Добірка наукової літератури з теми "Temperature and RH sensors"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Temperature and RH sensors".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Temperature and RH sensors"

1

Ivanov, I. I., A. M. Baranov, V. A. Talipov, S. M. Mironov, I. V. Kolesnik, and K. S. Napolskii. "DEVELOPMENT OF EFFECTIVE SENSORS FOR DETECTING PRE-EXPLOSIVE H2 CONCENTRATIONS." NAUCHNOE PRIBOROSTROENIE 31, no. 3 (August 31, 2021): 25–36. http://dx.doi.org/10.18358/np-31-3-i2536.

Повний текст джерела
Анотація:
We studied the response of catalytic sensors to hydrogen with various types of platinum-group catalysts (Pt, Pd, Ir, Rh, Pt+Pd) in the pre-explosive concentration range. Temperature dependences of sensory response are analysed. Dependences of the sensory response on the applied voltage demonstrates hysteresis behavior that can be explained by the partial transition of the oxides of the platinum group metals into the metallic phase at temperatures above 500 °С and the reverse oxidation of metals if temperature is below 400 °С. Catalytic sensors with Ir and Rh catalysts are more preferable for practical use in the detection of hydrogen.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Li, Hongyong, Yujiao Zhu, Yong Zhao, Tianshu Chen, Ying Jiang, Ye Shan, Yuhong Liu, et al. "Evaluation of the Performance of Low-Cost Air Quality Sensors at a High Mountain Station with Complex Meteorological Conditions." Atmosphere 11, no. 2 (February 19, 2020): 212. http://dx.doi.org/10.3390/atmos11020212.

Повний текст джерела
Анотація:
Low-cost sensors have become an increasingly important supplement to air quality monitoring networks at the ground level, yet their performances have not been evaluated at high-elevation areas, where the weather conditions are complex and characterized by low air pressure, low temperatures, and high wind speed. To address this research gap, a seven-month-long inter-comparison campaign was carried out at Mt. Tai (1534 m a.s.l.) from 20 April to 30 November 2018, covering a wide range of air temperatures, relative humidities (RHs), and wind speeds. The performance of three commonly used sensors for carbon monoxide (CO), ozone (O3), and particulate matter (PM2.5) was evaluated against the reference instruments. Strong positive linear relationships between sensors and the reference data were found for CO (r = 0.83) and O3 (r = 0.79), while the PM2.5 sensor tended to overestimate PM2.5 under high RH conditions. When the data at RH >95% were removed, a strong non-linear relationship could be well fitted for PM2.5 between the sensor and reference data (r = 0.91). The impacts of temperature, RH, wind speed, and pressure on the sensor measurements were comprehensively assessed. Temperature showed a positive effect on the CO and O3 sensors, RH showed a positive effect on the PM sensor, and the influence of wind speed and air pressure on all three sensors was relatively minor. Two methods, namely a multiple linear regression model and a random forest model, were adopted to minimize the influence of meteorological factors on the sensor data. The multi-linear regression (MLR) model showed a better performance than the random forest (RF) model in correcting the sensors’ data, especially for O3 and PM2.5. Our results demonstrate the capability and potential of the low-cost sensors for the measurement of trace gases and aerosols at high mountain sites with complex weather conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Liu, Zhuofu, Jianwei Li, Meimei Liu, Vincenzo Cascioli, and Peter McCarthy. "In-Depth Investigation into the Transient Humidity Response at the Body-Seat Interface on Initial Contact Using a Dual Temperature and Humidity Sensor." Sensors 19, no. 6 (March 26, 2019): 1471. http://dx.doi.org/10.3390/s19061471.

Повний текст джерела
Анотація:
Relative humidity (RH) at the body-seat interface is considered an important factor in both sitting comfort and generation of health concerns such as skin lesions. Technical difficulties appear to have limited research aimed at the detailed and simultaneous exploration of RH and temperature changes at the body-seat interface; using RH sensors without the capability to record temperature where RH is recorded. To explore the causes of a spike in RH consistently produced on first contact between body and seat surface, we report data from the first use of dual temperature and RH (HTU21D) sensors in this interface. Following evaluation of sensor performance, the effect of local thermal changes on RH was investigated. The expected strong negative correlation between temperature and RH (R2 = −0.94) supported the importance of considering both parameters when studying impact of sitting on skin health. The influence of sensor movement speed (higher velocity approach: 0.32 cm/s ± 0.01 cm/s; lower velocity approach: 0.17 cm/s ± 0.01 cm/s) into a static RH region associated with a higher local temperature were compared with data gathered by altering the rate of a person sitting. In all cases, the faster sitting down (or equivalent) generated larger RH outcomes: e.g., in human sitting 53.7% ± 3.3% RH (left mid-thigh), 56.4% ± 5.1% RH (right mid-thigh) and 53.2% ± 2.7% RH (Coccyx). Differences in size of RH change were seen across the measurement locations used to study the body-seat interface. The initial sitting contact induces a transient RH response (duration ≤ 40 s) that does not accurately reflect the microenvironment at the body-seat interface. It is likely that any movement during sitting would result in similar artefact formation. As a result, caution should be taken when investigating RH performance at any enclosed interface when the surfaces may have different temperatures and movement may occur.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Montero, Ander, Gotzon Aldabaldetreku, Gaizka Durana, Iagoba Jorge, Idurre Sáez de Ocáriz, and Joseba Zubia. "Influence of Humidity on Fiber Bragg Grating Sensors." Advances in Materials Science and Engineering 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/405250.

Повний текст джерела
Анотація:
We demonstrate the influence of the relative humidity (RH) on the wavelength of fiber Bragg grating sensors (FBGS), performing tests with five FBGS at different humidity and temperature conditions. These tests were performed in a climate chamber whose RH changes according to a scheduled profile from 30% to 90%, in steps of 10%. These profiles were repeated for a wide range of temperatures from10∘Cto70∘C, in steps of10∘C. Two different types of instrumentation methods have been tested, spot welding and epoxy bonding, in two different materials, steel and carbon fiber reinforced polymer (CFRP). We discuss the results for each type of sensor and instrumentation method by analyzing the linearity of the Bragg wavelength with RH and temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ahumada, Sofía, Matias Tagle, Yeanice Vasquez, Rodrigo Donoso, Jenny Lindén, Fredrik Hallgren, Marta Segura, and Pedro Oyola. "Calibration of SO2 and NO2 Electrochemical Sensors via a Training and Testing Method in an Industrial Coastal Environment." Sensors 22, no. 19 (September 26, 2022): 7281. http://dx.doi.org/10.3390/s22197281.

Повний текст джерела
Анотація:
Low-cost sensors can provide inaccurate data as temperature and humidity affect sensor accuracy. Therefore, calibration and data correction are essential to obtain reliable measurements. This article presents a training and testing method used to calibrate a sensor module assembled from SO2 and NO2 electrochemical sensors (Alphasense B4 and B43F) alongside air temperature (T) and humidity (RH) sensors. Field training and testing were conducted in the industrialized coastal area of Quintero Bay, Chile. The raw responses of the electrochemical (mV) and T-RH sensors were subjected to multiple linear regression (MLR) using three data segments, based on either voltage (SO2 sensor) or temperature (NO2). The resulting MLR equations were used to estimate the reference concentration. In the field test, calibration improved the performance of the sensors after adding T and RH in a linear model. The most robust models for NO2 were associated with data collected at T < 10 °C (R2 = 0.85), while SO2 robust models (R2 = 0.97) were associated with data segments containing higher voltages. Overall, this training and testing method reduced the bias due to T and HR in the evaluated sensors and could be replicated in similar environments to correct raw data from low-cost electrochemical sensors. A calibration method based on training and sensor testing after relocation is presented. The results show that the SO2 sensor performed better when modeled for different segments of voltage data, and the NO2 sensor model performed better when calibrated for different temperature data segments.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lee, Chi Yuan, Shuo Jen Lee, and Guan Wei Wu. "Integration of Micro Array Sensors in the MEA on Diagnosis of Micro Fuel Cells." Key Engineering Materials 364-366 (December 2007): 855–60. http://dx.doi.org/10.4028/www.scientific.net/kem.364-366.855.

Повний текст джерела
Анотація:
The temperature and humidity conditions of a membrane electrode assembly (MEA) determine the performance of fuel cells. The volume of traditional temperature and humidity sensors is too large to allow them to be used to measure the distribution of temperature and humidity in the MEA of fuel cells. Measurements cannot necessarily be made where required. They measure only the temperature and humidity distribution outside the fuel cells and yield results with errors that exceed those of measurements made in MEA. Therefore, in this study, micro-electro-mechanical-systems (MEMS) fabrication technology was employed to fabricate an array of micro sensors to monitor in situ the temperature and humidity distributions within the MEA of fuel cells. In this investigation, an array of micro temperature and humidity sensors was made from gold on the MEA. The advantages of array micro gold temperature and humidity sensors are their small volume, which enable them to be placed on MEA and their high sensitivity and accuracy. The dimensions of the temperature and humidity sensors are 180μm × 180μm and 180μm × 220μm, respectively. The experiment involves temperatures from 30 to 100 °C. The resistance varied from 23.084 to 28.196 /. The experimental results reveal that the temperature is almost linearly related to the resistance and the accuracy and sensitivity are less than 0.3 °C and 3.2×10-3/°C, respectively. The humidity sensor showed that the capacitance changed from 15.76 to 17.95 pF, the relative humidity from 20 to 95 %RH, and the accuracy and sensitivity were less than 0.25 %RH and 0.03 pF/%RH.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Carvajal, Sergio A., and Ciro A. Sánchez. "Temperature effect in the calibration of capacitive humidity sensors." International Journal of Metrology and Quality Engineering 9 (2018): 9. http://dx.doi.org/10.1051/ijmqe/2018010.

Повний текст джерела
Анотація:
Capacitive hygrometers are widely used in industrial and environmental measurements. One of the limitations of these sensors is their temperature dependence. While in temperatures beyond 50 °C the effect has been proven to be significant, for standard conditions in calibration laboratories the magnitude of this dependence has not been rigorously studied. This paper presents the analysis and results of a study of the temperature influence in the calibration of capacitive hygrometers designed for monitoring environmental conditions. Ninety measurements were taken on 15 models of capacitive hygrometers using a two-pressure humidity generator between 30%rh and 80%rh and temperatures from 20 to 30 °C. A three-way analysis of variance (ANOVA) was used to evaluate the data. The results show that the calibration correction is independent of the temperature for the conditions considered; however, there is a correlation between the temperature and the devices, indicating that the gradients in temperature affect each technology of fabrication in a different way.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chen, Hsuan-Yu, and Chia-Chung Chen. "An Empirical Equation for Wet-Bulb Temperature Using Air Temperature and Relative Humidity." Atmosphere 13, no. 11 (October 26, 2022): 1765. http://dx.doi.org/10.3390/atmos13111765.

Повний текст джерела
Анотація:
Climate change causes extreme heat and high humidity in some regions. The wet-bulb temperature (Tw) is a heat stress index, and the threshold is 35 °C. It is difficult to measure the value of Tw using a psychrometer, but the Tw value can be calculated using the air temperature and humidity. To provide accuracy for the Tw calculation, an empirical equation is established using regression analysis. This study defines the empirical equation as , where Td is the air temperature in °C and RH is the relative humidity in %. This equation applies to a temperature of 20~45 °C and RH of 40~99%. The fit is better than that for the Stull equation in this range. The prediction accuracy is 0.022 °C and there is no fixed pattern for the error distribution for the range of Td and RH. The measurement uncertainty for Tw values for thermometer and humidity sensors that are not calibrated is 1.4~2.2%. If these sensors are calibrated, the measurement uncertainty for Tw values is 0.16~0.28 °C. Therefore, well-calibrated sensors are necessary to enhance the accuracy of the Tw predictive equation.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rakesh, Balaji, Nipun Sharma, Rupali Nagar, Vipul Dhongade, Krishna Daware, and Suresh Gosavi. "Mechanistic understanding of the sensing process by analyzing response curves of TiO2 based humidity sensors." Advances in Natural Sciences: Nanoscience and Nanotechnology 12, no. 4 (December 1, 2021): 045010. http://dx.doi.org/10.1088/2043-6262/ac4107.

Повний текст джерела
Анотація:
Abstract Sensors function by interacting with an appropriate stimulus, undergo a change in property, which is then diagnosed by making some measurements. For any sensor, the type of interaction between analyte and sensor surface determines its overall performance. This article explores the philosophy in which primary measurements like response curves can hold information on the “type” of interaction occurring between analyte and sensing material. As case study, titanium oxide (TiO2) pellet sensors fabricated by sol-gel growth of TiO2 nanoparticles (as-grown and annealed) are investigated for humidity sensing at room temperature. The sensors display a very fast response in the 0%–30% relative humidity (%RH) range and return to their initial state without applying any external heat treatment. The response curves are analysed in view of adsorption processes guided by Langmuir isotherms. Correlation between sensor microstructure, adsorption processes and response curve is used to build the mechanistic understanding of the sensing process. The results bring out a unique correlation between sensor microstructure, interaction of analyte with sensing material and profile of response curves. Further, the synthesised sensors exhibit a linear response in the 0%–30% RH range making them suitable for low humidity environments like food packaging industry.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pelino, Mario, Carlo Cantalini, and Marco Faccio. "Principles and Applications of Ceramic Humidity Sensors." Active and Passive Electronic Components 16, no. 2 (1994): 69–87. http://dx.doi.org/10.1155/1994/91016.

Повний текст джерела
Анотація:
This paper presents a brief review of the state of the art in humidity and gas ceramic sensors R&D; it also describes the principle, fabrication and application of the humidity-sensitive Si-doped a-hematite (α-Fe2O3) sintered compacts. The humidity signal response is characterized by volt-amperometric and impedance spectroscopy techniques in the 0-97% relative humidity (RH) range. The response time of the sensor is evaluated by 0-60% RH variations. Experimental techniques used to measure the hysteresis, drift, and aging of the humidity setasor are presented and the results are discussed. The CO sensitivity is investigated by activating the sensor in the 350-450℃ temperature range. A humidity-meter prototype, based on the α-Fe2O3ceramic compact is described, and its electronics and features are presented in this paper.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Temperature and RH sensors"

1

Taguett, Amine. "Synthèse et étude thermodynamique d’alliages Ir-Rh à l’état massif et en films minces pour la réalisation de capteurs SAW fonctionnant à haute température (700°C-1000°C) dans l’air." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAA016/document.

Повний текст джерела
Анотація:
La technologie des capteurs à ondes élastiques de surface, appelés SAW pour Surface acoustic waves, existe depuis une cinquantaine d’années. Cette technologie est largement utilisée dans l’industrie des télécommunications et en perpétuelle évolution pour la réalisation de microcapteurs dans des secteurs à fortes contraintes tels que l’aéronautique, l’automobile, la métallurgie ou encore dans le domaine du médical. Leur forte sensibilité aux conditions environnementales, leur taille réduite et la possibilité de les interroger à distance sans aucune électronique embarquée (capteurs passifs), confèrent à cette technologie un fort potentiel d’innovation pour une utilisation en environnements extrêmement hostiles, et notamment comme capteurs de températures, de pressions, de déformations, de concentrations d'espèces chimiques ou biologiques… Une voie d’innovation réside dans l’optimisation des électrodes de ces capteurs appelés IDTs pour InterDigital Transducers. Ces électrodes métalliques d’une centaine de nanomètres d’épaisseur sont structurées sous forme de peignes interdigités sur un substrat piézoélectrique. Nos travaux se sont focalisés sur le choix des matériaux pour la réalisation des IDTs pour une utilisation à très hautes températures. Cela impose de trouver un matériau conducteur, stable physiquement et chimiquement, dont la mise en forme en film mince (100 nm d'épaisseur typique) n’altère pas son fonctionnement dans ces conditions d’usage extrêmes : températures voisines de 1000°C sous atmosphère oxydante. Une étude récente a mis en évidence la pertinence de l’utilisation d’alliages binaires Ir-Rh massifs pour des applications connexes de celles visées. L’objectif de ce projet est de transposer les propriétés des alliages Ir-Rh massifs à des films minces de même nature, en collectant de nouvelles données thermodynamiques relatives au système métallique Ir-Rh. Malgré les difficultés des analyses thermiques qui ont été menées jusqu’à 2300 °C, nous avons pu réaliser les premières mesures expérimentales des températures d’équilibres solide-liquide (solidus et liquidus) de quelques alliages Ir-Rh. Une part importante du travail a ensuite été consacrée à la réalisation de campagnes de dépôts de films minces Ir Rh afin d’optimiser les paramètres clés du dépôt permettant l’obtention de films présentant les stœchiométries et microstructures recherchées. Enfin, l’évaluation des performances des dispositifs SAW, élaborés à partir des films minces optimisés, a donné des résultats très prometteurs : après une phase de stabilisation dans les premières heures de recuit, le signal SAW s’est montré constant tout au long d’une période de 2 mois dans l’air à 800 °C
The surface acoustic waves (SAW) technology was invented approximately fifty years ago. This technology is currently widely used in the telecommunication industry to make, among others, GHz-range filters. Another very active development axis for the SAW technology is related to the achievement of micro sensors (to measure temperatures, pressures, deformations, concentrations of chemical or biological species) for industrial sectors with strong constraints such as aerospace, automotive, metallurgy, or medical sectors. Their high sensitivity to environmental conditions, their small size and the possibility to interrogate them remotely without adding any embedded electronics (passive sensors), provides SAW sensors a high innovation potential, in particular for applications taking place in hostile environments. SAW devices are constituted by a piezoelectric substrate on which are patterned electrodes from a conductive film. These electrodes are typically 100 nm-thick and are called, because of their shape, interdigital transducers (IDT). Our work was mainly focused on the choice of materials for the realization of IDTs to be used at very high temperatures, in air, for weeks periods, the current state-of-the-art operating temperature being close to 850 °C. Achieving high temperature IDTs requires finding a conductive material, physically and chemically stable under oxidizing conditions up to 1000°C, which retains its properties when grown as a thin layer. A recent study has highlighted the relevance of bulk Ir-Rh binary alloys for applications closely related to the targeted ones. The objective of this project is to transfer the properties of bulk Ir-Rh alloys to Ir-Rh thin layers, by collecting new thermodynamic data for the Ir-Rh binary system. Despite the difficulties of thermal analyses which were conducted up to 2300 °C, we have been able to carry out the first experimental measurements of solid-liquid temperatures equilibria (solidus and liquidus) of some Ir-Rh alloys. An important part of the work was afterwards devoted to the realization of Ir-Rh thin films deposition campaigns to optimize the key parameters and obtain films having the relevant stoichiometry and microstructure. Finally, the performance of SAW devices, made from optimized thin films, was evaluated. Very promising results were obtained: after a stabilization phase in the early hours of annealing, the SAW signal was unchanged throughout a 2 months period at 800 °C in air atmosphere
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hout, S. R. in't. "High-temperature silicon sensors." Delft, the Netherlands : Delft University Press, 1996. http://books.google.com/books?id=dApTAAAAMAAJ.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hashmi, А., and А. Kalashnikov. "Comparison of the responsiveness of ultrasonic oscillating temperature sensors (UOTSes) and conventional sensors to temperature inflection." Thesis, Sumy State University, 2017. http://essuir.sumdu.edu.ua/handle/123456789/55751.

Повний текст джерела
Анотація:
Ultrasonic oscillating temperature sensors (UOTSes), in distinction to conventional temperature sensors, feature almost negligible settling time. This property can be useful for detecting malfunctions, failures and misuses of heat exchangers. However, most exchangers handle substantial thermal masses, which obscure the detection of any temperature changes. We compared the responsiveness of conventional DS18B20 sensors and an UOTS to the change in the temperature gradient of over 3.5 kg of water using a posteriori records. Temperature inflection points were estimated by extending the curves for separate distinct heating and cooling intervals that fit best and finding their interception. For the UOTS, the interception occurred about 100 seconds sooner, making it a potential candidate for detecting heat exchangers’ irregularities.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yerochin, S. Yu, A. N. Demenskiy, V. A. Krasnov, and S. V. Shutov. "Diode temperature sensors with tunable sensitivity." Thesis, Sumy State University, 2016. http://essuir.sumdu.edu.ua/handle/123456789/45971.

Повний текст джерела
Анотація:
We investigated the possibility of using of AlGaInP heterostructures with p-n junction as diode temperature sensors having quasi-linear dependence of the forward voltage drop on the ambient temperature at the fixed direct current. Thus we measured the current-voltage characteristics of the p-n structures in the temperature range 293-550 K. Using the data obtained we calculated the differential current thermal sensitivity of the structures mentioned. A semilogarithmic plot of the thermal sensitivity vs. forward current dependence is presented in the figure.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Selli, Raman Kumar. "Fibre optic temperature sensors using fluorescent phenomena." Thesis, City University London, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236641.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Banim, Robert Seamus. "Improved temperature sensors for the process industry." Thesis, University of Bristol, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245572.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Birley, Joseph Leonard Mark. "An investigation of temperature controlled humidity sensors." Thesis, De Montfort University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393232.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cederlund, Jacob. "Radiated Susceptibility Measurements on Analogue Temperature Sensors." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279959.

Повний текст джерела
Анотація:
The need for electromagnetic compatibility is growing steadily as the usage of electronics in our daily lives is increasing more than ever. A common issue encountered in electromagnetic compatibility testing is analogue sensors that fail when exposed to electromagnetic fields. Testing how well electronics do when exposed to electromagnetic fields is called susceptibility testing, and standards for how to do these tests have been developed to ensure that the results of the tests can be reproduced. In this thesis work, analogue temperature sensors have been shielded using a few common techniques. The susceptibility of the sensors has been analysed by looking at their output voltage when the sensors were exposed to electro- magnetic fields of different field strengths. The output of the sensors was read by an Arduino that was shielded and tested to make sure it would not be affected by the electromagnetic fields used in the sensor tests. The result of the first set of sensor tests shows that shielding the cables running to the analogue temperature sensors and filtering away disturbances using ferrites gives a considerable decrease in susceptibility against electro- magnetic fields, while twisted cables and RC-filters did not. The results also showed that the introduction of a ground plane increased the susceptibility of the sensors, which most likely was due to it not providing the current with a path of less impedance and only served to increase the length of the unintentional antenna, which made it couple to the electromagnetic field more easily. However, during a second round of testing, the results of all the tests were hard to reproduce exactly, which calls into question how trustable the results of standardised susceptibility tests are. Therefore, when designing for the electromagnetic susceptibility of a product, a rather wide margin should be used in order to make sure that the product can reliably pass susceptibility tests.
Användningen av elektronik ökar i samhället och därför även nödvändigheten för testning av elektromagnetisk kompatibilitet. Ett vanligt problem inom elektromagnetisk kompatibilitet är att analoga sensorer lätt blir utstörda av elektromagnetiska fält. Hur man ska testa en elektronisk produkts känslighet mot elektromagnetiska fält styrs av standarder som ser till att resultaten av testerna går att återskapa. I detta examensarbete har analoga temperatursensorer skärmats med ett par vanliga metoder. Sensorernas känslighet har analyserats genom att undersöka hur deras utspänning påverkas när sensorn blir utsatt för elektromagnetiska fält med olika fältstyrkor. Sensorernas utspänning lästes av en Arduino som skärmades och testades för att se till all att den inte påverkades av de elektromagnetiska fälten som användes under testandet av sensorerna. Resultaten från de första sensortesterna visar att använda skärmade kablar till de analoga temeperatursensorerna och att filtrera bort störningar med ferriter sänkte sensorernas känslighet mot elektromagnetiska fält betydligt medan tvinnade kablar och RC filter inte gjorde det. Testerna visade också att jord- plan i detta fall ökade sensorernas känslighet då de inte erbjöd en bättre väg för strömmen att gå utan endast skapade en längre oavsiktlig antenn, vilket gjorde att den lättare kunde koppla till det elektromagnetiska fältet. Däremot visade det sig i en andra testomgång, att resultaten inte gick att återskapa ex- akt. Detta ifrågasätter hur tillförlitliga dessa standardiserade tester är och visar att man bör ha en ganska bred marginal när man designar för att minska en produkts känslighet mot elektromagnetiska fält, så att den på ett tillförlitligt sätt kommer kunna klara av känslighetstester.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rashidi, Mohammadi Abdolreza. "MEMS pressure, temperature and conductivity sensors for high temperature and harsh environments." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/33783.

Повний текст джерела
Анотація:
Kraft pulp digesters have been used to convert wood chips into pulp for manufacturing a wide variety of paper products. Inside a kraft digester, chemical reactions remove lignin from their wood matrix in a caustic environment (pH~13.5, 170°C, 2MPa). Data on actual internal operating conditions in a kraft digester is needed to optimize kraft digester operation and obtain maximum production quality. Currently, this information is limited to selected static locations on the periphery of the digester. The objective of this thesis is to develop miniature temperature, pressure, and liquid conductivity sensors for use in autonomous flow-following SmartChips to measure kraft process variables within the digester during their passage through the process. Combined capacitive pressure and temperature sensors were fabricated by bonding silicon and Pyrex chips using a new polymeric gap-controlling layer and a high temperature adhesive. A simple chip bonding technique involving insertion of the adhesive into the gap between two chips was developed. A silicon dioxide layer and a thin layer of Parylene were deposited to passivate the pressure sensor diaphragm against the caustic environment in kraft digesters. The sensors were characterized at both high temperatures and pressures and no signs of corrosion could be identified on the sensors. Integrated piezoresistive pressure and temperature sensors consisting of a square silicon diaphragm and high resistance piezoresistors were developed. A new Parylene and silicone conformal coating process were developed to passivate the pressure sensors against the caustic environment. The sensors were characterized up to 2MPa and 180°C in an environmental chamber. The sensors’ resistances were measured before and after testing in a kraft pulping cycle and showed no change in their values. SEM pictures and topographical surface analyses were also performed before and after pulp liquor exposure and showed no observable changes. Combined liquid conductivity and temperature sensor packages consisting of a platinum resistance temperature detector (RTD) and a four-electrode conductivity sensor formed by stainless steel electrodes and installed on a polyetheretherketone (PEEK) enclosure were developed. The sensors were characterized up to 180°C at NaOH concentrations of 10-100g/l in the presence of wood chips and survived with no signs of corrosion.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Spirig, John Vincent. "A new generation of high temperature oxygen sensors." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1188570727.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Temperature and RH sensors"

1

Miller, Richard Kendall. Survey on temperature sensors. Madison, GA: Future Technology Surveys, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hotra, Oleksandra. Selected issues on temperature sensors. Lublin: Politechnika Lubelska, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bakker, Anton, and Johan Huijsing. High-Accuracy CMOS Smart Temperature Sensors. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4757-3190-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

M, Hashemian H., U.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research. Division of Engineering., and Analysis and Measurement Services Corporation., eds. Degradation of nuclear plant temperature sensors. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bakker, Anton. High-accuracy CMOS smart temperature sensors. Boston, MA: Kluwer Academic Publishers, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bakker, Anton. High-Accuracy CMOS Smart Temperature Sensors. Boston, MA: Springer US, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pan, Sining, and Kofi A. A. Makinwa. Resistor-based Temperature Sensors in CMOS Technology. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95284-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Birley, Joseph Leonard Mark. An investigation of temperature controlled humidity sensors. Leicester: De Montfort University, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Souri, Kamran, and Kofi A. A. Makinwa. Energy-Efficient Smart Temperature Sensors in CMOS Technology. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-62307-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mohammad, Aslam, and Langley Research Center, eds. Diamond thin film temperature and heat-flux sensors. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Temperature and RH sensors"

1

Gerblinger, J., K. H. Haerdtl, H. Meixner, and Robert Aigner. "High-Temperature Microsensors." In Sensors, 181–219. Weinheim, Germany: Wiley-VCH Verlag GmbH, 2008. http://dx.doi.org/10.1002/9783527620180.ch6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fraden, Jacob. "Temperature Sensors." In Handbook of Modern Sensors, 585–643. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19303-8_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

McRoberts, Michael. "Temperature Sensors." In Beginning Arduino, 271–84. Berkeley, CA: Apress, 2013. http://dx.doi.org/10.1007/978-1-4302-5017-3_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yoon, Jeong-Yeol. "Temperature Sensors." In Introduction to Biosensors, 63–78. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27413-3_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

McRoberts, Michael. "Temperature Sensors." In Beginning Arduino, 279–91. Berkeley, CA: Apress, 2010. http://dx.doi.org/10.1007/978-1-4302-3241-4_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fraden, Jacob. "Temperature Sensors." In Handbook of Modern Sensors, 519–67. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6466-3_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yoon, Jeong-Yeol. "Temperature Sensors." In Introduction to Biosensors, 59–73. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-6022-1_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Baumann, Peter. "Temperature Sensors." In Selected Sensor Circuits, 1–22. Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-38212-4_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Foken, Thomas, and Jens Bange. "Temperature Sensors." In Springer Handbook of Atmospheric Measurements, 183–208. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-52171-4_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bernstein, Herbert. "Temperature Sensors." In Measuring Electronics and Sensors, 193–257. Wiesbaden: Springer Fachmedien Wiesbaden, 2021. http://dx.doi.org/10.1007/978-3-658-35067-3_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Temperature and RH sensors"

1

Moulzolf, Scott C., David J. Frankel, Mauricio Pereira da Cunha, and Robert J. Lad. "Electrically conductive Pt-Rh/ZrO2and Pt-Rh/HfO2nanocomposite electrodes for high temperature harsh environment sensors." In SPIE Microtechnologies, edited by Ulrich Schmid, José Luis Sánchez de Rojas Aldavero, and Monika Leester-Schaedel. SPIE, 2013. http://dx.doi.org/10.1117/12.2017596.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tao, Shiquan, Joseph C. Fanguy, Xuemei Hu, and Qiangu Yan. "Fiber Optic Sensors for In Situ Real-Time Monitoring PEM Fuel Cell Operation." In ASME 2005 3rd International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2005. http://dx.doi.org/10.1115/fuelcell2005-74100.

Повний текст джерела
Анотація:
Fiber optic sensors for monitoring moisture, temperature and trace hydrogen peroxide have been developed in DIAL/MSU. The moisture sensor responds to moisture changes from RH = 4% to RH < 95% in the tested range. The temperature sensor can sense temperature from room temperature 22 °C to 90 °C in the tested range. The hydrogen peroxide sensor can detect/monitor hydrogen peroxide in an aqueous solution down to 10 ppb. Techniques have been developed for deploying the fiber optic sensors to the gas channels and the Nafion membrane of a PEM fuel, cell. These sensors will be tested for in situ, real-time monitoring of the operation of a PEM fuel cell with a fuel cell test system developed by CAVS/MSU. The principle of the sensors and test results of the sensors will be presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sugimoto, Toshiki, Yuhei Horiuchi, and Takuto Araki. "Developments of Thin-Film Temperature and Humidity Sensors for PEMFC In-Situ Measurements." In ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2014 8th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fuelcell2014-6480.

Повний текст джерела
Анотація:
Proton exchange membrane fuel cells (PEMFCs) are useful systems because they operate at lower temperatures than other types of fuel cells. This characteristic causes water management issues. To elucidate effects of water on PEMFC performance, we developed a temperature sensor using micro-electro-mechanical systems (MEMS) techniques. This sensor was placed between the catalyst layer (CL) and the microporous layer (MPL) at the cathode. Slight effects on total cell performance were observed with the insertion of the sensor. This sensor can be applicable to typical PEMFCs without any special equipment such as a transparent separator. In-situ measurement with a temperature sensor showed that the maximum temperature rise at the cathode CL (CCL) was about 9 °C at 1.1 A/cm2. The temperature sensor also showed temperature gradients between the ribs and channels. In addition, we developed a capacitance-type humidity sensor and inserted it in the channel. In-situ measurement with a humidity sensor showed a relative humidity (RH) change in the channel. This sensor can detect not only RH but also accumulated water in the channel. Liquid water appeared in the channel at 0.7 A/cm2.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kori, Pramod, Vipul Dhongade, and R. C. Aiyer. "High temperature operable low humidity (10 to 20%RH) sensor using spin coated SnO2 thin films." In 2015 2nd International Symposium on Physics and Technology of Sensors (ISPTS). IEEE, 2015. http://dx.doi.org/10.1109/ispts.2015.7220112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Patel, Chandradip, and Patrick McCluskey. "Combined Temperature and Humidity Effects on MEMS Vibratory Gyroscope Sensor." In ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/ipack2011-52183.

Повний текст джерела
Анотація:
Reliability and long term stability are the greatest challenges for commercialization of MEMS gyroscopes. Their vast use in different applications that required MEMS gyroscopes to function from medium to harsh environments make necessary to evaluate the performance of MEMS gyroscope under those conditions. This paper focuses on the combined long term effects of temperature and humidity on the performance of MEMS vibratory gyroscope. Performance of the MEMS gyroscope was evaluated over time by conducting temperature humidity bias (THB) test on a COTS (commercial off-the-shelf) single axis MEMS vibratory gyroscope having an operating temperature range from −40°C to +85°C. The gyroscope sensors were exposed to 60°C and 90%RH (Relative Humidity) for 500 hours. Six single axis gyroscopes were tested, three with in-situ device calibration and three without in-situ device calibration. Out of three MEMS vibratory gyroscopes tested without in-situ device calibration, it was observed that samples had minimum and maximum in-situ zero rate output (ZRO) drift of 1.3°/s and 2.2°/s respectively over 500 hours. These drifts were disappeared when gyroscope sensors were tested after six months by keeping at room condition. Other three single axis gyroscopes were tested in the same chamber with in-situ device calibration which didn’t show any major performance ZRO drift.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Guan, Mark, Patrick Kirchen, Steven Rogak, and Patrick Steiche. "Development of a Low-Cost Exhaust H2 Measurement Method for In-Use Vehicles." In ASME 2021 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/icef2021-67633.

Повний текст джерела
Анотація:
Abstract Port-injected hydrogen (H2) can be used as a partial substitution of diesel fuel in compression-ignition engines to reduce GHG emissions. For port-injected H2 systems, incomplete combustion or valve overlap can result in H2 slip, which increases the brake-specific fuel consumption. In this study, a low-cost method is developed to measure the H2 slip in the exhaust of a heavy-duty truck under real-world operating conditions. The truck is equipped with a 2016 15L Detroit diesel engine converted to run in dual-fuel mode with port-injected H2 ignited by directly injected diesel. Existing H2 detecting methods used for steady-state laboratory tests either have slow response time or require well-controlled testing environments. To develop a method suitable for transient on-road H2 measurements, we utilized a low-cost semiconductor sensor. The output of the sensor is potentially influenced by temperature, relative humidity (RH), gas flow rate, as well as the sensor’s resistance in the ambient air (R0) and the pre-heating strategy. Firstly, the characteristics of R0 was investigated in controlled benchtop tests, where pre-heating time, gas temperature, and RH were monitored. Then, the sensor was calibrated using a standard gas mixture of H2 and nitrogen. Finally, a Portable Emission Measurement System (PEMS) was developed to control the conditions of the sample gas. The sensor output was recorded using a low-cost Raspberry Pi Data Acquisition (DAQ) system in combination with an analog HAT (Hardware attached on top) module at a frequency of 4Hz. The results from the benchtop tests show that RH and flow rate both have significant influences on the sensor’s output. To ensure a stable R0, thirty minutes of pre-heating time is required. After calibration, the sensor’s readings are within 15% difference compared with the actual values. Data from the on-road tests demonstrated the applicability of the system for in-use vehicle’s exhaust H2 measurement. It was found from this data that the sensor’s average response time to rising H2 concentrations is 4.5s, but that the response to decreasing concentrations is much slower. The exhaust H2 concentrations, together with the engine operating data, were used to generate H2 emission maps, which provide insight into the relationship between the engine load, engine speed and the H2 slip. With further sensor development and sample gas control, this method can achieve high accuracy and extended application in in-use vehicle’s H2 emission measurements.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jiang, Haowei, Chih-Cheng Huang, Matthew Chan, and Drew A. Hall. "A 2-in-1 Temperature and Humidity Sensor Achieving 62 fJ·K2 and 0.83 pJ·(%RH)2." In 2019 IEEE Custom Integrated Circuits Conference (CICC). IEEE, 2019. http://dx.doi.org/10.1109/cicc.2019.8780195.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wright, J., and A. V. Virkar. "Synthesis of Nanosize Ceria by a Combustion Process and Electrical Characterization of HeteroFoaM Porous Ceria Electrodes." In ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology collocated with ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/fuelcell2011-54943.

Повний текст джерела
Анотація:
Nanosize powders of Sm2O3-doped CeO2 (SDC) containing various dopants (Pr, Rh, Re) were synthesized using respective nitrates and D-gluconic acid (DGA) by a combustion process. The resulting powders were extremely fine (nanosize) and of uniform composition. Porous samples with open porosity were fabricated by sintering. Electrical conductivity was measured by a four probe DC technique over a wide pO2 range and a temperature range between 200°C and 800°C. The pO2 was measured using an oxygen sensor. Samples of SDC and SDC with Pr doping exhibited significant electronic conduction in reducing atmospheres above 400°C. Thus, these materials are suitable candidates for SOFC anodes above 400°C. Sintered and powder samples were subjected to various thermal treatments in several atmospheres (oxidizing to reducing) and were characterized by XRD, SEM, and XPS. The purpose of adding the dopants Pr, Rh and Re was to create mixed ionic electronic conductivity in reducing atmospheres at low (<300°C) temperatures. Such materials are potential candidates as SOFC anodes at temperatures possibly lower than 500°C.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sugimoto, Toshiki, Yuhei Horiuchi, and Takuto Araki. "Developments of MEMS-Based Thermocouple Array for Sensing Effects of a Flow Channel on PEMFC Local Temperature Distribution." In ASME 2013 11th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icnmm2013-73198.

Повний текст джерела
Анотація:
Measuring temperature inside PEMFCs is necessary for proper water management, because water vapor pressure is a strong function of temperature. In this paper, we have developed thin film thermocouple (TFTC) array to measure temperature distributions near the Cathode Catalyst layer (CCL) with a resolution smaller than the rib-channel scale. The sensor array was placed between CL and gas diffusion layer (GDL) at the cathode. No performance decrement was observed with the insertion of TFTC array. The measurements of temperature distributions showed that the temperature rises at the cathode CL is about 9 °C at 1.2 A/cm2 with supplying 98.5 % RH Hydrogen / Air.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Huda, A., S. A. Halim, K. P. Lim, K. K. Kabashi, S. Elias, A. A. Sidek, and Z. Hishamuddin. "Structural, Electrical Transport and Magnetoresistive Studies of Pr and Nd Substituted on La2/3Ba1/3MnO3 Perovskite." In ASME 7th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2004. http://dx.doi.org/10.1115/esda2004-58535.

Повний текст джерела
Анотація:
Colossal magnetoresistance (CMR), as the name implies, is the phenomenon of dramatic changes in resistance attendant upon application of a magnetic field. The typical CMR material is derived from perovskite manganites with the chemical formula Ln1−xAxMnO3, where Ln is the rare earth (Ln = La, Pr, Nd, Sm) and A is the divalent metal (A = Ca, Ba, Sr). The objective of this paper is to study the effects of the doping Nd and Pr at La site on La-Ba-Mn-O ceramics using solid state reaction. The characteristics and magnetotransport properties of CMR materials are investigated. Polycrystalline (La1−xPrx)0.67Ba0.33MnO3 (x = 0, 1/6, 1/3, 1/2, 2/3, 5/6, 1) and (La1−xPrx)0.67Ba0.33MnO3 (x = 0, 1/6, 1/3, 1/2, 2/3, 5/6, 1), are doped with Pr and Nd site based manganites, calcined at 900°C for 12 hours, pelletized and sintered at 1300°C for 24 hours have been synthesized and investigated. The magnetoresistance (MR) effects are measured using the four point probe technique. The magnetoresistance defined as MR% = (Ro−RH)/RH × 100 was measured at a magnetic field of H ≤ 1T at room temperature. The MR values were increased from 7.9–12.7% and from 7.9–12.3% for doping with Nd (x = 0.17) and Pr (x = 0.33) respectively. The electrical property, Tp was determined by using standard four-point probe resistivity measurement in a temperature range of 20 K to 300 K. The result shows that Pr and Nd dopants shift the value of TP to a lower temperature. In this paper the structural pattern and microstructure property of bulk samples have been investigated via XRD, AFM and SEM. XRD patterns show that these systems are in single-phase with orthorhombic distorted perovskite structures. The rms roughness for the AFM images has obtained for undoped and doped samples. SEM micrographs have shown that undoped samples are observed to be more compact than the doped samples doped due to the existence of pores. The potential of this research is to produce magnetoresistive read head such as read/write heads in computer disc-drives, position sensor, magnetoresistive random access memory (MRAM), biomagnetic sensor and magnetic accelerometers.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Temperature and RH sensors"

1

Davis, K. L., D. L. Knudson, J. L. Rempe, and B. M. Chase. Drexel University Temperature Sensors. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1169245.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Davis, K. L., D. L. Knudson, J. L. Rempe, and B. M. Chase. University of Illinois Temperature Sensors. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1169247.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Moss, Mary G., Ryan E. Giedd, Kim Moeckli, and Terry Brewer. Development of Miniature Temperature Sensors. Fort Belvoir, VA: Defense Technical Information Center, January 1991. http://dx.doi.org/10.21236/ada232964.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

May, Russell, Raymond Rumpf, John Coggin, Williams Davis, Taeyoung Yang, Alan O'Donnell, and Peter Bresnahan. Ultra-High Temperature Distributed Wireless Sensors. Office of Scientific and Technical Information (OSTI), March 2013. http://dx.doi.org/10.2172/1116992.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Almeida, Oscar J., Brian G. Dixon, Jill H. Hardin, John P. Sanford, and Myles Walsh. High Temperature Smart Sensors and Actuators. Fort Belvoir, VA: Defense Technical Information Center, August 1992. http://dx.doi.org/10.21236/ada256985.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Johra, Hicham. Assembling temperature sensors: thermocouples and resistance temperature detectors RTD (Pt100). Department of the Built Environment, Aalborg University, December 2020. http://dx.doi.org/10.54337/aau449755797.

Повний текст джерела
Анотація:
Temperature is one of the most common physical quantities (measurand) to be measured in experimental investigations, monitoring and control of building indoor environment, thermal comfort and building energy performance. The most common temperature sensors are the thermocouples and the resistance temperature detectors (RTDs). These analog sensors are cheap, accurate, durable and easy to replace or to repair. The cable of these sensors can easily be shortened or extended. These sensors have a simple, monotonic and stable correlation between the sensor’s temperature and their resistance/voltage output, which makes them ideal for temperature measurement with electronic logging equipment. This technical report aims at providing clear guidelines about how to assemble and mount type-K thermocouples and Pt100 RTDs. These are the most common temperature sensors used in the Laboratory of Building Energy and Indoor Environment at the Department of the Built Environment of Aalborg University.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Dolan, Daniel H.,, Christopher Seagle, and Tommy Ao. Dynamic temperature measurements with embedded optical sensors. Office of Scientific and Technical Information (OSTI), October 2013. http://dx.doi.org/10.2172/1096517.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chintalapalle, Ramana V. Gallium Oxide Nanostructures for High Temperature Sensors. Office of Scientific and Technical Information (OSTI), April 2015. http://dx.doi.org/10.2172/1261782.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cook, DR. Tower Temperature and Humidity Sensors (TWR) Handbook. Office of Scientific and Technical Information (OSTI), February 2010. http://dx.doi.org/10.2172/1020277.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fonseca, Michael A., Jennifer M. English, Martin Von Arx, and Mark G. Allen. High Temperature Characterization of Ceramic Pressure Sensors. Fort Belvoir, VA: Defense Technical Information Center, January 2001. http://dx.doi.org/10.21236/ada463252.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії