Добірка наукової літератури з теми "Théorie topologique des graphes"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Théorie topologique des graphes".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Théorie topologique des graphes"
Dalud-Vincent, Monique. "Une autre manière de modéliser les réseaux sociaux. Applications à l’étude de co-publications." Nouvelles perspectives en sciences sociales 12, no. 2 (August 22, 2017): 41–68. http://dx.doi.org/10.7202/1040904ar.
Повний текст джерелаTacnet, Jean-Marc, Elodie Forestier, Eric Mermet, Corinne Curt, and Frédéric Berger. "Résilience territoriale : du concept à l'analyse d'infrastructures critiques en montagne." La Houille Blanche, no. 5-6 (October 2018): 20–28. http://dx.doi.org/10.1051/lhb/2018047.
Повний текст джерелаLemieux, Vincent. "L'articulation des réseaux sociaux." Recherches sociographiques 17, no. 2 (April 12, 2005): 247–60. http://dx.doi.org/10.7202/055716ar.
Повний текст джерелаMazille, J. E. "Caractérisation de macrostructures par la théorie des graphes." Revue de Métallurgie 90, no. 9 (September 1993): 1079. http://dx.doi.org/10.1051/metal/199390091079.
Повний текст джерелаDa Silva, Alban. "La théorie des graphes se révèle au Vanuatu." Pour la Science N° 550 – août, no. 8 (August 1, 2023): 22–33. http://dx.doi.org/10.3917/pls.550.0022.
Повний текст джерелаBailly, Sean. "La théorie des graphes, l’invitée surprise des soirées." Pour la Science N° 548 – juin, no. 6 (June 1, 2023): 6–7. http://dx.doi.org/10.3917/pls.548.0006.
Повний текст джерелаFoucambert, Denis, Tracy Heranic, Christophe Leblay, Maarit Mutta, and Minjing Zhong. "Intégration de la visualisation dans l’analyse de processus complexes : écritures et réécritures dans un corpus multilingue universitaire." SHS Web of Conferences 138 (2022): 06010. http://dx.doi.org/10.1051/shsconf/202213806010.
Повний текст джерелаMazille, J. E. "Analyse de structures complexes par la théorie des graphes." Revue de Métallurgie 91, no. 2 (February 1994): 223–32. http://dx.doi.org/10.1051/metal/199491020223.
Повний текст джерелаTAPIA, J. "K-théorie algébrique négative et K-théorie topologique de l'algèbre de fréchet des opérateurs régularisants." Annales Scientifiques de l’École Normale Supérieure 30, no. 2 (1997): 241–77. http://dx.doi.org/10.1016/s0012-9593(97)89920-x.
Повний текст джерелаBrandt, Per Aage. "De la dynamique phrastique. Grammaire, chorématique et Théorie des Catastrophes." Estudos Semióticos 19, no. 1 (April 27, 2023): 226–37. http://dx.doi.org/10.11606/issn.1980-4016.esse.2023.209341.
Повний текст джерелаДисертації з теми "Théorie topologique des graphes"
Delanoue, Nicolas. "Algorithmes numériques pour l'analyse topologique : Analyse par intervalles et théorie des graphes." Phd thesis, Université d'Angers, 2006. http://tel.archives-ouvertes.fr/tel-00340999.
Повний текст джерелаDe nombreux problèmes, comme l'étude de l'espace des configurations d'un robot, se ramènent à une étude qualitative d'ensembles. Ici, la ``taille'' de l'ensemble importe peu, ce qui compte, c'est sa ``topologie''. Les méthodes proposées calculent des invariants topologiques d'ensembles. Les ensembles considérés sont décrits à l'aide d'inégalités $\mathcal{C}^{\infty}$. L'idée maîtresse est de décomposer un ensemble donné en parties contractiles et d'utiliser l'homologie de \v Cech.
La seconde partie de la thèse concerne l'étude de point
asymptotiquement stables des systèmes dynamiques (linéaires ou non). Plus largement, on propose une méthode pour approcher le bassin d'attraction d'un point asymptotiquement stable. Dans un premier temps, on utilise la théorie de Lyapunov et le calcul par intervalle
pour trouver effectivement un voisinage inclus dans le bassin d'attraction d'un point prouvé asymptotiquement stable. Puis, on combine, une fois de plus, la théorie des graphes et les méthodes d'intégration d'équations différentielles ordinaires pour améliorer ce voisinage et ainsi construire un ensemble inclus dans le bassin
d'attraction de ce point.
Bellet, Thomas. "Transformations de graphes pour la modélisation géométrique à base topologique." Thesis, Poitiers, 2012. http://www.theses.fr/2012POIT2261/document.
Повний текст джерелаGeometric modeling is now involved in many fields such as: video games, architecture, engineering and archaeology. The represented objects are very different from one field to another, and so are their modeling operations. Furthermore, many specific types of modeling software are designed for high programing costs, but with a relatively low rate of effectiveness.The following is an alternative approach:– we have conceived a dedicated language for geometric modeling that will allow us to define any operation of any field; objects in this language are defined with the topological model of generalized maps, this definition has been extended to the embedding informations; here the operations are defined as graph transformation rules which originate from the category theory;– we have ensured operation definitions with consistency conditions; these operations that satisfy those conditions do not generate anomalies; – we have designed generic modeling software to serve as an interpreter of this language; the operation definitions are directly applied without the need for more programing; the software also automatically checks the language conditions and warns the user if he designs a non-consistent operation.The provided language and software prove to be efficient, and all for a low programing cost. Designing a new operation takes only minutes thanks to the language conditions, as opposed to hours of programming and debugging with the past approach
Colin, Fabrice. "Applications de la topologie algébrique en théorie des graphes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1996. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq21733.pdf.
Повний текст джерелаDussaux, Valere. "Spécifications partielles de dessin de graphe : Étude logique et combinatoire." Bordeaux 1, 2002. http://www.theses.fr/2002BOR12527.
Повний текст джерелаSoto, Gomez Mauricio Abel. "Quelques propriétés topologiques des graphes et applications à internet et aux réseaux." Paris 7, 2011. http://www.theses.fr/2011PA077228.
Повний текст джерелаThis thesis focuses on topological properties of graphs and their application on communication networks, specifically on graphs reflecting Internet structure. We first look how far from a tree a graph may be by the study of two parameters: hyperbolicity and treewidth. For hyperbolicity, we analyse the relation with others graph parameters, we also show that some graph decompositions allow its efficient computation. We compute both parameters o Internet snapshots at different levels of granularity and time periods. We propose some structural and algorithmic consequences of obtained values. Then, we study the graph clustering problem from the perspective of modularity, which measures a clustering quality and is largely studied in the literature. We analyse modularity from a theoretical point of view and [describe] its asymptotic behaviour for some graph families. Finally, we deal with adversarial queueing theory, a combinatorial framework derived from classic queueing theory where injection process is und the control of an adversary. We propose a new model generalisation by considering request of distinct types
Beaudou, Laurent. "Autour de problèmes de plongements de graphes." Phd thesis, Université Joseph Fourier (Grenoble), 2009. http://tel.archives-ouvertes.fr/tel-00401226.
Повний текст джерелаBenchettara, Nasserine. "Prévision de nouveaux liens dans les réseaux d'interactions bipartis : Application au calcul de recommandation." Paris 13, 2011. http://scbd-sto.univ-paris13.fr/secure/edgalilee_th_2011_benchettara.pdf.
Повний текст джерелаIn this work, we handle the problem of new link prediction in dynamic complex networks. We mainly focus on studying networks having a bipartite underlaying structure. We propose to apply a propositionnalization approach where each couple of nodes in the network is described by a set of topological measures. One first contribution in this thesis is to consider measures computed in the bipartite graph and also in the associated projected graphs. A supervised machine learning approach is applied. This approach though it gives some good results, suffers from the obvious problem of class skewness. We hence focus on handling this problem. Informed sub-sampling approaches are first proposed. A semi-supervised machine learning approach is also applied. All proposed approaches are applied and evaluated on real datasets used in real application of academic collaboration recommendation and product recommendation in an e-commerce site
Vlitas, Dimitrios. "Contribution à la théorie de Ramsey en dimension infinie." Paris 7, 2012. http://www.theses.fr/2012PA077240.
Повний текст джерелаIn a recent paper S. Solecki proves a finite self dual Ramsey theorem that in a natural way gives simultaneously the classical finite Ramsey theorem and the Graham-Rothschild theorem. In the first chapter of this thesis we prove the corresponding infinite dimensional self dual theorem, giving similarly as a consequence the infinite classical Ramsey theorem and the Carlson-Simpson theorem. This is done by a different approach than that of Solecki. In the second chapter of the present thesis we extend a result of K. Milliken. Given a fixed tree U that has some finite uniform branching but is of infinite length, a notion of uniform family of finite strong subtrees is introduced. Then we prove a Ramsey classification result for equivalence relations defined on these uniform families. In the third and final chapter of the thesis, we complete the attempt of H. Lefmann to show that Borel equivalence relations on the n-element subsets of 2A{\omega}, that respect an order type, have a finite Ramsey basis
Bonis, Thomas. "Algorithmes d'apprentissage statistique pour l'analyse géométrique et topologique de données." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS459/document.
Повний текст джерелаIn this thesis, we study data analysis algorithms using random walks on neighborhood graphs, or random geometric graphs. It is known random walks on such graphs approximate continuous objects called diffusion processes. In the first part of this thesis, we use this approximation result to propose a new soft clustering algorithm based on the mode seeking framework. For our algorithm, we want to define clusters using the properties of a diffusion process. Since we do not have access to this continuous process, our algorithm uses a random walk on a random geometric graph instead. After proving the consistency of our algorithm, we evaluate its efficiency on both real and synthetic data. We then deal tackle the issue of the convergence of invariant measures of random walks on random geometric graphs. As these random walks converge to a diffusion process, we can expect their invariant measures to converge to the invariant measure of this diffusion process. Using an approach based on Stein's method, we manage to obtain quantitfy this convergence. Moreover, the method we use is more general and can be used to obtain other results such as convergence rates for the Central Limit Theorem. In the last part of this thesis, we use the concept of persistent homology, a concept of algebraic topology, to improve the pooling step of the bag-of-words approach for 3D shapes
Abouelaoualim, Abdelfattah. "EXPLORATION DES GRAPHES ARETES-COLOREES : TOPOLOGIE, ALGORITHMES, COMPLEXITE ET (NON)-APPROXIMABILITE." Phd thesis, Université Paris Sud - Paris XI, 2007. http://tel.archives-ouvertes.fr/tel-00281533.
Повний текст джерелаКниги з теми "Théorie topologique des graphes"
Bretto, Alain, Alain Faisant, and François Hennecart. Éléments de théorie des graphes. Paris: Springer Paris, 2012. http://dx.doi.org/10.1007/978-2-8178-0281-7.
Повний текст джерелаAlain, Faisant, Hennecart François, and SpringerLink (Online service), eds. Éléments de théorie des graphes. Paris: Springer Paris, 2012.
Знайти повний текст джерела1938-, Robertson Neil, Seymour Paul D, National Science Foundation (U.S.), and United States. Office of Naval Research., eds. Graph structure theory: Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Graph Minors, held June 22 to July 5, 1991, with support from the National Science Foundation and the Office of Naval Research. Providence, R.I: American Mathematical Society, 1993.
Знайти повний текст джерелаWerra, D. de. Éléments de programmation linéaire avec application aux graphes. Lausanne: Presses Polytechniques Romandes, 1990.
Знайти повний текст джерелаPrins, Christian. Algorithmes de graphes: Avec programmes en Pascal. Paris: Eyrolles, 1994.
Знайти повний текст джерелаXuong, Nguyen Huy. Mathématiques discrètes et informatique. Paris: Masson, 1992.
Знайти повний текст джерелаWilson, Robin J. Introduction to graph theory. 3rd ed. Harlow, Essex, England: Longman, 1985.
Знайти повний текст джерелаWilson, Robin J. Introduction to graph theory. 4th ed. Harlow: Longman, 1996.
Знайти повний текст джерелаWilson, Robin J. Introduction to graph theory. 4th ed. Harlow: Prentice Hall, 1996.
Знайти повний текст джерелаWilson, Robin J. Introduction to graph theory. 3rd ed. Burnt Mill, Harlow, Essex, England: Longman Scientific & Technical, 1985.
Знайти повний текст джерелаЧастини книг з теми "Théorie topologique des graphes"
Bretto, Alain, Alain Faisant, and François Hennecart. "Graphes planaires." In Éléments de théorie des graphes, 131–81. Paris: Springer Paris, 2012. http://dx.doi.org/10.1007/978-2-8178-0281-7_5.
Повний текст джерелаBretto, Alain, Alain Faisant, and François Hennecart. "Théorie algébrique." In Éléments de théorie des graphes, 183–212. Paris: Springer Paris, 2012. http://dx.doi.org/10.1007/978-2-8178-0281-7_6.
Повний текст джерелаBerge, Claude. "La Théorie des Graphes." In Development of Mathematics, 1950–2000, 135–47. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8968-1_7.
Повний текст джерелаBretto, Alain, Alain Faisant, and François Hennecart. "Quelques graphes remarquables." In Éléments de théorie des graphes, 35–59. Paris: Springer Paris, 2012. http://dx.doi.org/10.1007/978-2-8178-0281-7_2.
Повний текст джерелаBretto, Alain, Alain Faisant, and François Hennecart. "Automorphismes — Théorie spectrale." In Éléments de théorie des graphes, 277–325. Paris: Springer Paris, 2012. http://dx.doi.org/10.1007/978-2-8178-0281-7_9.
Повний текст джерелаBretto, Alain, Alain Faisant, and François Hennecart. "Concepts fondamentaux." In Éléments de théorie des graphes, 1–34. Paris: Springer Paris, 2012. http://dx.doi.org/10.1007/978-2-8178-0281-7_1.
Повний текст джерелаBretto, Alain, Alain Faisant, and François Hennecart. "Autres perspectives." In Éléments de théorie des graphes, 327–55. Paris: Springer Paris, 2012. http://dx.doi.org/10.1007/978-2-8178-0281-7_10.
Повний текст джерелаBretto, Alain, Alain Faisant, and François Hennecart. "(Di)graphes et structures de données." In Éléments de théorie des graphes, 61–98. Paris: Springer Paris, 2012. http://dx.doi.org/10.1007/978-2-8178-0281-7_3.
Повний текст джерелаBretto, Alain, Alain Faisant, and François Hennecart. "Connexité et flots dans les réseaux." In Éléments de théorie des graphes, 99–129. Paris: Springer Paris, 2012. http://dx.doi.org/10.1007/978-2-8178-0281-7_4.
Повний текст джерелаBretto, Alain, Alain Faisant, and François Hennecart. "Coloration." In Éléments de théorie des graphes, 213–44. Paris: Springer Paris, 2012. http://dx.doi.org/10.1007/978-2-8178-0281-7_7.
Повний текст джерела