Добірка наукової літератури з теми "Tesselations"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Tesselations".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Tesselations"
Crespo Osório, Filipa, Alexandra Paio, and Sancho Oliveira. "ORIGAMI TESSELATIONS." Boletim da Aproged, no. 34 (December 2018): 73–77. http://dx.doi.org/10.24840/2184-4933_2018-0034_0010.
Повний текст джерелаMalina, Roger F., and M. Emmer. "Symmetry and Tesselations." Leonardo 24, no. 1 (1991): 100. http://dx.doi.org/10.2307/1575501.
Повний текст джерелаMEES, ALISTAIR I. "DYNAMICAL SYSTEMS AND TESSELATIONS: DETECTING DETERMINISM IN DATA." International Journal of Bifurcation and Chaos 01, no. 04 (December 1991): 777–94. http://dx.doi.org/10.1142/s0218127491000579.
Повний текст джерелаSheilla Puspita, Cama Juli Rianingrum, and Agung Eko Budiwaspada. "MODUL DALAM DESAIN PATTERN MENGGUNAKAN TESSELLATIONS DAN PRINSIP GESTALT." Jurnal Seni dan Reka Rancang: Jurnal Ilmiah Magister Desain 5, no. 2 (May 23, 2023): 205–16. http://dx.doi.org/10.25105/jsrr.v5i2.16815.
Повний текст джерелаBrass, Peter. "On strongly normal tesselations." Pattern Recognition Letters 20, no. 9 (September 1999): 957–60. http://dx.doi.org/10.1016/s0167-8655(99)00063-x.
Повний текст джерелаKuiper, Nicolaas H. "Hyperbolic 4-manifolds and tesselations." Publications mathématiques de l'IHÉS 68, no. 1 (January 1988): 47–76. http://dx.doi.org/10.1007/bf02698541.
Повний текст джерелаBesterci, M. "Voronoi tesselations generated by cluster fields." Metal Powder Report 53, no. 7-8 (July 1998): 43. http://dx.doi.org/10.1016/s0026-0657(98)85105-9.
Повний текст джерелаWidiawati, Widiawati. "Desain Pembelajaran Menggunakan Tessellation Berbasis Pendekatan Saintifik pada Materi Translasi dan Refleksi." Jurnal Pendidikan Matematika (JUDIKA EDUCATION) 2, no. 2 (December 12, 2019): 80–90. http://dx.doi.org/10.31539/judika.v2i2.858.
Повний текст джерелаClifford, A., and R. Z. Goldstein. "Tesselations ofS2and equations over torsion-free groups." Proceedings of the Edinburgh Mathematical Society 38, no. 3 (October 1995): 485–93. http://dx.doi.org/10.1017/s0013091500019283.
Повний текст джерелаCapitaine, M., S. Coste, F. Gabriel, P. Maillard, and C. Mailler. "Random matrices and random graphs." ESAIM: Proceedings and Surveys 74 (November 2023): 137–57. http://dx.doi.org/10.1051/proc/202374137.
Повний текст джерелаДисертації з теми "Tesselations"
Lyambabaje, Alexandre. "Tesselations polygonales du plan : application en biometrie." Rennes 1, 1992. http://www.theses.fr/1992REN10052.
Повний текст джерелаHemsley, Ross. "Méthodes probabilistes pour l'analyse des algorithmes sur les tesselations aléatoires." Thesis, Nice, 2014. http://www.theses.fr/2014NICE4143/document.
Повний текст джерелаIn this thesis, we leverage the tools of probability theory and stochastic geometry to investigate the behavior of algorithms on geometric tessellations of space. This work is split between two main themes, the first of which is focused on the problem of navigating the Delaunay tessellation and its geometric dual, the Voronoi diagram. We explore the applications of this problem to point location using walking algorithms and the study of online routing in networks. We then propose and investigate two new algorithms which navigate the Delaunay triangulation, which we call Pivot Walk and Cone Walk. For Cone Walk, we provide a detailed average-case analysis, giving explicit bounds on the properties of the worst possible path taken by the algorithm on a random Delaunay triangulation in a bounded convex region. This analysis is a significant departure from similar results that have been obtained, due to the difficulty of dealing with the complex dependence structure of localized navigation algorithms on the Delaunay triangulation. The second part of this work is concerned with the study of extremal properties of random tessellations. In particular, we derive the first and last order-statistics for the inballs of the cells in a Poisson line tessellation. This result has implications for algorithms involving line tessellations, such as locality sensitive hashing. As a corollary, we show that the cells minimizing the area are triangles
Sammari, Hédia. "Développement d’une méthode d’automate cellulaire basé sur une tessellation irrégulière et hiérarchique pour la simulation des processus spatiotemporels." Doctoral thesis, Université Laval, 2014. http://hdl.handle.net/20.500.11794/25793.
Повний текст джерелаGeographic information systems (GIS) are widely used to represent, manage and analyse spatial data in many disciplines including geosciences, agriculture, forestry, meteorology and oceanography. However, despite recent advances in GIS technologies, they are still limited when it comes to representation and simulation of spatiotemporal processes. This research work, deals with a theoretical, conceptual and practical framework which aims to improve the representation of dynamic continuous processes. It aims especially to improve GIS capabilities by developing a CA based on a hierarchical irregular tessellation which is able to take into account the main characteristics of these processes. The exploration of the cellular automata potential to simulate and represent dynamic continuous processes regarding their irregular and hierarchic characteristics is the subject of this work where an application in the hydrologic field is established. Our specific objectives are 1) to build an irregular and hierarchic grid that can be used to represent spatiotemporal processes, 2) to simulate those processes with a cellular automata operating on this grid. We give details about the irregular geometric grid based on a Voronoï Diagram, the characteristics of a specific oriented neighbourhood and the transition rules that are governing the cells update. In addition, we discuss the hierarchical perspective of the build lattice that is essential for easy move between different spatial scales. We explain our methodology of data selection in order to generate the spatial levels of representation by demonstrating the used selection algorithms. This facilitates the representation of spatial dynamic phenomena and contributes to the better understanding of the complex behaviour of the whole system at different levels of details. We also present the data structures and general functioning of the whole simulation system. We finally, validate our framework by simulating the water flow process in a specific watershed in the region of Montmorency Forest of Quebec where in situ data are available. To validate our simulation results we compare them with measured data.
St-Onge, David. "Conception d'un mécanisme déployable à grand ratio d'expansion et de son système d'actionnement par roues d'inertie pour applications spatiales." Doctoral thesis, Université Laval, 2016. http://hdl.handle.net/20.500.11794/27158.
Повний текст джерелаThis thesis presents the design of deployable mechanisms for space applications and means of actuation for the control of their deployment and the attitude control of their satellite base. For this purpose, the triangular geometry is selected as a planar deployable basic unit to tessellate any surface. Each such module needs to achieve a high expansion ratio. From the literature, planar mechanisms based only on rigid links and developed for deployable Platonic solids are optimized and adapted for open geometries such as a cupola. The resulting expansion ratio is above 5, but the corresponding prototype shows instability of the deployment movement close to the retracted position. The paradigm of power transmission is revised to reduce the sensitivity of the mechanism to its internal transmission angles. The novel solution, based on timing belts, can achieve expansion ratios above 20 in particular configurations. The influence of the principal geometric parameters of design on the expansion ratio is discussed to allow the derivation of a simple optimization relation. The optimization can be performed to adapt this mechanism to different contexts of application. In order to further improve the compactness of the mechanism for transport purposes, a novel joint is presented, allowing two successive phases of rotation on non parallel axes. This way the triangular units can be piled before being deployed. The deployment of a large surface in orbit is prone to impact the spacecraft attitude and maybe its course. Hence, control strategies are proposed to manage these effects. Since the deployment targets a large surface, its edges are far from the centre of mass and are advantageous to induce torque from the linear motion of point masses. The dynamic equations are derived based on the conservation of the angular momentum and the resulting matrix form of the equation set is used to simulate the system and assess its performances. The results validate the strategy for orientation control without obstruction of the spacecraft central space, but a flywheel of equivalent mass still outperforms this design. Redundant actuation by flywheel on each link of a multibody mechanism composed only of passive revolute joints is presented. The dynamic equations are derived for a two-body architecture and a four-bar planar mechanism. The closed-loop control of the four-bar mechanism is using a PD controller to achieve the control of a scissor mechanism unit. The results are then extended to a four-bar spherical mechanism and its simulation demonstrates the potential of this strategy for the control of both the configuration and the orientation of a spatial mechanism. A two-body prototype, linked by a passive revolute joint, is manufactured and controlled with visual tracking feedback. The results confirm that the system is controllable in orientation and configuration. This thesis ends with a case study for the application of the main components developed in this research. The capture of small to medium sized orbital debris is introduced. The triangular deployable unit based on timing belts is replicated in order to create a cupola of hundreds of metres to catch and slow down the debris. The parameters of such a mission are detailed as well as the flywheel potential to control the spacecraft attitude on top of the mechanism deployment. It is estimated that almost 2000 pieces of debris can be removed from the orbit at 819 km altitude in a one year mission.
Fleischer, Frank. "Analysis and fitting of random tessellation models applications in telecommunication and cell biology." [S.l. : s.n.], 2007. http://nbn-resolving.de/urn:nbn:de:bsz:289-vts-59419.
Повний текст джерелаedu, Laurent@math berkeley. "Growth Series and Random Walks on Some Hyperbolic Graphs." ESI preprints, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi1075.ps.
Повний текст джерелаRodrigues, Andre Montes. "Modelagem e visualização de microestruturas digitais de materiais policristalinos monofásicos." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/85/85134/tde-25062014-132720/.
Повний текст джерелаThe main goal of this work is to create a technological foundation for digital synthesis and virtual visualization of single-phase polycrystalline materials microstrutures, aiming to offer low cost software and methodologies to materials science researchers and alike. Several methods, applications, libraries and algorithms were tested and the most appropriate were selected for further exploration. The chosen microstructural synthesis technique uses newtonian particle packing simulation, followed by a Voronoi-based tesselation. This simple approach were put to test using a real material sample. The sample were digitally built and meaningfull parameters like grain size distribution, edges per face and mean number of neighbours were replicated with acceptable precision. Regarding visualization, the most relevant issue was the specification of a computationally scalable method based on proven cognitive principles, capable to deal with a huge amount of information and to support efficient knowledge extraction from microstructural models. The multiscale approach has proved to be the most suited for models that spans several scales in space, allowing computers to store and display large quantities of data and to manage the tradeoff between quality and quantity in the rendering process. Traditional visualization techniques were tested as well and section visualization has proved to be paramount for internal model visualization, as it is for stereological microstructural analysis.
Prudhomme, Nicolas. "Prédiction des résidus clés du repliement et classification structurale de fragments protéiques en interaction." Paris 6, 2009. https://tel.archives-ouvertes.fr/tel-00445545.
Повний текст джерелаDulin, Fabienne. "Exploration des caractéristiques tridimensionnelles des amas protéiques hydrophobes issus du formalisme "Hydrophobic Cluster Analysis" (HCA) : modélisation de formes oligomériques solubles du peptide Aβ impliqué dans la maladie d'Alzheimer, et identification d'un 'point chaud" commun à différentes protéines amyloïdes". Paris 6, 2006. http://www.theses.fr/2006PA066465.
Повний текст джерелаPrudhomme, Nicolas. "Prédiction des résidus impliqués dans le noyau du repliement et classification structurale de fragments protéiques en interaction." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2009. http://tel.archives-ouvertes.fr/tel-00445545.
Повний текст джерелаКниги з теми "Tesselations"
Kenney, Margaret. Tesselations using LOGO. Palo Alto, CA: Dale Seymour Publications, 1987.
Знайти повний текст джерелаClassical Tesselations and Three Manifolds. Springer Verlag, 1987.
Знайти повний текст джерелаFathauer, Robert. Tessellations: Mathematics, Art, and Recreation. CRC Press LLC, 2020.
Знайти повний текст джерелаFathauer, Robert. Tessellations: Mathematics, Art, and Recreation. CRC Press LLC, 2020.
Знайти повний текст джерелаFathauer, Robert. Tessellations: Mathematics, Art, and Recreation. CRC Press LLC, 2020.
Знайти повний текст джерелаFathauer, Robert. Tessellations: Mathematics, Art, and Recreation. A K Peters/CRC Press, 2020.
Знайти повний текст джерелаTessellations: Mathematics, Art, and Recreation. CRC Press LLC, 2020.
Знайти повний текст джерелаPublishing, C2C C2C. Geometric Shapes and Patterns Coloring Book: An Anti-Stress Coloring Book for Adults, Tesselations Coloring Book. Independently Published, 2021.
Знайти повний текст джерелаGeometric Shapes and Patterns Coloring Book: Fun Relaxing Coloring Book for Adults, Tesselations Patterns Coloring Book. Blurb, 2020.
Знайти повний текст джерелаGeometric Shapes and Patterns Coloring Book: An Anti-Stress Coloring Book for Adults, Tesselations Coloring Book. Isabella Hart, 2020.
Знайти повний текст джерелаЧастини книг з теми "Tesselations"
Couprie, Michel, and Gilles Bertrand. "Tesselations by Connection in Orders." In Discrete Geometry for Computer Imagery, 15–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-44438-6_2.
Повний текст джерелаAloupis, Greg, Hebert Pérez-Rosés, Guillermo Pineda-Villavicencio, Perouz Taslakian, and Dannier Trinchet-Almaguer. "Fitting Voronoi Diagrams to Planar Tesselations." In Lecture Notes in Computer Science, 349–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-45278-9_30.
Повний текст джерелаWalther, G. "Experimental Mathematics — Tesselations of Convex Polygons in a Hexagonal Lattice." In Topics in Combinatorics and Graph Theory, 713–25. Heidelberg: Physica-Verlag HD, 1990. http://dx.doi.org/10.1007/978-3-642-46908-4_81.
Повний текст джерелаShekhar, Shashi, and Hui Xiong. "Voronoi Tesselation." In Encyclopedia of GIS, 1241. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-35973-1_1464.
Повний текст джерелаAitchison, Alastair. "Triangulation and Tesselation." In Pro Spatial with SQL Server 2012, 387–418. Berkeley, CA: Apress, 2012. http://dx.doi.org/10.1007/978-1-4302-3492-0_15.
Повний текст джерелаWatanabe, Y., M. Ito, T. Soma, and T. Betsumiya. "Nonperiodic Tesselation with Eight-fold Rotational Symmetry." In Science on Form, 471–77. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3757-4_55.
Повний текст джерела"Tesselations." In Encyclopedia of Color Science and Technology, 1197. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4419-8071-7_100364.
Повний текст джерела"Delone Tesselations." In Encyclopedia of Computer Graphics and Games, 559. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-23161-2_300323.
Повний текст джерела"Delaunay Tesselations." In Encyclopedia of Computer Graphics and Games, 555. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-23161-2_300320.
Повний текст джерелаGiannetti, Luisa. "Geometry and Pastry Making/Tesselations and Decorations." In Advances in Game-Based Learning, 464–92. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-2426-7.ch024.
Повний текст джерелаТези доповідей конференцій з теми "Tesselations"
Levy, Bruno. "Meshing Surfaces and Volumes with Centroidal Voronoi Tesselations." In 2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering (ISVD). IEEE, 2011. http://dx.doi.org/10.1109/isvd.2011.41.
Повний текст джерелаFroumentin, Max, and Eric Varlet. "Dynamic implicit surface tesselation." In the ACM symposium. New York, New York, USA: ACM Press, 1997. http://dx.doi.org/10.1145/261135.261151.
Повний текст джерелаGenovesio, Auguste. "Active vector graph for regularized tesselation." In 2009 16th IEEE International Conference on Image Processing ICIP 2009. IEEE, 2009. http://dx.doi.org/10.1109/icip.2009.5414154.
Повний текст джерелаGiglmayr, Josef. "Tesselation of 3D by waveguides: random walk and computation." In International Symposium on Optical Science and Technology, edited by Khan M. Iftekharuddin and Abdul Ahad S. Awwal. SPIE, 2001. http://dx.doi.org/10.1117/12.449648.
Повний текст джерелаGenovesi, Simone, and Francesco Alessio Dicandia. "Penrose Tesselation Strategy for Limited Field of View Array Optimization." In 2023 IEEE Conference on Antenna Measurements and Applications (CAMA). IEEE, 2023. http://dx.doi.org/10.1109/cama57522.2023.10352732.
Повний текст джерелаTolman, Sean S., Spencer P. Magleby, and Larry L. Howell. "Elastic Energy Absorption of Origami-Based Corrugations." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67081.
Повний текст джерелаEscobar, Iris Pereira, Matheus Boscardini Neto, and Newton Pereira dos Santos. "Use of Delaunay tesselation on the construction of geoidal map for Rio de Janeiro State." In 10th International Congress of the Brazilian Geophysical Society & EXPOGEF 2007, Rio de Janeiro, Brazil, 19-23 November 2007. Society of Exploration Geophysicists and Brazilian Geophysical Society, 2007. http://dx.doi.org/10.1190/sbgf2007-361.
Повний текст джерелаPereira Escobar, Iris, Matheus Boscardini Neto, and Newton Pereira dos Santos. "Use of Delaunay tesselation on the construction of geoidal map for Rio de Janeiro State." In 10th International Congress of the Brazilian Geophysical Society. European Association of Geoscientists & Engineers, 2007. http://dx.doi.org/10.3997/2214-4609-pdb.172.sbgf0345_07.
Повний текст джерелаParameswaran, Ramesh, and Phillip R. White. "Automatic Surface Generation From Wireframe Data Enhancements." In ASME 1991 Design Technical Conferences. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/detc1991-0125.
Повний текст джерелаKazimierczak, Tomasz A. "Newtonian kinematical backreaction in cosmological N-body simulations with Delaunay Tesselation: “Zero test” and scale dependence." In Proceedings of the MG14 Meeting on General Relativity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813226609_0272.
Повний текст джерела