukreni. "Application of contact glow discharge electrolysis method for degradation of batik dye waste Remazol Red by the addition of Fe2+ ion." In PROCEEDINGS FROM THE 14TH INTERNATIONAL SYMPOSIUM ON THERAPEUTIC ULTRASOUND. Author(s), 2017. http://dx.doi.org/10.1063/1.4978076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Stafford, Lewis J., Ross Chambers, Sharon H. Willis, Moniquetta Hall, Brad Screnci, Manu Mabila, David Tucker, et al. "Abstract 74: Discovery of new therapeutic monoclonal antibodies to challenging GPCRs, ion channels and transporters." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-74.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lapitsky, Yakov, Sabrina Alam, Udaka de Silva, Jennifer Brown, Carolina Mather, and Youngwoo Seo. "Surfactant-loaded Polyelectrolyte/multivalent Ion Coacervates for the Multi-month Release of Antibacterial and Therapeutic Payloads." In Virtual 2021 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2021. http://dx.doi.org/10.21748/am21.267.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hartmann, Bernadette, Klaus Gwosch, Carlos Granja, Jan Jakubek, Stanislav Pospisil, Oliver Jakel, and Maria Martisikova. "Towards fragment distinction in therapeutic carbon ion beams: A novel experimental approach using the Timepix detector." In 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference (2012 NSS/MIC). IEEE, 2012. http://dx.doi.org/10.1109/nssmic.2012.6551931.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Fiedler, F., U. Dersch, C. Golnik, T. Kormoll, A. Muller, H. Rohling, S. Schone, and W. Enghardt. "The use of prompt γ-rays for in-vivo dosimetry at therapeutic proton and ion beams." In 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference (2011 NSS/MIC). IEEE, 2011. http://dx.doi.org/10.1109/nssmic.2011.6152493.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Golnik, C., U. Dersch, F. Fiedler, T. Kormoll, H. Rohling, and W. Enghardt. "A pair production upgrade for a compton imager for in-vivo dosimetry at therapeutic proton and ion beams." In 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference (2011 NSS/MIC). IEEE, 2011. http://dx.doi.org/10.1109/nssmic.2011.6152600.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ueda, Koji, Atsuhiko Toyama, Taka-Aki Sato, Yusuke Nakamura, and Hidewaki Nakagawa. "Abstract 3214: Definition of biosimilars: Energy Resolved Oxonium Ion Monitoring (Erexim) technology grasps detailed N-glycan microheterogeneity on therapeutic antibodies." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-3214.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Therapeutic ion"

1

Cabrera, Anahi Maldonado, Blayra Maldonado Cabrera, Dalia Isabel Sánchez Machado, and Jaime López Cervantes. Wound healing therapeutic effect of chitosan nanofibers: a systematic review and meta- analysis of animal studies. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, October 2022. http://dx.doi.org/10.37766/inplasy2022.10.0121.

Повний текст джерела
Анотація:
Review question / Objective: Review question: Does chitosan base nanofibers has significant wound healing therapeutics effects in animal models? A preclinical systematic review of intervention will be carried out to evaluate the therapeutic effects of chitosan nanofibers on animal skin lesions. The PICO (Population, Intervention, Comparator, Outcome) scheme will be used: Intervention: full-thickness skin lesions, and the application of chitosan nanofibers as treatment for animal skin lesions. Regardless of the concentration of chitosan or other added compounds used. Comparison: No intervention, topical placebo agents and standard skin lesions treatments will be included. Outcome: wound healing area, wound closure, type of wound closure (first, second or third intention), healing time, infectious processes (antibacterial/antifungal properties), blood loss (hemostatic properties) and adverse effects.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Su, Min-Ying L. Anti-Angiogenesis Therapeutic Indicators in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, August 2004. http://dx.doi.org/10.21236/ada429932.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Coelho Resende, Noelle, Renata Weber, Jardel Fischer Loeck, Mathias Vaiano Glens, Carolina Gomes, Priscila Farfan Barroso, Janine Targino, Emerson Elias Merhy, Leandro Dominguez Barretto, and Carly Machado. Working Paper Series: Therapeutic Communities in Brazil. Edited by Taniele Rui and Fiore Mauricio. Drugs, Security and Democracy Program, Social Science Research Council, June 2021. http://dx.doi.org/10.35650/ssrc.2081.d.2021.

Повний текст джерела
Анотація:
Spread across Brazil and attaining an unparalleled political force, therapeutic communities are as inescapable in the debate on drug policy as they are complex to define. Although they are not a Brazilian creation, they have been operating in that country for decades, and their dissemination intensified in the 1990s. In 2011, they were officially incorporated into Brazil's Psychosocial Care Network (Rede de Atenção Psicossocial, or RAPS). Since then, therapeutic communities have been at the center of public debates about their regulation; about how they should—or even if they should—be a part of the healthcare system; about the level of supervision to which they should be submitted; about their sources of funding, particularly whether or not they should have access to public funding; and, most importantly, about the quality of the services they offer and the many reports of rights violation that have been made public. However, a well-informed public debate can only flourish if the available information is based on sound evidence. The SSRC’s Drugs, Security and Democracy Program is concerned with the policy relevance of the research projects it supports, and the debate around therapeutic communities in Brazil points to a clear need for impartial research that addresses different cross-cutting aspects of this topic in its various dimensions: legal, regulatory, health, and observance of human rights, among others. It is in this context that we publish this working paper series on therapeutic communities in Brazil. The eight articles that compose this series offer a multidisciplinary view of the topic, expanding and deepening the existing literature and offering powerful contributions to a substantive analysis of therapeutic communities as instruments of public policy. Although they can be read separately, it is as a whole that the strength of the eight articles that make up this series becomes more evident. Even though they offer different perspectives, they are complementary works in—and already essential for—delineating and understanding the phenomenon of therapeutic communities in Brazil.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Seeger, Markus, Petra Dittrich, Martin Loessner, Patrice Nordmann, Jörn Piel, and Jean-Louis Reymond. Faster diagnostics and new therapeutic approaches. Swiss National Science Foundation SNSF, November 2022. http://dx.doi.org/10.46446/publication_nrp72.2022.3.en.

Повний текст джерела
Анотація:
The thematic synthesis “Faster diagnostics and new therapeutic approaches” summarises the research on new diagnostic methods and therapeutic approaches carried out under NRP 72 and formulates detailed conclusions and recommendations in this area. The latter have been drafted in collaboration with researchers and numerous stakeholders.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Velev, Valeri, Maria Pavlova, Atanas Mangarov, Petar Petrov, Ivan Ivanov, Toma Tomov, and Kamenna Vutova. Diagnostics and Therapeutic Behaviour in Patients with Campylobacteriosis. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, April 2018. http://dx.doi.org/10.7546/crabs.2018.03.15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kinlaw, William B. S14 as a Therapeutic Target in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, August 2006. http://dx.doi.org/10.21236/ada460779.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cohen, Pinchas. Humanin: A Novel Therapeutic Target in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, January 2007. http://dx.doi.org/10.21236/ada467610.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hann, Stephen R. Potential Therapeutic Uses of p19ARF Mimics in Mammary Tumorigenesis. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada486920.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liu, Xiaole S. Therapeutic Mechanism of BET Bromodomain Inhibitor in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada612329.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Muggia, Franco. Multidrug Resistance in Breast Cancer: Occurrence and Therapeutic Implications. Fort Belvoir, VA: Defense Technical Information Center, October 1995. http://dx.doi.org/10.21236/ada303254.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії