Добірка наукової літератури з теми "Texture description"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Texture description".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Texture description"
Reynolds, Craig. "Interactive Evolution of Camouflage." Artificial Life 17, no. 2 (April 2011): 123–36. http://dx.doi.org/10.1162/artl_a_00023.
Повний текст джерелаEschner, Th, and J. J. Fundenberger. "Application of Anisotropic Texture Components." Textures and Microstructures 28, no. 3-4 (January 1, 1997): 181–95. http://dx.doi.org/10.1155/tsm.28.181.
Повний текст джерелаKhan, Fahad Shahbaz, Rao Muhammad Anwer, Joost van de Weijer, Michael Felsberg, and Jorma Laaksonen. "Compact color–texture description for texture classification." Pattern Recognition Letters 51 (January 2015): 16–22. http://dx.doi.org/10.1016/j.patrec.2014.07.020.
Повний текст джерелаDelannay, L., P. Van Houtte, and A. Van Bael. "New Parameter Model for Texture Description in Steel Sheets." Textures and Microstructures 31, no. 3 (January 1, 1999): 151–75. http://dx.doi.org/10.1155/tsm.31.151.
Повний текст джерелаBerezina, S. I., Yu O. Gordienko, and O. I. Solonets. "ANALYSIS OF WAYS OF SOLVING THE SEGMENTATION PROBLEM FOR HIGHLY TEXTURED OBJECTS." Проблеми створення, випробування, застосування та експлуатації складних інформаційних систем, no. 17 (December 30, 2019): 27–40. http://dx.doi.org/10.46972/2076-1546.2019.17.03.
Повний текст джерелаPACHOWICZ, PETER W. "INTEGRATING LOW-LEVEL FEATURES COMPUTATION WITH INDUCTIVE LEARNING TECHNIQUES FOR TEXTURE RECOGNITION." International Journal of Pattern Recognition and Artificial Intelligence 04, no. 02 (June 1990): 147–65. http://dx.doi.org/10.1142/s0218001490000113.
Повний текст джерелаFanany Onnilita Gaffar, Achmad, Darius Shyafary, Rony H, and Arief Baramanto Wicaksono Putra. "The new proposed method for texture modification of closed up face image based on image processing using local weighting pattern (LWP) with enhancement technique." International Journal of Engineering & Technology 7, no. 2.2 (March 5, 2018): 94. http://dx.doi.org/10.14419/ijet.v7i2.2.12742.
Повний текст джерелаGuo, Yimo, Guoying Zhao, and Matti Pietikäinen. "Discriminative features for texture description." Pattern Recognition 45, no. 10 (October 2012): 3834–43. http://dx.doi.org/10.1016/j.patcog.2012.04.003.
Повний текст джерелаR., Reena Rose, Suruliandi A., and Meena K. "LOCAL TEXTURE DESCRIPTION FRAMEWORK FOR TEXTURE BASED FACE RECOGNITION." ICTACT Journal on Image and Video Processing 04, no. 03 (February 1, 2014): 773–84. http://dx.doi.org/10.21917/ijivp.2014.0112.
Повний текст джерелаDnieprenko, V. N., and S. V. Divinskii. "A New Approach to Describing Three-Dimensional Orientation Distribution Functions in Textured Materials–Part I: Formation of Pole Density Distribution on Model Pole Figures." Textures and Microstructures 22, no. 2 (January 1, 1993): 73–85. http://dx.doi.org/10.1155/tsm.22.73.
Повний текст джерелаДисертації з теми "Texture description"
Siqueira, Fernando Roberti de 1989. "Multi-scale approaches to texture description = Abordagens multiescala para descrição de textura." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/275604.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação
Made available in DSpace on 2018-08-24T04:06:04Z (GMT). No. of bitstreams: 1 Siqueira_FernandoRobertide_M.pdf: 20841189 bytes, checksum: 62053b7b36d54bbdccc8b5aa3650fe6a (MD5) Previous issue date: 2013
Resumo: Visão computacional e processamento de imagens desempenham um papel importante em diversas áreas, incluindo detecção de objetos e classificação de imagens, tarefas muito importantes para aplicações em imagens médicas, sensoriamento remoto, análise forense, detecção de pele, entre outras. Estas tarefas dependem fortemente de informação visual extraída de imagens que possa ser utilizada para descrevê-las eficientemente. Textura é uma das principais propriedades usadas para descrever informação tal como distribuição espacial, brilho e arranjos estruturais de superfícies. Para reconhecimento e classificação de imagens, um grande grupo de descritores de textura foi investigado neste trabalho, sendo que apenas parte deles é realmente multiescala. Matrizes de coocorrência em níveis de cinza (GLCM) são amplamente utilizadas na literatura e bem conhecidas como um descritor de textura efetivo. No entanto, este descritor apenas discrimina informação em uma única escala, isto é, a imagem original. Escalas podem oferecer informações importantes em análise de imagens, pois textura pode ser percebida por meio de diferentes padrões em diferentes escalas. Dessa forma, duas estratégias diferentes para estender a matriz de coocorrência para múltiplas escalas são apresentadas: (i) uma representação de escala-espaço Gaussiana, construída pela suavização da imagem por um filtro passa-baixa e (ii) uma pirâmide de imagens, que é definida pelo amostragem de imagens em espaço e escala. Este descritor de textura é comparado com outros descritores em diferentes bases de dados. O descritor de textura proposto e então aplicado em um contexto de detecção de pele, como forma de melhorar a acurácia do processo de detecção. Resultados experimentais demonstram que a extensão multiescala da matriz de coocorrência exibe melhora considerável nas bases de dados testadas, exibindo resultados superiores em relação a diversos outros descritores, incluindo a versão original da matriz de coocorrência em escala única
Abstract: Computer vision and image processing techniques play an important role in several fields, including object detection and image classification, which are very important tasks with applications in medical imagery, remote sensing, forensic analysis, skin detection, among others. These tasks strongly depend on visual information extracted from images that can be used to describe them efficiently. Texture is one of the main used characteristics that describes information such as spatial distribution, brightness and surface structural arrangements. For image recognition and classification, a large set of texture descriptors was investigated in this work, such that only a small fraction is actually multi-scale. Gray level co-occurrence matrices (GLCM) have been widely used in the literature and are known to be an effective texture descriptor. However, such descriptor only discriminates information on a unique scale, that is, the original image. Scales can offer important information in image analysis, since texture can be perceived as different patterns at distinct scales. For that matter, two different strategies for extending the GLCM to multiple scales are presented: (i) a Gaussian scale-space representation, constructed by smoothing the image with a low-pass filter and (ii) an image pyramid, which is defined by sampling the image both in space and scale. This texture descriptor is evaluated against others in different data sets. Then, the proposed texture descriptor is applied in skin detection context, as a mean of improving the accuracy of the detection process. Experimental results demonstrated that the GLCM multi-scale extension has remarkable improvements on tested data sets, outperforming many other feature descriptors, including the original GLCM
Mestrado
Ciência da Computação
Mestre em Ciência da Computação
Brady, Karen. "A probabilistic framework for adaptive texture description." Nice, 2003. http://www.theses.fr/2003NICE4048.
Повний текст джерелаThis thesis deals with the issue of texture description. We start from the fact that in order to model texture accurately one needs a probability distributions on the space of infinite images. From this we generate a distribution on finite regions by marginalization. For a Gaussian distribution, the computational requirement of diagonalisation and the modelling requirement of adaptivity together lead naturally to adaptive wavelet packet models which capture the principal periodicities present in the textures and allow long-range correlations while preserving the independence of the wavelet packet coefficients. The resulting models are used within two different segmentation schemes for the purposes of analysing mosaics of natural textures from the Brodatz album and high resolution remote sensing images
Spann, Michael. "Texture description and segmentation in image processing." Thesis, Aston University, 1985. http://publications.aston.ac.uk/8057/.
Повний текст джерелаYlioinas, J. (Juha). "Towards optimal local binary patterns in texture and face description." Doctoral thesis, Oulun yliopisto, 2016. http://urn.fi/urn:isbn:9789526214498.
