Добірка наукової літератури з теми "Temperature coupling"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Temperature coupling".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Temperature coupling"
Hu, Zheng, Yu-Chen Wang, and Xi-Wen Hou. "Thermal quantum correlations in a two-qubit Heisenberg XYZ model with different magnetic fields." International Journal of Quantum Information 13, no. 06 (September 2015): 1550046. http://dx.doi.org/10.1142/s021974991550046x.
Повний текст джерелаZhou, Ye, and Su-Ting Han. "Room-temperature magnetoelastic coupling." Science 367, no. 6478 (February 6, 2020): 627–28. http://dx.doi.org/10.1126/science.aba6642.
Повний текст джерелаFazel, Mohamadreza, Behrouz Mirza, and Seyed Ali Hosseini Mansoori. "Black hole temperature: Minimal coupling vs conformal coupling." Annals of Physics 344 (May 2014): 232–52. http://dx.doi.org/10.1016/j.aop.2014.02.020.
Повний текст джерелаOPASIAK, Tadeusz, Jerzy MARGIELEWICZ, Damian GĄSKA, and Tomasz HANISZEWSKI. "INFLUENCE OF CHANGES IN THE WORKING TEMPERATURE OF FLEXIBLE COUPLINGS ON THEIR STIFFNESS CHARACTERISTICS." Transport Problems 17, no. 4 (December 1, 2022): 177–86. http://dx.doi.org/10.20858/tp.2022.17.4.15.
Повний текст джерелаLounila, Juhani, Yrjö Hiltunen, Kari Tuppurainen, Anja Pulkkinen, and Reino Laatikainen. "Solvent dependence of rotational energetics and formyl-proton long-range spin-spin coupling behavior of 2,6-dichloro- and 2,6-dinitrobenzaldehydes using dipolar couplings and temperature dependence of long-range couplings." Canadian Journal of Chemistry 77, no. 11 (November 1, 1999): 1788–96. http://dx.doi.org/10.1139/v99-198.
Повний текст джерелаShapiro, R. S., and Leah E. Cowen. "Coupling temperature sensing and development." Virulence 1, no. 1 (January 2010): 45–48. http://dx.doi.org/10.4161/viru.1.1.10320.
Повний текст джерелаDonoghue, John F., Barry R. Holstein, and R. W. Robinett. "Gravitational coupling at finite temperature." Physical Review D 34, no. 4 (August 15, 1986): 1208–9. http://dx.doi.org/10.1103/physrevd.34.1208.
Повний текст джерелаGUCZI, LÁSZLÓ, RUTGER A. VAN SANTEN, and K. V. SARMA. "Low-Temperature Coupling of Methane." Catalysis Reviews 38, no. 2 (May 1996): 249–96. http://dx.doi.org/10.1080/01614949608006459.
Повний текст джерелаNakamura, Keiichi, Hitoshi Okubo, and Masahiko Yamaguchi. "Low Temperature Sonogashira Coupling Reaction." Synlett 1999, no. 5 (May 1999): 549–50. http://dx.doi.org/10.1055/s-1999-2684.
Повний текст джерелаEERDUNCHAOLU, WEI XIN, and YUWEI ZHAO. "INFLUENCE OF LATTICE VIBRATION ON THE GROUND STATE OF MAGNETOPOLARON IN A PARABOLIC QUANTUM DOT." Modern Physics Letters B 24, no. 27 (October 30, 2010): 2705–12. http://dx.doi.org/10.1142/s021798491002505x.
Повний текст джерелаДисертації з теми "Temperature coupling"
Smith, Paul James. "Palladium catalysed Suzuki cross-coupling reactions in ambient temperature ionic liquids." Thesis, Imperial College London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.405785.
Повний текст джерелаPonton, Lisa M. "Coupling Temperature Control with Electrochemically Modulated Liquid Chromatography Fundamental Aspects and Applications." Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Science ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2004. http://www.osti.gov/servlets/purl/835378-qpyPNX/webviewable/.
Повний текст джерелаPublished through the Information Bridge: DOE Scientific and Technical Information. "IS-T 1944" Lisa M. Ponton. 12/19/2004. Report is also available in paper and microfiche from NTIS.
Henrichs, Leonard Frederic. "Magnetoelectric coupling in single-phase multiferroics at room temperature via scanning probe microscopy." Thesis, University of Leeds, 2015. http://etheses.whiterose.ac.uk/11905/.
Повний текст джерелаWalker, Nan Delene. "Sea surface temperature-rainfall relationships and associated ocean-atmosphere coupling mechanisms in the southern African region." Doctoral thesis, University of Cape Town, 1989. http://catalog.hathitrust.org/api/volumes/oclc/32830668.html.
Повний текст джерелаNewhouse-Illige, T., Y. H. Xu, Y. H. Liu, S. Huang, H. Kato, C. Bi, M. Xu, B. J. LeRoy, and W. G. Wang. "Temperature dependence of interlayer coupling in perpendicular magnetic tunnel junctions with GdO X barriers." AMER INST PHYSICS, 2018. http://hdl.handle.net/10150/627087.
Повний текст джерелаFang, Zhou. "Current-induced torques in ferromagnets at room temperature." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/268099.
Повний текст джерелаAnderson, Nolan Alan. "Coupling RELAP5-3D and Fluent to analyze a Very High Temperature Reactor (VHTR) outlet plenum." Texas A&M University, 2006. http://hdl.handle.net/1969.1/4160.
Повний текст джерелаJason, Johan. "Fibre-Optic Displacement and Temperature Sensing Using Coupling Based Intensity Modulation and Polarisation Modulation Techniques." Doctoral thesis, Mittuniversitetet, Avdelningen för elektronikkonstruktion, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-18964.
Повний текст джерелаFiberoptiska sensorer används för mätning av ett antal olika fysikaliska parametrar eller för händelsedetektering i larm- och säkerhetssystem. I miljöer med elektromagnetiska störningar, i andra besvärliga miljöer där elektronik inte fungerar samt i tillämpningar där distribuerade sensorer är att föredra, har fiberoptiska lösningar funnit naturliga applikationer. I vissa fall har de ersatt konventionella elektroniska sensorer på grund av bättre prestanda och tillförlitlighet, medan de i andra sammanhang har haft mindre framgång huvudsakligen på grund av den i många fall högre kostnaden för fiberoptiska sensorsystem. Intensitetsmodulerade fiberoptiska sensorer kräver normalt endast billiga utläsningssystem huvudsakligen baserade på lysdioder och fotodioder. Principen för sådana sensorer baserade på koppling mellan fibrer är mycket enkel, och denna typ av sensorer har haft tillämpningar under en lång tid, främst inom mätning av positionsförändring och vibrationer. För distribuerade intensitetsmodulerade sensorer har system baserade på optisk tidsdomän-reflektometer (OTDR) och skräddarsydda sensorkablar funnit tillämpningar i detektion av värme/brand, vattenläckage och kolvätebaserade vätskor. I denna avhandling presenteras, simuleras, testas och utvärderas praktiskt några nya koncept för kopplingsbaserade intensitetsmodulerade fiberoptiska sensorer. Från ett lågkostnads- och standardkomponentperspektiv föreslås och analyseras alternativa lösningar för förbättrad prestanda. Utveckling och installation av en temperatursensor för en industriell tillämpning, innehållande aspekter på sensormultiplexering och nätverksbyggande, behandlas. OTDR-teknik används som en effektiv metod för multiplexering av flera kopplingsbaserade sensorer, och installation av sensornätverk genom användning av blåsfiberteknik och mikrodukter föreslås som ett flexibelt och kostnadseffektivt alternativ till traditionell kabelinstallation. Som en lösning på förekommande upplinjeringsproblem för kopplingsbaserade sensorer, föreslås en ny sensorkonfiguration baserad på koppling mellan en fiber och en multikärnefiber/fiberarray och med ett bildsensorsystem för detektering. Med detta koncept kan ett högpresterande, upplinjeringsfritt sensorsystem med ett stort mätområde åstadkommas. Sensorsystemets prestanda har analyserats teoretiskt med kompletta systemsimuleringar, och en experimentell uppställning baserad på standardfiber och en kamera av standardtyp har gjorts. Simuleringar av möjliga felbidrag visar att systemets experimentella prestanda främst begränsas av skillnader mellan den modellerade och den verkliga optiska effektfördelningen. En förbättrad modell för effektfördelningen föreslås och utvärderas experimentellt. Det visas att prestanda är möjlig att förbättra ner mot den teoretiska gräns på 1 μm som erhållits vid systemsimuleringar. Möjligheterna att använda fyllda hålfibrer och polarisationskänslig mätning för detektering av temperaturgränser studeras i syfte att komplettera befintliga fiberoptiska värmedetektorsystem. Förändringen i fiberns dubbelbrytning vid övergångstemperaturen mellan vätske- och fast fas för ämnet i hålen visas och bestäms experimentellt för hålfibrer fyllda med vattenlösningar respektive en metallegering, och resultaten understöds också av simuleringar. En punktsensor för temperaturdetektering baserad på denna princip föreslås. Vidare visas principerna för distribuerad detektering genom registrering av förändringen i dubbelbrytning med polarisations-OTDR (POTDR). Det visas att OTDR-teknik med hög spatial upplösning behövs för övervakning av de studerade fibrerna, och hålfibrer utformade med lägre dubbelbrytning föreslås för framtida studier av tillämpningen.
Tanabe, Mikio. "Longitudinal and transverse coupling of the beam temperature caused by the laser cooling of 24Mg[+]." 京都大学 (Kyoto University), 2008. http://hdl.handle.net/2433/136874.
Повний текст джерелаHellgren, Mikael. "Pressure oscillations over Scandinavia during the last century and coupling with regional temperature and precipitation." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 1998. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-392448.
Повний текст джерелаКниги з теми "Temperature coupling"
Hightower, Tess. 10 ways to take your relationship temperature: An empirically based interactive workbook to help couples create conscious coupling. Concord, CA: Mustard Seed Press, 2002.
Знайти повний текст джерелаHart, David P. Earth-coupled heat transfer: Offers engineers and other practitioners of applied physics the information to solve heat transfer problems as they apply to earth-coupling. [Dublin, OH: National Water Well Association, 1986.
Знайти повний текст джерелаVallée, Charlotte. Long-term evolution and coupling of the boundary layers in the STRATUS deck regions of the eastern Pacific (STRATUS): Data report. Woods Hole, Mass: Upper Ocean Processes Group, WHOI, 2002.
Знайти повний текст джерелаVallée, Charlotte. Long-term evolution and coupling of the boundary layers in the STRATUS deck regions of the eastern Pacific (STRATUS): Data report. Woods Hole, Mass: Upper Ocean Processes Group, WHOI, 2002.
Знайти повний текст джерелаAlexandrov, Alexandre S. Strong-Coupling Theory of High-Temperature Superconductivity. Cambridge University Press, 2013.
Знайти повний текст джерелаAlexandrov, Alexandre S. Strong-Coupling Theory of High-Temperature Superconductivity. Cambridge University Press, 2013.
Знайти повний текст джерелаAlexandrov, Alexandre S. Strong-Coupling Theory of High-Temperature Superconductivity. Cambridge University Press, 2013.
Знайти повний текст джерелаAlexandrov, Alexandre S. Strong-Coupling Theory of High-Temperature Superconductivity. Cambridge University Press, 2013.
Знайти повний текст джерелаKavokin, Alexey V., Jeremy J. Baumberg, Guillaume Malpuech, and Fabrice P. Laussy. Strong Coupling: Polariton Bose Condensation. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198782995.003.0008.
Повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. Test program, helium II, orbital resupply coupling: Final report. [Boulder, Colo.]: Ball Aerospace Systems Group, Ball Corp., 1991.
Знайти повний текст джерелаЧастини книг з теми "Temperature coupling"
Zhang, Wentao. "Nodal Electron Coupling in the Bi2Sr2Ca1Cu2O8+δ." In Photoemission Spectroscopy on High Temperature Superconductor, 65–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32472-7_4.
Повний текст джерелаKresin, Vladimir Z., and Stuart A. Wolf. "The Effects of Strong Coupling. Critical Temperature." In Fundamentals of Superconductivity, 69–83. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-2507-7_6.
Повний текст джерелаNarozhny, B. N. "Theory of Superconducting Fluctuations in the Strong Coupling Model." In Fluctuation Phenomena in High Temperature Superconductors, 369–76. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5536-6_30.
Повний текст джерелаGary, S. Peter. "An upper bound for the proton temperature anisotropy." In Cross‐Scale Coupling in Space Plasmas, 13–21. Washington, D. C.: American Geophysical Union, 1995. http://dx.doi.org/10.1029/gm093p0013.
Повний текст джерелаXu, Liu-Jun, and Ji-Ping Huang. "Theory for Diffusive Fizeau Drag: Willis Coupling." In Transformation Thermotics and Extended Theories, 207–17. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5908-0_15.
Повний текст джерелаBulut, Nejat. "Weak Coupling Analysis of Spin Fluctuations in Layered Cuprates." In Dynamics of Magnetic Fluctuations in High-Temperature Superconductors, 97–109. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-7490-9_8.
Повний текст джерелаFerreira, J. A., Paula de Oliveira, and Elisa Silveira. "Coupling Temperature with Drug Diffusion: A Second Order Approximation." In Differential and Difference Equations with Applications, 427–40. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56323-3_33.
Повний текст джерелаSaravanan, R., and Ping Chang. "Thermodynamic Coupling and Predictability of Tropical Sea Surface Temperature." In Earth's Climate, 171–80. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/147gm10.
Повний текст джерелаParola, Alberto, Sandro Sorella, Michele Parrinello, and Erio Tosatti. "Strong Coupling Regime in the Hubbard Model at Low Densities." In Dynamics of Magnetic Fluctuations in High-Temperature Superconductors, 255–59. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-7490-9_25.
Повний текст джерелаZhang, Hao-Lan, Yuan-Qi Zhai, and Yan-Zhen Zheng. "Rationalization of Room-Temperature Single-Molecule Toroics via Exchange Coupling." In Single Molecule Toroics, 107–31. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11709-1_4.
Повний текст джерелаТези доповідей конференцій з теми "Temperature coupling"
Jarlborg, T. "Spin-Phonon Coupling in High-Tc Copper Oxides." In LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354828.
Повний текст джерелаCook, John W. "Magnetic fields, oscillations, and heating in the quiet sun temperature minimum region." In Electromechanical Coupling of the Solar Atmosphere. AIP, 1992. http://dx.doi.org/10.1063/1.42874.
Повний текст джерелаMcQueeney, R. J., and J. S. Sarrao. "Evidence for strong electron-lattice coupling in La[sub 2−x]Sr[sub x]NiO[sub 4]." In High temperature superconductivity. AIP, 1999. http://dx.doi.org/10.1063/1.59627.
Повний текст джерелаBradley, D. I., S. N. Fisher, A. M. Guénault, R. P. Haley, G. R. Pickett, P. Skyba, V. Tsepelin, and R. C. V. Whitehead. "Coupling between Solid 3He on Aerogel and Superfluid 3He in the Low Temperature Limit." In LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354684.
Повний текст джерелаKitano, H., K. Ota, and A. Maeda. "Superconducting Cavity Resonator With A Metallic Tip For Realizing Strong Coupling Between Superconducting Qubits And Microwave Photons." In LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2355015.
Повний текст джерелаAlexandrov, A. S. "Strong-coupling theory of high-temperature superconductivity." In Fifth training course in the physics of correlated electron systems and high-Tc superconductors. AIP, 2001. http://dx.doi.org/10.1063/1.1398135.
Повний текст джерелаBao, Huayu, Tingyun Wang, and Yuqing Shen. "High-sensitivity coupling evanescent wave temperature sensor." In Photonics Asia 2004, edited by Yun-Jiang Rao, Osuk Y. Kwon, and Gang-Ding Peng. SPIE, 2005. http://dx.doi.org/10.1117/12.574814.
Повний текст джерелаPelton, Matthew. "Room-Temperature Strong Coupling to Plasmonic Nanocavities." In Laser Science. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/ls.2021.lth2e.2.
Повний текст джерелаSchaich, David, Anna Hasenfratz, and Enrico Rinaldi. "Finite-Temperature Study of Eight-Flavor SU(3) Gauge Theory." In Sakata Memorial Workshop on Origin of Mass and Strong Coupling Gauge Theories. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813231467_0051.
Повний текст джерелаLu, Guangfeng, Xudong Yu, Xuezhi Dai, and Gao Na. "Temperature and coupling field analysis of ring resonator." In Optical Design and Engineering VII, edited by Laurent Mazuray, Rolf Wartmann, and Andrew P. Wood. SPIE, 2018. http://dx.doi.org/10.1117/12.2309895.
Повний текст джерелаЗвіти організацій з теми "Temperature coupling"
Kruer, W. Laser Plasma Coupling for High Temperature Hohlraums. Office of Scientific and Technical Information (OSTI), November 1999. http://dx.doi.org/10.2172/793933.
Повний текст джерелаPonton, Lisa M. Coupling Temperature Control with Electrochemically Modulated Liquid Chromatography: Fundamental Aspects and Applications. Office of Scientific and Technical Information (OSTI), December 2004. http://dx.doi.org/10.2172/835378.
Повний текст джерелаPyrmak, Bill. Low-Energy, Low-Cost Ethylene Production by Low-Temperature Oxidative Coupling of Methane. Office of Scientific and Technical Information (OSTI), March 2019. http://dx.doi.org/10.2172/1843914.
Повний текст джерелаRadaelli, Guido, Gaurav Chachra, and Divya Jonnavittula. Low-Energy, Low-Cost Production of Ethylene by Low- Temperature Oxidative Coupling of Methane. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1414280.
Повний текст джерелаHedden, Abigail S., Charles C. Dietlein, and David A. Wikner. Effects of Cylindrical Chopper Geometry on Calculating Power Coupling Efficiency and Noise Equivalent Temperature Difference. Fort Belvoir, VA: Defense Technical Information Center, January 2011. http://dx.doi.org/10.21236/ada535781.
Повний текст джерелаQin, Yueyue. Climate Change Assessment in Columbia River Basin (CRB) Using Copula Based on Coupling of Temperature and Precipitation. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2309.
Повний текст джерелаDingreville, Remi, Edward Bielejec, Elton Chen, Deo, Kim, Spearot, Jacob Startt, et al. Multi-Resolution Characterization of the Coupling Effects of Molten Salts, High Temperature and Irradiation on Intergranular Fracture. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1821254.
Повний текст джерелаC. B. Davis, C. H. Oh, R. B. Barner, and D. F. Wilson. Thermal-Hydraulic Analyses of Heat Transfer Fluid Requirements and Characteristics for Coupling A Hydrogen Production Plant to a High-Temperature Nuclear Reactor. Office of Scientific and Technical Information (OSTI), June 2005. http://dx.doi.org/10.2172/910966.
Повний текст джерелаBanin, Amos, Joseph Stucki, and Joel Kostka. Redox Processes in Soils Irrigated with Reclaimed Sewage Effluents: Field Cycles and Basic Mechanism. United States Department of Agriculture, July 2004. http://dx.doi.org/10.32747/2004.7695870.bard.
Повний текст джерела