Добірка наукової літератури з теми "Sustainable solvent"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Sustainable solvent".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Sustainable solvent"
Welton, Tom. "Solvents and sustainable chemistry." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471, no. 2183 (November 2015): 20150502. http://dx.doi.org/10.1098/rspa.2015.0502.
Повний текст джерелаNguyen Thi, Hai Yen, Bao Tran Duy Nguyen, and Jeong F. Kim. "Sustainable Fabrication of Organic Solvent Nanofiltration Membranes." Membranes 11, no. 1 (December 28, 2020): 19. http://dx.doi.org/10.3390/membranes11010019.
Повний текст джерелаSels, Hannes, Herwig De Smet, and Jeroen Geuens. "SUSSOL—Using Artificial Intelligence for Greener Solvent Selection and Substitution." Molecules 25, no. 13 (July 3, 2020): 3037. http://dx.doi.org/10.3390/molecules25133037.
Повний текст джерелаBouguern, Mohamed Djihad, Anil Kumar Madikere Raghunatha Reddy, Xia Li, Sixu Deng, Harriet Laryea, and Karim Zaghib. "Engineering Dry Electrode Manufacturing for Sustainable Lithium-Ion Batteries." Batteries 10, no. 1 (January 22, 2024): 39. http://dx.doi.org/10.3390/batteries10010039.
Повний текст джерелаDong, Xiaobo, David Lu, Tequila A. L. Harris, and Isabel C. Escobar. "Polymers and Solvents Used in Membrane Fabrication: A Review Focusing on Sustainable Membrane Development." Membranes 11, no. 5 (April 23, 2021): 309. http://dx.doi.org/10.3390/membranes11050309.
Повний текст джерелаKluge, Steven, Karla Hartenauer, and Murat Tutuş. "Morphology Behavior of Polysulfone Membranes Made from Sustainable Solvents." Gases 4, no. 3 (June 25, 2024): 133–52. http://dx.doi.org/10.3390/gases4030008.
Повний текст джерелаEl Deeb, Sami. "Enhancing Sustainable Analytical Chemistry in Liquid Chromatography: Guideline for Transferring Classical High-Performance Liquid Chromatography and Ultra-High-Pressure Liquid Chromatography Methods into Greener, Bluer, and Whiter Methods." Molecules 29, no. 13 (July 5, 2024): 3205. http://dx.doi.org/10.3390/molecules29133205.
Повний текст джерелаJordan, Andrew, and Helen F. Sneddon. "Development of a solvent-reagent selection guide for the formation of thioesters." Green Chemistry 21, no. 8 (2019): 1900–1906. http://dx.doi.org/10.1039/c9gc00355j.
Повний текст джерелаSoares, Maria I. L., Ana L. Cardoso, and Teresa M. V. D. Pinho e Melo. "Diels–Alder Cycloaddition Reactions in Sustainable Media." Molecules 27, no. 4 (February 15, 2022): 1304. http://dx.doi.org/10.3390/molecules27041304.
Повний текст джерелаWang, Yadong, Mingfei Dai, Gang Luo, Jiajun Fan, James H. Clark, and Shicheng Zhang. "Preparation and Application of Green Sustainable Solvent Cyrene." Chemistry 5, no. 4 (October 21, 2023): 2322–46. http://dx.doi.org/10.3390/chemistry5040154.
Повний текст джерелаДисертації з теми "Sustainable solvent"
Dakubo, Francis. "Sustainable Mining - Solving the Problem of Chalcopyrite Treatment/Processing - Leaching, Solvent Extraction & Flotation." Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/604862.
Повний текст джерелаDraucker, Laura Christine. "Novel Solvent Systems for the Development of Sustainable Technology." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16188.
Повний текст джерелаOnwukamike, Kelechukwu Nnabuike. "Sustainable cellulose solubilization, regeneration and derivatization in a DBU-CO2 switchable solvent system." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0016/document.
Повний текст джерелаAs the most abundant source of carbon in our planet, without any competition with food or feed supplies, cellulose is a viable alternative to replace the widely used and unsustainable fossil-based polymers. However, the majority of researchers working on this fascinating biopolymer fail to incorporate sustainability considerations during cellulose chemical transformation to make materials. The consequence is a shift of the “environmental burden” to other stages of the process cycle. Therefore, to ensure sustainability, both the renewability feature of cellulose as well as sustainability considerations concerning its transformation processes are necessary. This implies to consider the solvent, the reactants, the derivatization process and the wastes produced as well as an evaluation of the suitability of the resultant products, for which relevant properties have to be obtained to compete with existing alternatives. This thesis is therefore divided into three main parts (solubilization, regeneration and derivatization of cellulose), and addresses the various concerns of sustainability during cellulose transformation with an end-goal of making processable materials.In the first part of the thesis, a sustainable solvent system for cellulose was investigated. In this regard, a detailed optimization study of the DBU-CO2 switchable solvent system was performed using in-situ infrared spectroscopy. Upon optimization, up to 8 wt.% cellulose could be dissolve within 15 min at 30 °C using low CO2 pressure (2-5 bar). What makes this solvent system sustainable, when compared to other classical cellulose solvents, includes: easier recyclability by simple release of the CO2 pressure, fast and mild solubilization and lower cost compared to ionic liquids. Finally, by successfully trapping the formed in-situ cellulose carbonate using an electrophile, a clearer understanding of this solvent system was established.The successful optimization of a sustainable solvent system for cellulose led to the second part of the thesis: the regeneration of cellulose. Here, the general solubilization and coagulation ways followed by freeze-drying was adopted to prepare cellulose aerogels. Various processing conditions such as cellulose concentration, coagulating solvent and super base, were investigated on their effect of the aerogels properties (density, morphology, pore size). The obtained results showed aerogels with densities between 0.05 and 1.2 g/cm3, porosities between 92 and 97 % and pore sizes between 1.1 and 4.5 μm. In addition, from scanning electron microscopy (SEM), open large macroporous inter-connected cellulose networks were observed.The derivatization of cellulose to make thermally processable materials is covered in the third part of the thesis. This part is divided into two sub-parts; transesterification and multicomponent reaction modification. [...]
Als Kohlenstoffquelle mit der größten Verfügbarkeit auf unserem Planeten, ohne Konkurrenz zur Lebens- und Futtermittelversorgung, stellt Cellulose eine interessante Alternative dar, um die vielfältig genutzten, nicht-nachhaltigen Polymere auf Erdölbasis zu ersetzen. Die Mehrheit der Forscher, die mit diesem faszinierenden Biopolymer arbeiten, vernachlässigt allerdings Überlegungen zur Nachhaltigkeit in die chemische Modifizierung von Cellulose bei der Herstellung von Materialien zu integrieren. Die Konsequenz dessen ist eine Verlagerung der Umweltbelastung auf andere Abschnitte des Prozess-Zyklus. Um Nachhaltigkeit sicherzustellen, sind deshalb sowohl der erneuerbare Aspekt von Cellulose als auch Überlegungen zur Nachhaltigkeit im Reaktionsprozess wichtig. Dies beinhaltet die Berücksichtigung des Lösungsmittels, die Reaktanden, des Derivatisierungsprozesses, die produzierten Abfälle sowie eine Beurteilung der Nachhaltigkeit der resultierenden Produkte, die relevante Eigenschaften aufweisen müssen um mit bestehenden Alternativen konkurrieren zu können. Diese Arbeit ist deshalb in drei Teile gegliedert (Löslichkeit, Rückgewinnung und Derivatisierung von Cellulose) und befasst sich mit den verschiedenen Aspekten der Nachhaltigkeit während der Umsetzung von Cellulose mit dem Ziel, verarbeitbare Materialien herzustellen.Im ersten Teil der Arbeit wurde ein nachhaltiges Lösungsmittelsystem für Cellulose untersucht. In diesem Zusammenhang wurde eine detaillierte Optimierungsstudie des DBU-CO2 schaltbaren Lösungsmittelsystems mittels in-situ Infrarot Spektroskopie durchgeführt. Nach der Optimierung konnten bis zu 8 Gew.-% Cellulose innerhalb von 15 min. bei 30°C und einem niedrigen CO2-Druck (2-5 bar) gelöst werden. Verglichen mit klassischen Lösungsmitteln für Cellulose weist dieses Lösungsmittelsystem verschiedene nachhaltige Aspekte auf: Einfaches Recycling durch entfernen des CO2-Drucks, schnelles und mildes Auflösen und geringere Kosten als ionische Flüssigkeiten. Durch erfolgreiches Abfangen des in-situ gebildeten Cellulose-Carbonats mit einem Elektrophil, konnte schließlich ein besseres Verständnis dieses Lösungsmittelsystems erreicht werden. Die erfolgreiche Optimierung eines Lösungsmittelsystems für Cellulose führte zum zweiten Teil der Arbeit: der Regenerierung von Cellulose. Hier wurde der bereits mit anderen Systemen beschriebene Weg von Lösen und Ausfällen, gefolgt von Gefriertrocknen übernommen, um Cellulose-Aerogele herzustellen. Verschiedene Bedingungen bei der Verarbeitung wie die Cellulose-Konzentration, Lösungsmittel zum Ausfällen und die Superbase und deren Effekt auf die Eigenschaften der Aerogele (Dichte, Morphologie und Porengröße) wurden untersucht. So wurden Aerogele mit einer Dichte von 0.05-1.20 g/cm3, Porositäten zwischen 92 und 97% und Porengrößen zwischen 1.1 und 4.5 μm erhalten. Zusätzlich wurden im Rasterelektronenmikroskop offene große und makroporöse, miteinander verbundene Cellulose-Netzwerke beobachtet. [...]
Whitaker, Mariah R. "Design of Heterogeneous Catalysts Incorporating Solvent-Like Surface Functionality for Sustainable Chemical Production." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1563303994362428.
Повний текст джерелаFullarton, Claire. "Working towards a new sustainable rechargeable battery : zinc, conducting polymer and deep eutectic solvent system." Thesis, University of Leicester, 2015. http://hdl.handle.net/2381/31863.
Повний текст джерелаBHANDARI, SHASHANK. "Design of a solvent recovery system in a pharmaceutical manufacturing plant." Thesis, KTH, Skolan för kemivetenskap (CHE), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-190901.
Повний текст джерелаShearouse, William C. "Development and mechanistic understanding of ball milling as a sustainable alternative to traditional synthesis." University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1353089340.
Повний текст джерелаZhang, Zhaoxi. "A study of solute-solvent interactions in methanol solutions : potential new sustainable technologies for refinery product upgrading/separating and methanol utilization." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:c01e67d6-ed58-4c7c-8913-00f3e0a6408c.
Повний текст джерелаOnwukamike, Kelechukwu Nnabuike [Verfasser], M. A. R. [Akademischer Betreuer] Meier, and H. [Akademischer Betreuer] Cramail. "Sustainable Cellulose Solubilization, Regeneration and Derivatization in a DBU-CO$_2}$ Switchable Solvent System / Kelechukwu Nnabuike Onwukamike ; Betreuer: M.A.R. Meier, H. Cramail." Karlsruhe : KIT-Bibliothek, 2019. http://d-nb.info/1181190525/34.
Повний текст джерелаChagnoleau, Jean-Baptiste. "Extraction de composés naturels à l'aide de solvants durables : expérience et modélisation." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5023.
Повний текст джерелаNatural plant extracts are valuable ingredients for a wide range of applications, particularly in the cosmetic or pharmaceutical industries or in the perfume or food industries. But the extraction of these natural compounds remains mainly carried out using volatile organic solvents (VOCs) and processes with significant environmental impacts. In the recent context of green chemistry and eco-extraction, sustainable alternative solvents have been developed to replace VOCs. Among these solvents, biobased solvents (BioSol), deep eutectic solvents (DES) and ionic liquids (ILs) have been the subject of intense studies over the last two decades. However, current developments in plant extraction techniques are mainly based on experimental trials, which limits the number of extraction conditions and solvents that can be evaluated. To address this limitation, several modeling tools have been developed to predict solvent properties and support solvent choice. In Chapter I, the sustainability of alternative solvents will be discussed and tools to predict solvent properties will be introduced.In the context of the circular economy and waste recycling, by-products are now considered as an alternative source of natural compounds. In chapter II of this work, the valorization of rejected kiwifruit is proposed by the extraction of bioactive compounds using sustainable solvents, namely deep eutectic solvents (DES). The results show that kiwi peel extracts obtained with carboxylic acid-based DES exhibit improved antioxidant activity compared to conventional solvents.In the field of perfumery or food industries, the extraction techniques currently used have several drawbacks. In chapter III of this work, alternative techniques were studied to propose new fragrance ingredients obtained using sustainable solvents. Extracts of leaves and fruits of pink pepper (Schinus molecular L.) were obtained by solid-liquid extraction and hydrodistillation in aqueous solutions of DES or IL, while extracts of petals of Rosa centifolia were obtained by solid-liquid extraction in BioSol, DES and IL.After extraction from the plants, the natural extracts obtained are complex chemical mixtures. Certain applications requiring the use of pure compounds, several separation techniques have been developed. Centrifugal partition chromatography (CPC) is a separation technique using the two phases of a biphasic system as mobile and stationary phase to perform preparative chromatographic separations. The possibility of using sustainable solvents and in particular DES to form biphasic systems for CPC has been little studied. In Chapter IV of this work, the development of biphasic systems containing DES were investigated as potential systems for separating natural compounds. Finally, the potential of the COSMO-RS model in the design of two-phase systems for the separation of natural compounds was investigated. The results demonstrate that COSMO-RS predicts in most cases the binodal curves of biphasic systems and the partition coefficients of natural compounds with good accuracy. Thus, these results indicate that COSMO-RS can be a powerful tool in the design of separation and purification systems.Overall, this work provides insight into the potential of various sustainable solvents for the extraction and separation of natural compounds
Книги з теми "Sustainable solvent"
Vieri, Marco, ed. SPARKLE - Entrepreneurship for Sustainable Precision Agriculture. Florence: Firenze University Press, 2020. http://dx.doi.org/10.36253/978-88-5518-044-3.
Повний текст джерелаShah, Wahida Patwa. Community problem solving for sustainable development: A review of Kenya grassroots women's initiatives. Nairobi, Kenya: Kenya Energy and Environment Organizations, 1994.
Знайти повний текст джерелаTumin, Valeriy, Elena Zenkina, Ol'ga Ivanova, Petr Kostromin, and Aleksandra Minchenkova. Management of sustainable development of organizations and territories. ru: INFRA-M Academic Publishing LLC., 2024. http://dx.doi.org/10.12737/2147031.
Повний текст джерелаSantos, Silvana Romano, and Paulo Yassuhide Fujioka. Iniciativa Solvin 2008: Arquitetura sustentável. São Paulo: Romano Guerra Editora, 2008.
Знайти повний текст джерелаManuel, Agosin, ed. Solving the riddle of globalization and development. New York: Routledge, 2006.
Знайти повний текст джерелаInternational, Conference on Case Method Research and Case Method Application (12th 1995 Maribor Slovenia). Environmental problem solving: From cases and experiments to concepts, knowledge, tools and motivation : proceedings of the 12th International Conference on Case Method Research and Case Method Application. Munchen: Hampp, 1997.
Знайти повний текст джерелаRybarová, Daniela, Brigita Boorová, Gabriela Dubcová, Katarína Grančičová, Ivona Ďurinová, Denisa Gajdová, Vladimír Hojdik, et al. Socio-economic Determinants of Sustainble Consumption and Production II. Edited by Daniela Rybárová. Brno: Masaryk University Press, 2021. http://dx.doi.org/10.5817/cz.muni.p210-8640-2021.
Повний текст джерелаPoletaeva, Vladislava. Financial mechanism for the formation of the economy of sustainable industrial growth. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1347148.
Повний текст джерелаFarouq-Ali, S. M., Bita Bayestehparvin, and Mohammad Kariznovi. Sustainable Solvent Based Recovery Methods for Unconventional Reservoirs. Elsevier Science & Technology Books, 2022.
Знайти повний текст джерелаGreen Sustainable Process for Chemical and Environmental Engineering and Science: Supercritical Carbon Dioxide As Green Solvent. Elsevier, 2019.
Знайти повний текст джерелаЧастини книг з теми "Sustainable solvent"
Tanaka, Koichi. "CHAPTER 14. Solvent-free Conditions." In Sustainable Organic Synthesis, 391–418. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839164842-00391.
Повний текст джерелаHaas, Paul, Stefan Pfeifer, Jannes Müller, Christian Bradtmöller, and Stephan Scholl. "Separation of the Electrolyte—Solvent Extraction." In Sustainable Production, Life Cycle Engineering and Management, 155–76. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70572-9_9.
Повний текст джерелаThakore, Ruchita R., and Balaram S. Takale. "CHAPTER 13. Environmentally Benign Media: Water, AOS, and Water/Organic Solvent Azeotropic Mixtures." In Sustainable Organic Synthesis, 362–90. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839164842-00362.
Повний текст джерелаPanakkal, Elizabeth Jayex, Manvitha Theegala, Srihita Grashma Chaparla, Keerthi Katam, Nichaphat Kitiborwornkul, and Malinee Sriariyanun. "Deep Eutectic Solvent Pretreatment of Durian Peel for Enhanced Bioethanol Production." In Environment and Sustainable Development, 463–74. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4101-8_35.
Повний текст джерелаSingh, Rashmi. "Generation of Nanoparticles from Waste via Solvent Extraction Method." In Handbook of Green and Sustainable Nanotechnology, 1–23. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-69023-6_113-1.
Повний текст джерелаSingh, Rashmi. "Generation of Nanoparticles from Waste via Solvent Extraction Method." In Handbook of Green and Sustainable Nanotechnology, 513–35. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-16101-8_113.
Повний текст джерелаDoe, P., C. A. Danquah, K. A. Ohemeng, S. Nutakor, B. Z. Braimah, A. Amaglo, M. Abdul-Fatah, et al. "Acute and Sub-acute Toxicity Studies of Solvent Extracts of Crinum pedunculatum Bulbs R.Br." In Sustainable Education and Development – Sustainable Industrialization and Innovation, 752–62. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-25998-2_59.
Повний текст джерелаDubé, Marc A., and Somaieh Salehpour. "Towards Sustainable Solution Polymerization: Biodiesel as a Polymerization Solvent." In Green Polymerization Methods, 143–61. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527636167.ch7.
Повний текст джерелаRivas, Maria Elena. "Acoustic Synthesis (Solvent-Free) and Resonant Acoustic Mixing (RAM)." In Mechanochemistry and Emerging Technologies for Sustainable Chemical Manufacturing, 173–80. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003178187-10.
Повний текст джерелаZhang, Zong, Yi Xue, Xianqing Zhu, Xian Li, Hong Yao, and Kouichi Miura. "Combustion Behavior of Low-Rank Coal Upgraded by Degradative Solvent Extraction." In Clean Coal Technology and Sustainable Development, 31–37. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2023-0_4.
Повний текст джерелаТези доповідей конференцій з теми "Sustainable solvent"
Ikegwu, Ugochukwu M., Victor M. Zavala, and Reid C. Van Lehn. "Screening Green Solvents for Multilayer Plastic Films Separation." In Foundations of Computer-Aided Process Design, 763–70. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.162050.
Повний текст джерелаMungu�a-L�pez, Aurora del C., Panzheng Zhou, Ugochukwu M. Ikegwu, Reid C. Van Lehn, and Victor M. Zavala. "A Fast Computational Framework for the Design of Solvent-Based Plastic Recycling Processes." In Foundations of Computer-Aided Process Design, 814–19. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.175924.
Повний текст джерелаRamos, Fernando D., Mat�as H. Ramos, Vanina Estrada, and M. Soledad Diaz. "Enhancing PHAs Production Sustainability: Biorefinery Design through Carbon Source Diversity." In Foundations of Computer-Aided Process Design, 868–75. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.150748.
Повний текст джерела"Biodiesel purification by solvent-aided crystallization using n-hexane as solvent." In Sustainable Processes and Clean Energy Transition. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902516-15.
Повний текст джерелаDoolin, Alexander, Rhys Charles, Catherine De Castro, Rodrigo Garcia Rodriguez, Emmanuel Pean, Rahul Patidar, Tom Dunlop, Cecile Charbonneau, Trystan Watson, and Matthew Davies. "Sustainable Solvent Selection for Perovskite Solar Cells." In Materials for Sustainable Development Conference (MAT-SUS). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.nfm.2022.166.
Повний текст джерела"Absorption of acid gases (CO2, H2S) from natural gas using a ternary blend of N-methyldiethanolamine (MDEA), 2-amino-2-methyl-1-propanol (AMP), and Sulfolane." In Sustainable Processes and Clean Energy Transition. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902516-2.
Повний текст джерела"Microwave degradation of carbon fiber reinforced plastics in choline chloride." In Sustainable Processes and Clean Energy Transition. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902516-6.
Повний текст джерела"Automated determination of optimal component design for a binary solvent for absorption-based acid gas removal." In Sustainable Processes and Clean Energy Transition. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902516-31.
Повний текст джерелаLall, Pradeep, Daniel Karakitie, and Scott Miller. "Process Performance Interactions for Additively Printed Water-Based Nanoparticle Sustainable Silver-Ink With Ultrasonic Atomization on Aerosol Jet Printer." In ASME 2023 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/ipack2023-111958.
Повний текст джерела"Towards green extraction: A study on solvent selection and methods for antioxidant activities of Diplazium esculentum Retz. and Stenochlaena palustris." In Sustainable Processes and Clean Energy Transition. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902516-56.
Повний текст джерелаЗвіти організацій з теми "Sustainable solvent"
Saavedra, José Jorge, and Gerard Alleng. Sustainable Islands: Defining a Sustainable Development Framework Tailored to the Needs of Islands. Inter-American Development Bank, December 2020. http://dx.doi.org/10.18235/0002902.
Повний текст джерелаbin Ahsan, Wahid. The SEED Framework: An Evidence-Based, Human-Centered Approach to Solving Complex Social Problems. Userhub, July 2024. http://dx.doi.org/10.58947/journal.frde45.
Повний текст джерелаHernández, Manuel, Máximo Torero, Miguel Robles, César Falconi, and Eduardo Maruyama. A Framework for Sustainable Food Security for Latin America and the Caribbean. Inter-American Development Bank, September 2012. http://dx.doi.org/10.18235/0009050.
Повний текст джерелаEsteban Regino, Edna Margarita, José David Torrenegra Ariza, and Enrique Carlos Urzola Mestra. Use of Design Thinking to Generate Ideas for Digital, Social, and Solidarity Entrepreneurship. Ediciones Universidad Cooperativa de Colombia, December 2022. http://dx.doi.org/10.16925/gcnc.43.
Повний текст джерелаKeinan, Ehud. The 18th Asian Chemical Congress and the 20th General Assembly of the FACS. AsiaChem Magazine, November 2020. http://dx.doi.org/10.51167/acm00015.
Повний текст джерелаYun, Caty, and Karen DeMoss. How California's Teacher Residencies Are Helping to Solve Teacher Shortages and Strengthen Schools. Prepared To Teach, November 2020. http://dx.doi.org/10.61625/pzfz4024.
Повний текст джерелаVera Martínez, Paola Selene. Working Paper PUEAA No.1. Green policies within the framework of the socio-ecological system and the Sustainable Development Goals: an approach from the cement industry. Universidad Nacional Autónoma de México, Programa Universitario de Estudios sobre Asia y África, 2021. http://dx.doi.org/10.22201/pueaa.001r.2021.
Повний текст джерелаBurov, Alexander S. ANALYTICAL NOTE ON THE RESULTS OF AN EMPIRICAL STUDY OF SOCIAL RESPONSIBILITY AND VALUE ORIENTATIONS OF STUDENTS. SIB-Expertise, December 2023. http://dx.doi.org/10.12731/er0758.18122023.
Повний текст джерелаKokurina, Olga Yu, and Alexander S. Burov. METHODOLOGY OF EMPIRICAL RESEARCH OF SOCIAL RESPONSIBILITY AND VALUE ORIENTATIONS OF STUDENTS. SIB-Expertise, December 2023. http://dx.doi.org/10.12731/er0757.18122023.
Повний текст джерелаWandeler, Christian, and Felipe Mercado. Fresno County Afterschool Transportation Education. Mineta Transportation Institute, June 2024. http://dx.doi.org/10.31979/mti.2024.2355.
Повний текст джерела