Повний текст джерелаTiivistelmä Paikalliset binäärikuviot kuuluvat suosituimpiin menetelmiin kuville suoritettavassa piirteenirrotuksessa. Menetelmää on sovellettu moniin konenäön ongelmiin, kuten tekstuurien luokittelu, materiaalien luokittelu, kasvojen tunnistus ja kuvien segmentointi. Menetelmän suosiota kuvastaa hyvin siitä kehitettyjen erilaisten johdannaisten suuri lukumäärä ja se, että nykyään kyseinen menetelmien perhe on tunnustettu yhdeksi virstanpylvääksi kasvojentunnistuksen tutkimusalueella. Tämän tutkimuksen lähtökohtana on ymmärtää periaatteita, joihin tehokkaimpien paikallisten binäärikuvioiden suorituskyky perustuu. Tämän jälkeen tavoitteena on kehittää parannuksia menetelmän eri askelille, joita ovat kuvan esikäsittely, binäärikuvioiden näytteistys ja enkoodaus, sekä histogrammin koostaminen ja jälkikäsittely. Esiteltävien uusien menetelmien lähtökohtana on hyödyntää mahdollisimman paljon kohdesovelluksesta saatavaa tietoa automaattisesti. Ensimmäisenä menetelmänä esitellään kuvan ylösnäytteistykseen perustuva paikallisten binäärikuvioiden johdannainen. Ylösnäytteistyksen luonnollisena seurauksena saadaan näytteistettyä enemmän binäärikuvioita, jotka histogrammiin koottuna tekevät piirrevektorista alkuperäistä erottelevamman. Seuraavaksi esitellään kolme oppimiseen perustuvaa menetelmää paikallisten binäärikuvioiden laskemiseksi ja niiden enkoodaukseen. Lopuksi esitellään paikallisten binäärikuvioiden histogrammin jälkikäsittelyn yleistävä malli. Tähän malliin liittyen esitellään histogrammin silottamiseen tarkoitettu operaatio, jonka eräs tärkeimmistä motivaatioista on sama kuin kuvan ylösnäytteistämiseen perustuvalla johdannaisella. Erilaisten piirteenirrotusmenetelmien kehittäminen kasvojentunnistuksen osa-alueille on erittäin suosittu paikallisten binäärikuvioiden sovellusalue. Myös tässä työssä tutkittiin miten kehitetyt johdannaiset suoriutuvat näissä osa-ongelmissa. Tutkimuksen kokeellinen osuus ja siihen liittyvät numeeriset tulokset osoittavat, että esitellyt menetelmät ovat vertailukelpoisia kirjallisuudesta löytyvien parhaimpien paikallisten binäärikuvioiden johdannaisten kanssa
Sitepu, Husinsyah. "March-type models for the description of texture in granular materials." Thesis, Curtin University, 1998. http://hdl.handle.net/20.500.11937/2314.
Повний текст джерелаSitepu, Husinsyah. "March-type models for the description of texture in granular materials." Curtin University of Technology, School of Physical Sciences, 1998. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=10543.
Повний текст джерелаpromising in terms of deducing the powder bulk modulus from the March r-parameter.An additional test of the March model was made with NPD data for specimens mounted, first, parallel to the instrument rotation axis and, then, normal to the axis. The results have provided some further indication that the March model is deficient for the materials considered in the study.During the course of the study, it was found that there are distinct differences between the direction of the near-surface texture in calcite, as measured by XRPD, and bulk texture characterised by NPD. The NPD-derived textures appear to be correct descriptions for the bulk material in uniaxially-pressed powders, whereas the XRPD textures are heavily influenced by the pressing procedure.An additional outcome of the NPD work has been the discovery, made jointly with Dr Brett Hunter of ANSTO, that the popular LHPM Rietveld code did not allow for inclusion of PO contributions from symmetry-equivalent reflections. Revision of the code by Dr Hunter showed that there is substantial bias in Rietveld-March r-parameters if these reflections are not factored correctly into the calculations.Finally, examination of pole-figure data has underlined the extent to which the March model oversimplifies the true distributions. It is concluded that spherical harmonics modelling should be used rather than the March model as a general PO modelling tool.
Esling, Claude Baro R. "Description de la texture des solides polycristallins et de leur déformation plastique." Metz : Université de Metz, 2008. ftp://ftp.scd.univ-metz.fr/pub/Theses/1972/Esling.Claude.SMZ7202.pdf.
Повний текст джерелаWu, Jimin. "Description quantitative et modélisation de la texture d'un granite : granite de Guéret (France)." Bordeaux 1, 1995. http://www.theses.fr/1995BOR10600.
Повний текст джерелаFavier, Eric. "Contribution de l'analyse multi-résolution à la description des contours et des textures." Saint-Etienne, 1994. http://www.theses.fr/1994STET4020.
Повний текст джерелаKellokumpu, V. P. (Vili-Petteri). "Vision-based human motion description and recognition." Doctoral thesis, Oulun yliopisto, 2011. http://urn.fi/urn:isbn:9789514296758.
Повний текст джерелаTiivistelmä Tässä väitöskirjassa tutkitaan ihmisen liikkeen kuvaamista ja tunnistamista konenäkömenetelmillä. Ihmisen liikkeen automaattinen analyysi on keskeinen teknologia luotaessa videopohjaisia järjestelmiä ihmisen ja koneen vuorovaikutukseen. Laajojen sovellusmahdollisuuksiensa myötä aiheesta on tullut aktiivinen tutkimusalue konenäön tutkimuksen piirissä. Väitöskirjassa tutkitaan matalan tason piirteiden käyttöä ihmisen liikkeen dynaamiikan kuvaamiseen ja tunnistamiseen. Työssä esitetään kaksi tekstuuripohjaista mentelmää ihmisen liikkeen kuvaamiseen ja viitekehys ballististen liikkeiden segmentointiin ja tunnistamiseen. Työssä esitetään kaksi tekstuuripohjaista menetelmää ihmisen liikkeen analysointiin. Ensimmäinen menetelmä käyttää esikäsittelynä ajallisia kuvamalleja ja kuvaa mallit paikallisilla binäärikuvioilla. Menetelmä laajennetaan myös tila-aika-avaruuteen. Dynaamiseen tekstuuriin perustuva menetelmä irroittaa paikalliset binäärikuviot tila-aika-avaruuden kolmelta ortogonaaliselta tasolta. Menetelmä ei vaadi ihmisen siluetin tarkkaa segmentointia kuvista, koska se on suunniteltu toimimaan suoraan kuvatiedon perusteella. Dynaamiseen tekstuuriin pohjautuvaa menetelmää sovelletaan myös henkilön tunnistamiseen kävelytyylin perusteella. Esitetyt menetelmät on kokeellisesti vahvistettu yleisesti käytetyillä ja julkisesti saatavilla olevilla tietokannoilla. Psykologiset tutkimukset ihmisen liikkumisesta osoittavat, että yleiset liikkeet, kuten kurkoittaminen ja iskeminen, ovat luonteeltaan ballistisia. Tässä työssä tarkastellaan ihmisen liikkeen ajallista segmentointia ja tunnistamista matalan tason liikepiirteistä hyödyntäen psykologisia havaintoja. Kokeelliset tulokset liikkeenkaappaus ja video aineistolla osoittavat menetelmän toimivan hyvin
Книги з теми "Texture description"
Spann, Michael. Texture description and segmentation in image processing. Birmingham: University of Aston. Department of Electrical and Electronic Engineering, 1985.
Знайти повний текст джерелаRao, A. Ravishankar. A Taxonomy for Texture Description and Identification. New York, NY: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-9777-9.
Повний текст джерелаRao, A. Ravishankar. A Taxonomy for Texture Description and Identification. New York, NY: Springer US, 1990.
Знайти повний текст джерелаRao, A. Ravishankar. A taxonomy for texture description and identification. New York: Springer-Verlag, 1990.
Знайти повний текст джерелаVanessa, Cowling, ed. West Coast: Landscape, people, food, texture. Cape Town: Struik, 2006.
Знайти повний текст джерелаB, Baker David, ed. Thick description and fine texture: Studies in the history of psychology. Akron, Ohio: University of Akron Press, 2003.
Знайти повний текст джерелаAl-Zalabieh, Abdullah Awad Eid. Wadi Rum: The charm of beauty and the texture of fancy. [Amman?]: Dar Al-Basheer, 2007.
Знайти повний текст джерелаLynn, Peterson J., ed. The Texas flowerscaper: A seasonal guide to bloom, height, color, and texture. Salt Lake City: Gibbs Smith, 1996.
Знайти повний текст джерелаLefkoşa tarihi kent dokusunda Sarayönü Meydanı oluşumu ve gelişimi: The formation and development of Sarayonu Square within the historical city texture of Nicosia. Lefkoşa (Cyprus): Işık Kitabevi Yayınları, 2008.
Знайти повний текст джерелаRhodes, Jeannie Frey. A sense of green: A city's changing texture : an interpretive black & white repeat photography exhibit of the Baton Rouge urban forest : Louisiana Arts and Science Center, October 28. 1997-January 4, 1998. [Baton Rouge]: The Center, 1997.
Знайти повний текст джерелаЧастини книг з теми "Texture description"
Della Ventura, Anna, Isabella Gagliardi, and Raimondo Schettini. "Indexing Color-Texture Image Patterns." In Image Description and Retrieval, 105–20. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-4825-6_5.
Повний текст джерелаde Ridder, Dick, Robert P. W. Duin, and Josef Kittler. "Texture Description by Independent Components." In Lecture Notes in Computer Science, 587–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-70659-3_61.
Повний текст джерелаSalvatella, Anna, Maria Vanrell, and Ramon Baldrich. "Subtexture Components for Texture Description." In Pattern Recognition and Image Analysis, 884–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-44871-6_102.
Повний текст джерелаRao, A. Ravishankar. "Computing oriented texture fields." In A Taxonomy for Texture Description and Identification, 17–58. New York, NY: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-9777-9_2.
Повний текст джерелаRao, A. Ravishankar. "Disordered textures." In A Taxonomy for Texture Description and Identification, 145–57. New York, NY: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-9777-9_5.
Повний текст джерелаRao, A. Ravishankar. "Compositional textures." In A Taxonomy for Texture Description and Identification, 158–76. New York, NY: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-9777-9_6.
Повний текст джерелаHuang, Xiaohua, Guoying Zhao, Xiaopeng Hong, Matti Pietikäinen, and Wenming Zheng. "Texture Description with Completed Local Quantized Patterns." In Image Analysis, 1–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38886-6_1.
Повний текст джерелаRao, A. Ravishankar. "Analyzing strongly ordered textures." In A Taxonomy for Texture Description and Identification, 126–44. New York, NY: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-9777-9_4.
Повний текст джерелаRao, A. Ravishankar. "Introduction." In A Taxonomy for Texture Description and Identification, 1–16. New York, NY: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-9777-9_1.
Повний текст джерелаRao, A. Ravishankar. "The analysis of oriented textures through phase portraits." In A Taxonomy for Texture Description and Identification, 59–125. New York, NY: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-9777-9_3.
Повний текст джерелаТези доповідей конференцій з теми "Texture description"
Kasparis, Takis, Nicolaos S. Tzannes, Mostafa A. Bassiouni, and Qing Chen. "Fractal-based multifeature texture description." In Munich '91 (Lasers '91), edited by Hatem N. Nasr. SPIE, 1991. http://dx.doi.org/10.1117/12.46061.
Повний текст джерела"Color description and texture analysis." In 2015 International Conference on Image Processing Theory, Tools and Applications (IPTA). IEEE, 2015. http://dx.doi.org/10.1109/ipta.2015.7367135.
Повний текст джерелаBen Haj Ayech, Marouane, and Hamid Amiri. "Texture description using statistical feature extraction." In 2016 2nd International Conference on Advanced Technologies for Signal and Image Processing (ATSIP). IEEE, 2016. http://dx.doi.org/10.1109/atsip.2016.7523072.
Повний текст джерелаQuan Pang, Cuirong Yang, Yingle Fan, and Ping Xu. "Texture Image Segmentation Based on Description Complexity." In 2007 IEEE International Conference on Control and Automation. IEEE, 2007. http://dx.doi.org/10.1109/icca.2007.4376882.
Повний текст джерелаManian, Vidya B., and Ramon E. Vasquez. "Genetic algorithm for texture description and classification." In AeroSense 2002, edited by Zia-ur Rahman, Robert A. Schowengerdt, and Stephen E. Reichenbach. SPIE, 2002. http://dx.doi.org/10.1117/12.477592.
Повний текст джерелаArdizzone, Edoardo, Alessandro Bruno, and Giuseppe Mazzola. "Copy-move forgery detection via texture description." In the 2nd ACM workshop. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1877972.1877990.
Повний текст джерелаZhang, Nuo, and Toshinori Watanabe. "Texture image description based on data compression." In 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2011). IEEE, 2011. http://dx.doi.org/10.1109/fskd.2011.6020004.
Повний текст джерелаHatipoglu, S., S. K. Mitra, and N. Kingsbury. "Image texture description using complex wavelet transform." In Proceedings of 7th IEEE International Conference on Image Processing. IEEE, 2000. http://dx.doi.org/10.1109/icip.2000.899472.
Повний текст джерелаPawlus, Pawel, Rafal Reizer, Michal Wieczorowski, and Grzegorz Krolczyk. "Parametric description of one-process surface texture." In 2021 6th International Conference on Nanotechnology for Instrumentation and Measurement (NanofIM). IEEE, 2021. http://dx.doi.org/10.1109/nanofim54124.2021.9737339.
Повний текст джерелаXu, Pengfei, Hongxun Yao, Rongrong Ji, Xiaoshuai Sun, and Xianming Liu. "A rotation and scale invariant texture description approach." In Visual Communications and Image Processing 2010, edited by Pascal Frossard, Houqiang Li, Feng Wu, Bernd Girod, Shipeng Li, and Guo Wei. SPIE, 2010. http://dx.doi.org/10.1117/12.863520.
Повний текст джерелаЗвіти організацій з теми "Texture description"
Wells, Aaron, Tracy Christopherson, Gerald Frost, Matthew Macander, Susan Ives, Robert McNown, and Erin Johnson. Ecological land survey and soils inventory for Katmai National Park and Preserve, 2016–2017. National Park Service, September 2021. http://dx.doi.org/10.36967/nrr-2287466.
Повний текст джерелаMa, Yue, and Felix Distel. Learning Formal Definitions for Snomed CT from Text. Technische Universität Dresden, 2013. http://dx.doi.org/10.25368/2022.193.
Повний текст джерела