Добірка наукової літератури з теми "Technologies of diagnostic imaging"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Technologies of diagnostic imaging".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Technologies of diagnostic imaging"

1

Cockshott, W. Peter, and P. E. S. Palmer. "Imaging Technologies." International Journal of Technology Assessment in Health Care 3, no. 3 (July 1987): 355–61. http://dx.doi.org/10.1017/s0266462300001173.

Повний текст джерела
Анотація:
AbstractHigh technology developments in diagnostic imaging raise a number of issues that are disturbing. New developments do not always favor greater diagnostic efficacy since fads, marketing promotion, and entrepreneurs can distort medical goals. New advances disseminate rapidly in affluent societies before formal benefit evaluations are completed. We suggest that digitization of radiography must be critically assessed, and simplicity of equipment design should be promoted. Though medical and economic factors can provide guidelines for policy making, the ultimate priority decisions are political in nature.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jartarkar, Shishira R., Anant Patil, Uwe Wollina, Michael H. Gold, Henner Stege, Stephan Grabbe, and Mohamad Goldust. "New diagnostic and imaging technologies in dermatology." Journal of Cosmetic Dermatology 20, no. 12 (October 15, 2021): 3782–87. http://dx.doi.org/10.1111/jocd.14499.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Racoveanu, N. T., and D. A. Fresle. "Diagnostic Imaging in Small Hospitals." International Journal of Technology Assessment in Health Care 3, no. 3 (July 1987): 363–73. http://dx.doi.org/10.1017/s0266462300001185.

Повний текст джерела
Анотація:
AbstractDiagnostic imaging in small hospitals is discussed. Four key questions are answered: (1) Are diagnostic imaging technologies necessary at this level? (2) Which technologies should be chosen and why? (3) How can they be most rationally and cost effectively used? (4) How can their total impact on health care be assessed? The paper concludes that small hospitals should have diagnostic imaging facilities and that the modalities of choice are diagnostic radiology and ultrasonography. A detailed description is given of the WHO Basic Radiological System and General Purpose Ultrasonographic equipment together with WHO recommendations for the rational use of diagnostic imaging.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

GREENES, ROBERT A., and COLIN B. BEGG. "Assessment of Diagnostic Technologies." Investigative Radiology 20, no. 7 (October 1985): 751–56. http://dx.doi.org/10.1097/00004424-198510000-00018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wáng, Yì Xiáng J. "Systemic review and meta-analysis of diagnostic imaging technologies." Quantitative Imaging in Medicine and Surgery 6, no. 5 (October 2016): 615–18. http://dx.doi.org/10.21037/qims.2016.10.08.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wong, Richard C. K. "New Diagnostic Imaging Technologies in Nonvariceal Upper Gastrointestinal Bleeding." Gastrointestinal Endoscopy Clinics of North America 21, no. 4 (October 2011): 707–20. http://dx.doi.org/10.1016/j.giec.2011.07.013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

MANCHESTER, M., and P. SINGH. "Virus-based nanoparticles (VNPs): Platform technologies for diagnostic imaging☆." Advanced Drug Delivery Reviews 58, no. 14 (December 1, 2006): 1505–22. http://dx.doi.org/10.1016/j.addr.2006.09.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hailey, David, and Ian McDonald. "The assessment of diagnostic imaging technologies: a policy perspective." Health Policy 36, no. 2 (May 1996): 185–97. http://dx.doi.org/10.1016/0168-8510(95)00811-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pearlman, Alan S. "Reimbursement for new diagnostic imaging technologies: process, progress, and problems." American Journal of Cardiology 90, no. 10 (November 2002): 17–20. http://dx.doi.org/10.1016/s0002-9149(02)02861-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fujita, Hiroshi, Jong-Hyo Kim, Pau-Choo Chung, and Phooi Yee Lau. "A Special Section on Advanced Image Technologies in Diagnostic Imaging." Journal of Medical Imaging and Health Informatics 8, no. 5 (June 1, 2018): 1026–29. http://dx.doi.org/10.1166/jmihi.2018.2414.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Technologies of diagnostic imaging"

1

Farah, Yasser Abdulhamid Elskay, and L. O. Averyanova. "Technologies for prevention liver cancer in Egypt." Thesis, ХНУРЕ, 2019. http://openarchive.nure.ua/handle/document/8373.

Повний текст джерела
Анотація:
Deaths from liver cancer are common, especially in East Asia and Pacific, South Asia, and parts of Sub-Saharan Africa, largely as a result of infection decades ago. Controlling the risk factors would not only reduce the incidence of liver cancer; it would also reduce the incidence of cirrhosis and its other complications. This paper will discuss the clinical implications of imaging in screening, diagnosis, staging, and follow-up of patients in liver malignancies.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bryan, Stirling. "The economic evaluation of diagnostic imaging technologies : an investigation of the use of conjoint measurement." Thesis, Brunel University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310057.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fang, Xiaochao. "Design and integration of a low-noise readout chain in CMOS technology for APD-based sall-animal PET imaging." Strasbourg, 2011. http://www.theses.fr/2011STRA6021.

Повний текст джерела
Анотація:
Cette thèse présente mon travail de recherche sur la conception d'une chaîne de lecture dédiée à la TEP (Tomographie à Emission de Positons) fondée sur l'APD (Avalanche Photo Diode) pour les petits animaux. Le laboratoire IPHC (Institut Pluridisciplinaire Hubert Curien, UMR 7178) est en train de développer un système d'imagerie multimodale dénommé AMISSA (A Multimodality Imaging System for Small Animal) dédié au petit animal. L'AMISSA est composé par un micro imageur TDMX (micro TomoDensitoMétrie X), un micro imageur TEMP (Tomographie d'Emission Mono Photonique) et un micro imageur TEP. Le TDMX et le TEMP ont été réalisés. L'imagerie TEP permettra d'ajouter la modalité manquante au banc d'imagerie. Deux prototypes ont été développés afin de réaliser la chaîne de lecture complète dédiée à l'APD. Le premier prototype APD Chip est un circuit bas bruit de dix voies. Chaque voie est constituée d'un CSA (Charge Sensitive Amplifier), d'un CR-(RC)2 « shaper » et d'un « buffer » analogique. Le test montre que l'ENC (Equivalent Noise Charge) à l'entrée est égal à 275 ± 2 e- + 10 e-/pF pour un « shaping time » de 136 ns. Le deuxième prototype PETROC est un microcircuit mixte qui comprend un PDH (Peak Detect and Hold) d'huit voies et un TDC (Time-to-Digital Converter) de cinq voies. L'erreur sur le pic détecté est inférieure à 0. 7%. Une interpolation multi-niveaux est incluse dan la conception du TDC afin d'obtenir une plage de mesure de 10 µs et un pas de 20 ps. Dans ce texte, des analyses théoriques et des prototypes sont présentés, ainsi que la conception des circuits. Les résultats des tests du premier prototype sont également exposés
This thesis presents my research work on the conception of a readout chain dedicated to the APD (Avalanche Photo Diodes)-based PET (Positron Emission Tomography) imaging for small animal. The PET imaging allows the conjunction of its modality with the micro CT (X-ray Computerized Tomography) and micro SPECT (Single Photon Emission Computed Tomography) imaging which have been developed at IPHC (Institut Pluridisciplinaire Hubert Curien, UMR 7178). These three imaging compose a multi-modality imaging system for small animal (AMISSA). Two prototypes have been designed in order to finally realize the complete readout chain. The first one (called APD Chip) is a ten-channel low noise front-end circuit. Every channel consists of a Charge Sensible Amplifier (CSA), a CR-(RC)2 shaper, and an analogue buffer. The Equivalent Noise Charge (ENC) in input from test is equal to 275 ± 2 e- + 10 e- /pF for a shaping time of 136 ns. The second prototype PETROC is a mixed circuit. It comprises an eight-channel Peak Detect and Hold (PDH) circuit and a five-channel Time-to-Digital Converter (TDC). The simulation shows that the error is less than 0. 7% over the whole dynamic range. A multi-level interpolation was implemented in the TDC design to obtain a measurement range up to 10 µs and a bin size of 20 ps. In this thesis, the prototypes are presented for both their theoretical analyses and their circuit designs. The test results of the first prototype are also presented
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dhillon, Ravinder. "Diagnostic imaging pathways." University of Western Australia. School of Medicine and Pharmacology, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0126.

Повний текст джерела
Анотація:
[Truncated abstract] Hypothesis: There is deficiency in the evidence base and scientific underpinning of existing diagnostic imaging pathways (DIP) for diagnostic endpoints. Objective: a) To carry out systematic review of literature in relation to use of diagnostic imaging tests for diagnosis and investigation of 78 common clinical problems, b) To identify deficiencies and controversies in existing diagnostic imaging pathways, and to develop a new set of consensus based pathways for diagnostic imaging (DIP) supported by evidence as an education and decision support tool for hospital based doctors and general practitioners, c) To carry out a trial dissemination, implementation and evaluation of DIP. Methods: 78 common clinical presentations were chosen for development of DIP. For general practitioners, clinical topics were selected based on the following criteria: common clinical problem, complex in regards to options available for imaging, subject to inappropriate imaging resulting in unnecessary expenditure and /or radiation exposure, and new options for imaging of which general practitioners may not be aware. For hospital based junior doctors and medical students, additional criteria included: acute presentation when immediate access to expert radiological opinion may be lacking and clinical problem for which there is a need for education. Systematic review of the literature in relation to each of the 78 topics was carried out using Ovid, Pubmed and Cochrane Database of Systematic Reviews. ... The electronic environment and the method of delivery provided a satisfactory medium for dissemination. Getting DIP implemented required vigorous effort. Knowledge of diagnostic imaging and requesting behaviour tended to become more aligned with DIP following a period of intensive marketing. Conclusions: Systematic review of literature and input and feedback from various clinicians and radiologists led to the development of 78 consensus based Diagnostic Imaging Pathways supported by evidence. These pathways are a valuable decision support tool and are a definite step towards incorporating evidence based medicine in patient management. The clinical and academic content of DIP is of practical use to a wide range of clinicians in hospital and general practice settings. It is source of high level knowledge; a reference tool for the latest available and most effective imaging test for a particular clinical problem. In addition, it is an educational tool for medical students, junior doctors, medical imaging technologists, and allied health care personnel.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dhillon, Ravinder. "Diagnostic imaging pathways /." Connect to this title, 2006. http://theses.library.uwa.edu.au/adt-WU2007.0126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rijn, Jeroen Christoffel van. "Multidimensionality in diagnostic imaging." [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2006. http://dare.uva.nl/document/89940.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

OLDEN, JULIE, Pete Nielsen, Nicole Schechter, and Patrick Ackerman. "IMAGING DIAGNOSTIC LABORATORIES: BUSINESS PLAN." Thesis, The University of Arizona, 2008. http://hdl.handle.net/10150/190714.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Trill, Helen. "Diagnostic technologies for wound monitoring." Thesis, Cranfield University, 2006. http://hdl.handle.net/1826/1107.

Повний текст джерела
Анотація:
Chronic wound infections represent a worldwide problem, generating high morbidity and medical expense. Failure to control infections such as MRSA in the reparative process of a wound can cause disruption of normal anatomical structure and function, resulting in a chronic wound. Existing approaches to identifying infection largely involve surveying a range of physical parameters, and a limited use of non-invasive technologies. Evaluation is time consuming, and often results in inconsistencies in patient care. This project researches three possible alternative methodologies/technologies for the monitoring of wounds, by measuring components of wound fluid. Two of the three technologies are designed to be used by physicians and patients, similarly to commercially available home blood glucose test kits, and are based on the measurement of three biomarkers: glucose, ethanol and H2O2 in PBS, and in serum as surrogate wound fluid. The first is a voltammetric technique known as dual pulse staircase voltametry (DPSV), which produces peaks characteristic of particular analytes at an electrode. The second is an amperometric biosensor array, based on screen printed three electrode assembies of carbon, rhodinised carbon (glucose biosensor only) and Ag/AgCl reference. The glucose biosensor uses glucose oxidase enzyme as the biorecognition agent, the H2O2 biosensor is a mediated system using horseradish peroxidase enzyme and dimethylferrocene mediator, and the ethanol biosensor is a bienzyme mediated system utilising alcohol oxidase enzyme horseradish peroxidase enzyme and coupled dimethylferrocene mediator. Wounds are known to produce characteristic odours, therefore the third technology studied is a single sensor odour analyser with advanced data analysis to detect five commonly occuring wound bacteria, S.aureus, K.pneumoniae, S.pyogenes, E.coli and P.aeruginosa in growth media and surrogate wound fluid. This technology would be used as a 'near patient' monitoring system and is based on machine olfaction similar to that of a commercial electronic nose, but uses a single metal oxide sensor in combination with principle components analysis. DPSV scans of the individual analytes demonstrated distinctive peaks, exhibiting nonlinear relationships with concentration. A great deal of useful information was generated using this technique, however, limitations were discovered regarding repeatability and inter-analyte interference in mixtures. Limits of detection in surrogate wound fluid with the glucose biosensor, hydrogen peroxide biosensor, and ethanol biosensor were as follows: 169.5 µM glucose, 8.43 µM hydrogen peroxide, and 7.94 µM ethanol respectively (all at 99.7% confidence). Direct detection of ethanol from metabolically active S.aureus in surrogate wound fluid yielded a limit of detection of 1.23 x 108 CFU/ml at 99.7% confidence, and 19 µM in terms of ethanol specific response. The single sensor odour analyser demonstrated the ability to detect and discriminate between the three biomarkers, between five bacteria individually, and partial discrimination of paired bacteria (in broth and surrogate wound fluid). It was also found that S.aureus could be detected down to a cell density of 5x106CFU/ml in surrogate wound fluid, lower than that found for the biosensor concept.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hammadi, Shumoos T. H. "Novel medical imaging technologies for processing epithelium and endothelium layers in corneal confocal images. Developing automated segmentation and quantification algorithms for processing sub-basal epithelium nerves and endothelial cells for early diagnosis of diabetic neuropathy in corneal confocal microscope images." Thesis, University of Bradford, 2018. http://hdl.handle.net/10454/16924.

Повний текст джерела
Анотація:
Diabetic Peripheral Neuropathy (DPN) is one of the most common types of diabetes that can affect the cornea. An accurate analysis of the corneal epithelium nerve structures and the corneal endothelial cell can assist early diagnosis of this disease and other corneal diseases, which can lead to visual impairment and then to blindness. In this thesis, fully-automated segmentation and quantification algorithms for processing and analysing sub-basal epithelium nerves and endothelial cells are proposed for early diagnosis of diabetic neuropathy in Corneal Confocal Microscopy (CCM) images. Firstly, a fully automatic nerve segmentation system for corneal confocal microscope images is proposed. The performance of the proposed system is evaluated against manually traced images with an execution time of the prototype is 13 seconds. Secondly, an automatic corneal nerve registration system is proposed. The main aim of this system is to produce a new informative corneal image that contains structural and functional information. Thirdly, an automated real-time system, termed the Corneal Endothelium Analysis System (CEAS) is developed and applied for the segmentation of endothelial cells in images of human cornea obtained by In Vivo CCM. The performance of the proposed CEAS system was tested against manually traced images with an execution time of only 6 seconds per image. Finally, the results obtained from all the proposed approaches have been evaluated and validated by an expert advisory board from two institutes, they are the Division of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar and the Manchester Royal Eye Hospital, Centre for Endocrinology and Diabetes, UK.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bennett, Dr Alexander. ""Diagnostic and Prognostic Imaging in Spondyloarthropathy"." Thesis, University of Leeds, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.534424.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Technologies of diagnostic imaging"

1

Raghavachari, Ramesh. Design and quality for biomedical technologies: 21 January 2008, San Jose, California, USA. Edited by Society of Photo-optical Instrumentation Engineers. Bellingham, Wash: SPIE, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

A, Sharko Gail, ed. Pediatric imaging for the technologist. New York: Springer-Verlag, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Raghavachari, Ramesh, and Rongguang Liang. Design and quality for biomedical technologies II: 26 January 2009, San Jose, California, United States. Bellingham, Wash: SPIE, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Medicolegal issues for diagnostic imaging professionals. 4th ed. Boca Raton: Auerbach Publications, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Raghavachari, Ramesh, and Rongguang Liang. Design and quality for biomedical technologies V: 22-23 January 2012, San Francisco, California, United States. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Santhi, V., D. P. Acharjya, and M. Ezhilarasan. Emerging technologies in intelligent applications for image and video processing. Hershey PA: Information Science Reference, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Raghavachari, Ramesh, and Rongguang Liang. Design and quality for biomedical technologies IV: 23-25 January 2011, San Francisco, California, USA. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Opportunities in medical imaging careers. Lincolnwood, Ill: VGM Career Horizons, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sherry, Clifford J. Opportunities in medical imaging careers. Lincolnwood, Ill: VGM Career Horizons, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Opportunities in medical imaging careers. New York: McGraw-Hill, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Technologies of diagnostic imaging"

1

Kok, Hong Kuan, and Hamed Asadi. "Tutorial 15: Emerging Imaging Technologies." In Tutorials in Diagnostic Radiology for Medical Students, 235–40. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-31893-2_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Banta, H. David. "Medical imaging and other diagnostic technologies." In Anticipating and Assessing Health Care Technology, 67–78. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2693-6_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Havill, Deborah A., and D. M. Wilmot. "Diagnostic Ultrasound." In Pediatric Imaging for the Technologist, 137–47. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4690-9_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Qin, Ellen, and Hyunjoon Kong. "Nanomaterials for Diagnostic Imaging of the Brain." In Biomedical Engineering: Frontier Research and Converging Technologies, 77–89. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21813-7_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rguibi, Zakaria, Abdelmajid Hajami, and Zitouni Dya. "Automatic Searching of Deep Neural Networks for Medical Imaging Diagnostic." In Advanced Technologies for Humanity, 129–40. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94188-8_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Popelka, Gerald R., and Lisa L. Hunter. "Diagnostic Measurements and Imaging Technologies for the Middle Ear." In The Middle Ear, 211–51. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6591-1_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Newell, Mary S., and Anna I. Holbrook. "Emerging Technologies in Breast Imaging." In Breast Cancer Screening and Diagnosis, 427–48. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1267-4_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Montazeran, Mahdieh, Davide Caramella, and Mansoor Fatehi. "Patient Safety in Radiology." In Textbook of Patient Safety and Clinical Risk Management, 309–18. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59403-9_22.

Повний текст джерела
Анотація:
AbstractMedical imaging (in short radiology) includes diagnostic and interventional procedures and has an essential role in the diagnosis and treatment of diseases. The objective in this field of medicine is focused on providing diagnostic and therapeutic benefit to the patients along with protecting them from the possible hazards associated with the procedures. By continuously upgrading imaging technologies and improving imaging modalities, such as ultrasound imaging, X-ray-based imaging (radiography, fluoroscopy, and computed tomography), magnetic resonance imaging (MRI), and interventional radiology, safety has become more and more crucial. The potential hazards in radiology for the patients and the staff are multidimensional and will be discussed in the chapter.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ganz, Scott D. "Implant complications associated with two- and three-dimensional diagnostic imaging technologies." In Dental Implant Complications, 102–31. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119140474.ch5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lai, Wallace Wai-Lok. "Underground Utilities Imaging and Diagnosis." In Urban Informatics, 415–38. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8983-6_24.

Повний текст джерела
Анотація:
AbstractThe invisible and congested world of underground utilities (UU) is an indispensable mystery to the general public because their existence is invisible until problems happen. Their growth aligns with the continuous development of cities and the ever-increasing demand for energy and quality of life. To satisfy a variety of modern requirements like emergency or routine repair, safe dig and excavation, monitoring, maintenance, and upscaling of the network, two basic tasks are always required. They are mapping and imaging (where?), and diagnosis (how healthy?). This chapter gives a review of the current state of the art of these two core topics, and their levels of expected survey accuracy, and looks forward to future trends of research and development (Sects. 24.1 and 24.2). From the point of view of physics, a large range of survey technologies is central to imaging and diagnosis, having originated from electromagnetic- and acoustic-based near-surface geophysical and nondestructive testing methods. To date, survey technologies have been further extended by multi-disciplinary task forces in various disciplines (Sect. 24.3). First, it involves sending and retrieving mechanical robots to survey the internal confined spaces of utilities using careful system control and seamless communication electronics. Secondly, the captured data and signals of various kinds are positioned, processed, and in the future, pattern-recognized with a database to robustly trace the location and diagnose the conditions of any particular type of utilities. Thirdly, such a pattern-recognized database of various types of defects can be regarded as a learning process through repeated validation in the laboratory, simulation, and ground-truthing in the field. This chapter is concluded by briefly introducing the human-factor or psychological and cognitive biases, which are in most cases neglected in any imaging and diagnostic work (Sect. 24.4). In short, the very challenging nature and large demand for utility imaging and diagnostics have been gradually evolving from the traditional visual inspection to a new era of multi-disciplinary surveying and engineering professions and even towards the psychological part of human–machine interaction.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Technologies of diagnostic imaging"

1

Ozcan, Aydogan. "A Tale of Three Companies: Commercialization of Computational Imaging and Sensing Technologies (Conference Presentation)." In Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XVIII, edited by Anita Mahadevan-Jansen. SPIE, 2020. http://dx.doi.org/10.1117/12.2561262.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sruthi, S., and M. Sasikala. "A low cost thermal imaging system for medical diagnostic applications." In 2015 International Conference on Smart Technologies and Management  for Computing, Communication, Controls, Energy and Materials (ICSTM). IEEE, 2015. http://dx.doi.org/10.1109/icstm.2015.7225488.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Datta, Sumit, Vineeta Das, Samarendra Dandapat, and Bhabesh Deka. "A Novel Framework for Enhancement of Diagnostic Information in MR Imaging using Super-Resolution." In 2020 Advanced Communication Technologies and Signal Processing (ACTS). IEEE, 2020. http://dx.doi.org/10.1109/acts49415.2020.9350520.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bondarenko, Andrey, Yuriy Chizhov, Dilshat Uteshev, Dmitrijs Bliznuks, Alexey Lihachev, and Ilze Lihacova. "Use of machine learning approaches to improve non-invasive skin melanoma diagnostic method in spectral range 450 - 950nm." In Optics, Photonics and Digital Technologies for Imaging Applications VI, edited by Peter Schelkens and Tomasz Kozacki. SPIE, 2020. http://dx.doi.org/10.1117/12.2541764.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Çetingül, Müge Pirtini, Rhoda M. Alani, and Cila Herman. "Detection of Skin Cancer Using Transient/Thermal Imaging." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19193.

Повний текст джерела
Анотація:
The incidence of melanoma in the United States has been increasing dramatically over the past several years [1] with melanoma currently being the sixth most common cancer in the United States. At present, there are no systemic agents available that significantly extend the lifespan of patients with advanced disease and improved survival relies solely on early detection and adequate surgical management [2]. The need to improve the diagnostic accuracy and sensitivity for skin cancer while increasing biopsy efficiency yields to the implementation of imaging technologies in dermatology. Current in-vivo imaging tools in use including digital photography (total cutaneous imaging or imaging of individual lesions), and dermoscopy are highly subjective and without broadly applicable standards or quantitative criteria.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Marsh, Andy, and Christian Michael. "Application of 3D visualization techniques for telemedical diagnosis." In Advanced Imaging and Network Technologies, edited by Jan Bares, Christopher T. Bartlett, Paul A. Delabastita, Jose L. Encarnacao, Nelson V. Tabiryan, Panos E. Trahanias, and Arthur R. Weeks. SPIE, 1997. http://dx.doi.org/10.1117/12.266353.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jiang, Ren-qiang, Yue-lei Wu, Zhi-rong Lu, and Tie-jun Zhang. "The Optimization of Mathematic Model of Penumbral Imaging System’s Point Spread Function." In 18th International Conference on Nuclear Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/icone18-29743.

Повний текст джерела
Анотація:
In inertial confinement fusion (ICF) project, there are many diagnostic methods. Neutron penumbral imaging is one of the important technologies to diagnose the information about neutron spatial and temporal distribution in burn region of the core of a compressed pellet in the low yield fusion. In this study, a linear space invariant neutron penumbral imaging system was designed and established with Monte Carlo method, the system’s point spread function (PSF) was obtained. By fitting the obtained PSF, several mathematic models were obtained and compared. The improved “logistic function” mathematic model was chosen to reconstruct the coded penumbral image and the original neutron source image “T” was successfully was obtained.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Balas, Costas. "Novel optical imaging technologies for in vivo diagnosis and screening." In 2008 IEEE International Workshop on Imaging Systems and Techniques (IST). IEEE, 2008. http://dx.doi.org/10.1109/ist.2008.4659957.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ramme, Austin J., Vincent A. Magnotta, and Nicole M. Grosland. "Automated Building Block Assignments for Finite Element Mesh Development of Patient-Specific Orthopaedic Models." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206348.

Повний текст джерела
Анотація:
Medical imaging technologies have allowed for in vivo exploration and evaluation of the human musculoskeletal system. The utility of these technologies has grown exponentially as the time required for data collection has decreased and the image resolution has increased. Medical imaging obviously has diagnostic value, but the vast amount of information contained within each image set is useful in other important applications including the modeling and analysis of anatomic structures. With advances in both the resolution of the acquired images and computing power, patient-specific orthopaedic model development is becoming a reality.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Rabbani, K. S. "Focused impedance method (FIM) and pigeon hole imaging (PHI) as two potentially low cost and simple modalities for different diagnostic applications." In 7th International Conference on Appropriate Healthcare Technologies for Developing Countries. Institution of Engineering and Technology, 2012. http://dx.doi.org/10.1049/cp.2012.1454.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Technologies of diagnostic imaging"

1

Heese, V., N. Gmuer, and W. Thomlinson. A survey of medical diagnostic imaging technologies. Office of Scientific and Technical Information (OSTI), October 1991. http://dx.doi.org/10.2172/5819036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Heese, V., N. Gmuer, and W. Thomlinson. A survey of medical diagnostic imaging technologies. Office of Scientific and Technical Information (OSTI), October 1991. http://dx.doi.org/10.2172/10121224.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rosenberg, Ted J. HAARP Imaging Riometer Diagnostic. Fort Belvoir, VA: Defense Technical Information Center, July 1997. http://dx.doi.org/10.21236/ada343679.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Morimoto, A. K., W. J. Bow, and D. S. Strong. 3D ultrasound imaging for prosthesis fabrication and diagnostic imaging. Office of Scientific and Technical Information (OSTI), June 1995. http://dx.doi.org/10.2172/100518.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yadlowsky, Edward J., Eric Carlson, Farid Barakat, and Robert C. Hazelton. Density Imaging Diagnostic for Plasma Radiation Sources. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada437521.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Parasad, Rahul R., Alexander C. Crisman, Steven Gensler, Niansheng Qi, and Mahadevan Krishnan. Radiation Imaging Diagnostic for Plasma Radiation Sources. Fort Belvoir, VA: Defense Technical Information Center, May 2004. http://dx.doi.org/10.21236/ada423998.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Murph, Simona Hunyadi. Gold-manganese nanoparticles for targeted diagnostic and imaging. Office of Scientific and Technical Information (OSTI), November 2015. http://dx.doi.org/10.2172/1348898.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wissink, Martin L., Todd J. Toops, Charles Finney, Eric J. Nafziger, Derek A. Splitter, and Hassina Z. Bilheux. Neutron Imaging of Advanced Transportation Technologies. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1492162.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Howell, Calvin R., Chantal D. Reid, and Andrew G. Weisenberger. Radionuclide Imaging Technologies for Biological Systems. Office of Scientific and Technical Information (OSTI), May 2014. http://dx.doi.org/10.2172/1244531.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Marsh, R., N. Cherapy, and S. Fisher. Beam Imaging Diagnostic (BID) chamber blackening status March 2018. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1430985.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії