Добірка наукової літератури з теми "Surfaces actives"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Surfaces actives".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Surfaces actives"
Costa, Alexandre Magno Megale, Elizabeth Ferreira Martinez, Ana Paula Dias Demasi, and Vera Cavalcanti de Araújo. "INFLUENCE OF DIFFERENT TITANIUM SURFACE TREATMENTS ON THE BIOLOGICAL BEHAVIOR OF OSTEOBLASTIC CELLS." Centro de Pesquisas Avançadas em Qualidade de Vida 16, V16N2 (2024): 1. http://dx.doi.org/10.36692/v16n2-44.
Повний текст джерелаPopa, Camelia Lǎcrǎmioara. "Graphical Method in CAD Environment for Profiling End Mill Tool." Applied Mechanics and Materials 809-810 (November 2015): 787–92. http://dx.doi.org/10.4028/www.scientific.net/amm.809-810.787.
Повний текст джерелаDjagni, Kokou K., and Michel Fok. "Dangers potentiels de l’utilisation des insecticides dans la culture cotonnière au Togo de 1990 à 2010." Cahiers Agricultures 28 (2019): 23. http://dx.doi.org/10.1051/cagri/2019023.
Повний текст джерелаLuengo, Gustavo S., Anne-Laure Fameau, Fabien Léonforte, and Andrew J. Greaves. "Surface science of cosmetic substrates, cleansing actives and formulations." Advances in Colloid and Interface Science 290 (April 2021): 102383. http://dx.doi.org/10.1016/j.cis.2021.102383.
Повний текст джерелаTatini, Duccio, Paolo Tempesti, Francesca Ridi, Emiliano Fratini, Massimo Bonini, and Piero Baglioni. "Pluronic/gelatin composites for controlled release of actives." Colloids and Surfaces B: Biointerfaces 135 (November 2015): 400–407. http://dx.doi.org/10.1016/j.colsurfb.2015.08.002.
Повний текст джерелаKaushik, Prerna, Ravinder Verma, Vineet Mittal, Saurabh Bhatia, Anubhav Pratap-Singh, and Deepak Kaushik. "Flavor Microencapsulation for Taste Masking in Medicated Chewing Gums—Recent Trends, Challenges, and Future Perspectives." Coatings 12, no. 11 (October 31, 2022): 1656. http://dx.doi.org/10.3390/coatings12111656.
Повний текст джерелаZhang, Fan, Haoran Tao, Yilin Li, Yanbing Wang, Yingying Zhou, Qunna Xu, and Jianzhong Ma. "Enhanced Pickering Emulsion Stabilization of Cellulose Nanocrystals and Application for Reinforced and Hydrophobic Coatings." Coatings 12, no. 10 (October 20, 2022): 1594. http://dx.doi.org/10.3390/coatings12101594.
Повний текст джерелаGenova, Chiara, Elsa Fuentes, Gabriele Favero, and Beatriz Prieto. "Evaluation of the Cleaning Effect of Natural-Based Biocides: Application on Different Phototropic Biofilms Colonizing the Same Granite Wall." Coatings 13, no. 3 (February 26, 2023): 520. http://dx.doi.org/10.3390/coatings13030520.
Повний текст джерелаTabuchi, Nobuhito, Tadashi Watanabe, Manabu Hattori, Kenichi Sakai, Hideki Sakai, and Masahiko Abe. "Adsorption of Actives in Ophthalmological Drugs for Over-The-Counter on Soft Contact Lens Surfaces." Journal of Oleo Science 58, no. 1 (2009): 43–52. http://dx.doi.org/10.5650/jos.58.43.
Повний текст джерелаBisset, Nicole B., Graham R. Webster, Yao Da Dong, and Ben J. Boyd. "Understanding the kinetic mixing between liquid crystalline nanoparticles and agrochemical actives." Colloids and Surfaces B: Biointerfaces 175 (March 2019): 324–32. http://dx.doi.org/10.1016/j.colsurfb.2018.11.063.
Повний текст джерелаДисертації з теми "Surfaces actives"
Berthet, Guillaume. "Revêtements diamant pour surfaces actives sur capteurs du domaine pétrolier." Electronic Thesis or Diss., Paris 6, 2017. http://www.theses.fr/2017PA066660.
Повний текст джерелаIn the field of oil and gas industry, Inconel alloys are largely used for their high strength and good corrosion resilience to H2S, CO2 and carboxylic acids. However, those of despite their excellent properties compare to other alloys, some specific oil and gas parts such as the sensitive areas of some sensors may require a special attention as high pressure high temperature (HPHT) environment, corrosion and abrasion may affect their performances in the long term. Additionally, oil and gas sensors may often be exposed, during the same drilling work, to various drilling fluids containing hydrophilic solid particles or heavy molecules such as asphaltenes, resins or heavy alkanes which tend to aggregate on hydrophilic alloy surfaces. Diamond coatings have thus been identified as attractive candidates to protect sensor used during drilling operations. Indeed, diamond materials due to their excellent hardness and wear, low friction coefficient, corrosion resilience and chemical inertness further to high natural resilience to fouling are especially suitable to be used in harsh environments. However, diamond coating on Ni-alloy such as Inconel could not be done by MP-CVD common processes. The current study has proposed solutions, and namely the development of three different processes aiming at a strong and adherent diamond coating on Inconel718. These three processes differ by their roughness and their difficulties of implementation. Their advantages for density-viscosity sensors have been assessed in various drilling fluids, and two specific approaches have been identified as particularly promising to mitigate fouling, namely (i) to create a diamond superhydrophobic surface through micro-structuration to get the antifouling Lotus properties, and (ii) the optimization of an electrochemical treatment aiming at cleaning in situ the diamond surfaces downhole. This study has led to propose reaction mechanisms and demonstrated the role of degraded water on the electrochemical treatment. The thesis has demonstrated the potentialities and identified the limits of those approaches. Efficiency of the electrochemical process applied to drilling fluids and crude oils fouling have been successively demonstrated
Breton, Sylvain. "Dynamique des surfaces planétaires actives : quantification des paysages, modélisation et inversion." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1280.
Повний текст джерелаImpact crater are often used in the study of planetary surfaces. On the one hand, statistics on crater number provide the age of the surface, on the other hand, their shapes reflect the surface processes they witnessed. This study combines the statistic and morphology approaches in order to investigate the timing and intensity of sedimentary and volcanic processes of planetary surfaces. The use of crater depth measurements add a dimension to frequency distributions with the introduction of size and depth frequency distribution (SDFD). SDFSs can be interpreted in term of crater obliteration rates thanks to crater chronology models. We also developed models of crater population taking into account obliteration. Mars surface is highly cratered with many craters displaying signs of modifications by volcanic process, sedimentation and erosion. We interpreted SDFDs using a classic crater chronology system, to produce global maps of obliteration at different epochs of Mars. During Noachian, obliteration rates reach several thousands m/Gy, but rapidly decrease during early Hesperian and are close to 0 during Amazonian. Obliteration on the province of Tharsis decreased slower, suggesting a persistence of volcanic activity until early Amazonian. Northern lowlands witness Amazonian obliteration rates one order of magnitude higher than the rest of the planet, which may indicate the continuous formation of Vastitas Borealis during middle Amazonian. In addition to our global approach, we computed recent obliteration rates from mapping of high resolution images on landing sites of rover missions. Mawrth Vallis and Oxia Planum present significant obliteration rates, especially on units containing hydrated minerals
Gouaillard, Alexandre. "Contexte générique bi-multirésolution basé ondelettes pour l'optimisation d'algorithmes de surfaces actives." Lyon, INSA, 2005. http://theses.insa-lyon.fr/publication/2005ISAL0073/these.pdf.
Повний текст джерелаDans le cadre de l'analyse de données anatomiques, la segmentation est une étape indispensable. Certaines applications (criblage par imagerie de souris transgénique, par exemple) nécessitent impérativement de réaliser cette opération de manière rapide et robuste pour respecter les contraintes de débits d'acquisition et d'automatisation de l'analyse. La robustesse dans la segmentation des organes anatomiques est obtenue en s'appuyant sur des modèles maillés déformés par des techniques de type contours actifs. Cette stratégie de segmentation, déjà ancienne (Kass et al. , 1988 – Cohen, 1991) est pertinente et a fait ses preuves. Compte tenu de la taille des modèles utilisés (104 à 106 sommets), le temps de calcul pour la segmentation est très élevé. Des approches multi échelles et/ou multirésolution sur images ont déjà été utilisées avec succès pour améliorer la robustesse et la vitesse de convergence. Mais jusqu'ici, ce type d'approches n'avait pas été appliqué au modèle. L'objectif principal de la thèse est d'accélérer les méthodes de contours actifs / surfaces actives grâce à une décomposition multirésolution sur bases d'ondelettes des données et du modèle comme illustré par l'image précédente. Le résultat de la thèse est un environnement d'optimisation générique dans lequel n'importe quel algorithme de surface active discrète peut être plongé. Une modélisation mathématique de l'algorithme ainsi construit démontre un gain en complexité d'un facteur 3 dans le domaine d'utilisation envisagé. De plus, la convergence est encore accélérée par l'approche multirésolution, ce qui permet d'atteindre dans les cas réels des gains en vitesse de l'ordre de 100
Kurylo, Ievgen. "Surfaces actives pour l'activation contrôlable de la programmation moléculaire basée sur l'ADN en microfluidique." Thesis, Lille 1, 2018. http://www.theses.fr/2018LIL1I073/document.
Повний текст джерелаLiving organisms perform complex information processing tasks with a help of intertwined chemical reaction networks (CRNs) and diffusion processes. These biological phenomena inspired scientists to design from the bottom-up dynamical systems with complex spatiotemporal behaviour. DNA provides a perfect solution for building these synthetic CRNs. Our research work focused on designing active surfaces with the aim to provide a convenient way to interact in microfluidics with the PEN toolbox (as an example of DNA-based CRNs) and explore the full potential of these novel biochemistry tools. We will study the step by step assembly and optimisation of the PEN toolbox parameters. Next, we will discuss the construction and characterisation of active surfaces, which provide loading and controllable release of DNA input, based on formation and electrochemical cleavage of gold-thiol bond. We will also provide a technological solution to integrate these surfaces and the PEN toolbox in microfluidics. We will show controllable triggering of basic activation and autocatalysis PEN toolbox modules. We will further apply our method for spatiotemporal control of autocatalytic CRNs, which have higher stability then simple autocatalytic module while still providing an exponential signal amplification contrary to the activation module. This approach allows us to investigate and optimise the parameters of our technology. Finally, we will discuss the construction of active surfaces with irreversibly bound DNA, which provides a higher level of the PEN toolbox spatiotemporal behaviour, based on electrical polarisation and tuning the shape of surface-attached DNA patterns
Gouaillard, Alexandre Odet Christophe. "Contexte générique bi-multirésolution basé ondelettes pour l'optimisation d'algorithmes de surfaces actives avelet-based bi-multiresolution framework for active contour models /." Villeurbanne : Doc'INSA, 2006. http://docinsa.insa-lyon.fr/these/pont.php?id=gouaillard.
Повний текст джерелаHurtrez, Guy. "Etude des copolymères poly(styrène-b-oxyde d'éthylène) : synthèses, propriétés colloïdales et tensio-actives." Mulhouse, 1992. http://www.theses.fr/1992MULH0257.
Повний текст джерелаSefti, Rania. "Méthodes d'approximation de contours et de surfaces actifs pour la segmentation d'images médicales." Electronic Thesis or Diss., Orléans, 2024. http://www.theses.fr/2024ORLE1037.
Повний текст джерелаAutomatic information extraction and object detection from medical images has advanced significantly in recent years. These advances offer clinicians new opportunities for exploration and diagnostic support. However, the segmentation process remains complex and presents many challenges. The aim of this thesis is to develop medical image segmentation methods based on B-Snakes. By exploiting the properties of spline functions, we have improved the accuracy and performance of parametric active contours (or active surfaces) for medical image segmentation. First, we introduced a new generalised Hermite spline approximation function with optimal support and controlled interpolation error. Then, using a deep learning model, we developed a new energy term that emphasises the importance of intensity variation and texture analysis. We then introduced a balancing step based on the geometry of the object and its curve/surface properties. This aligns the balanced Snake surface with the complex parts of theobject. Finally, we introduced a new snake deformation algorithm called Progressive Iterative Deformation (PID).This iteratively adjusts the control points to construct a series of fitting curves until the boundary of the object isdetected, without the need to solve energy minimisation problems. The proposed techniques have been rigorously evaluated, demonstrating their effectiveness and robustness under a variety of application conditions, including a wide range of data and different imaging modalities
Moura, Tulio-Flavio. "Relations interfaciales, entre molécules actives végétales et substances auxiliaires, induites par la nébulisation : application aux extraits de Ruscus aculeatus L. et Malpighia glabra L." Montpellier 1, 1994. http://www.theses.fr/1994MON13520.
Повний текст джерелаNguyen, Hoang Truc Phuong. "Formulation de nanosystèmes et évaluation de leur potentiel pour la délivrance cutanée de molécules actives." Thesis, Tours, 2015. http://www.theses.fr/2015TOUR3806/document.
Повний текст джерелаTwo types of core-shell nanosystems have been evaluated for dermatological and cosmetic applications. Lipid nanocapsules (LNC) are obtained by a method that has already been described in the literature. Their composition is adapted for incorporation of a specific cosmetic ingredient. Alginate nanocapsules (ANC) are developed with the aid of experimental design. They consist of a triglyceride core with a rigid calcium alginate shell obtained by ionic gelation of the surface of a nanoemulsion. By incorporating fluorophores into these nanosystems, they can be studied by advanced spectral fluorescence imaging methods. We were thus able to show that ANC are first internalized into keratinocytes by endocytosis, and once inside the cells, their contents are rapidly released into the cytoplasm. A study of different ex vivo skin model systems has shown that both nanosystems enable active substances to reach the living epidermis. When incorporated into gels similar to those used as galenic forms for topical administration, LNC and ANC remain stable for months. They can thus be used as vectors for delivering active substances to the skin
Khan, Suleman Manawar. "Surface active lanthanide complexes for sensing applications on silica and gold surfaces." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5726/.
Повний текст джерелаКниги з теми "Surfaces actives"
E, Clark David, Folz Diane C, Simmons J. H. 1941-, Hench L. L, Larry Hench Symposium on Surface-Active Processes in Materials (1999 : Cocoa Beach, Fla.), and Conference on Composites, Advanced Ceramic Materials, and Structures (23rd : 1999 : Cocoa Beach, Fla.), eds. Surface-active processes in materials. Westerville, Ohio: American Ceramic Society, 2000.
Знайти повний текст джерелаMyers, Drew. Surfactant science and technology. 2nd ed. New York: VCH Publishers, 1992.
Знайти повний текст джерелаMyers, Drew. Surfactant science and technology. 3rd ed. Hoboken, NJ: J. Wiley, 2005.
Знайти повний текст джерелаRosen, Milton J. Surfactants and interfacial phenomena. 3rd ed. Hoboken, N.J: Wiley-Interscience, 2004.
Знайти повний текст джерелаRosen, Milton J. Surfactants and interfacial phenomena. 2nd ed. New York: Wiley, 1989.
Знайти повний текст джерелаMyers, Drew. Surfactant Science and Technology. New York: John Wiley & Sons, Ltd., 2005.
Знайти повний текст джерелаWolf, Rory A. Plastic surface modification: Surface treatment and adhesion. Munich [Germany]: Hanser, 2010.
Знайти повний текст джерелаJ, Texter, ed. Reactions and synthesis in surfactant systems. New York: Marcel Dekker, 2001.
Знайти повний текст джерелаMeunier, Jacques. Physics of Amphiphilic Layers: Proceedings of the Workshop, Les Houches, France February 10-19, 1987. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987.
Знайти повний текст джерелаЧастини книг з теми "Surfaces actives"
Gooch, Jan W. "Surface Active." In Encyclopedic Dictionary of Polymers, 715. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_11428.
Повний текст джерелаKientz, Julie A., Matthew S. Goodwin, Gillian R. Hayes, and Gregory D. Abowd. "Shared Active Surfaces." In Interactive Technologies for Autism, 57–66. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-031-01595-3_6.
Повний текст джерелаToennies, Klaus D. "Active Contours and Active Surfaces." In Guide to Medical Image Analysis, 311–60. London: Springer London, 2017. http://dx.doi.org/10.1007/978-1-4471-7320-5_9.
Повний текст джерелаToennies, Klaus D. "Active Contours and Active Surfaces." In Guide to Medical Image Analysis, 261–97. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2751-2_9.
Повний текст джерелаBognolo, Guido. "Amphoteric Surfactants." In Surface Active Agents, 31–33. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003403869-7.
Повний текст джерелаBognolo, Guido. "Anionic Surfactants." In Surface Active Agents, 35–65. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003403869-8.
Повний текст джерелаBognolo, Guido. "Nonionic Surfactants." In Surface Active Agents, 71–95. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003403869-10.
Повний текст джерелаBognolo, Guido. "Soap-Making Process and Raw Materials." In Surface Active Agents, 19–21. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003403869-3.
Повний текст джерелаBognolo, Guido. "Washing Linen and Clothes." In Surface Active Agents, 103–4. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003403869-13.
Повний текст джерелаBognolo, Guido. "Cationic Surfactants." In Surface Active Agents, 67–70. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003403869-9.
Повний текст джерелаТези доповідей конференцій з теми "Surfaces actives"
Franke, Lars, Steffen Klingel, and Marco Rahm. "Electromechanically Tunable Metasurface for Guided Spoof Surface Plasmon Polaritons." In CLEO: Applications and Technology, JTu2A.64. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jtu2a.64.
Повний текст джерелаScalora, Michael. "Unraveling novel surface phenomena: intricacies of the nonlinear optical properties of aluminum through bound electrons." In Active Photonic Platforms (APP) 2024, edited by Ganapathi S. Subramania and Stavroula Foteinopoulou, 33. SPIE, 2024. http://dx.doi.org/10.1117/12.3028709.
Повний текст джерелаHao, Qian-Zhu, and Po-Chun Hsu. "Spatiotemporal variability of sea surface temperature, sea surface height, and water quality along the northwestern coast of Taiwan." In Active and Passive Remote Sensing of Oceans, Seas, and Lakes, edited by Kuo-Hsin Tseng, Robert J. Frouin, Jong-Kuk Choi, and Hiroshi Murakami, 20. SPIE, 2025. https://doi.org/10.1117/12.3042061.
Повний текст джерелаScarborough, C., J. Molles, and Z. Popović. "Active Nonlinear Impedance Surfaces for Power Generation." In 2024 Eighteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), 1–3. IEEE, 2024. http://dx.doi.org/10.1109/metamaterials62190.2024.10703215.
Повний текст джерелаNorris, David J. "Optical and electronic fourier surfaces." In Active Photonic Platforms (APP) 2022, edited by Ganapathi S. Subramania and Stavroula Foteinopoulou. SPIE, 2022. http://dx.doi.org/10.1117/12.2632810.
Повний текст джерелаChan, Che Ting, and Kun Ding. "Interaction of artificially patterned surfaces (Conference Presentation)." In Active Photonic Platforms X, edited by Ganapathi S. Subramania and Stavroula Foteinopoulou. SPIE, 2018. http://dx.doi.org/10.1117/12.2320094.
Повний текст джерелаGrönvall, Erik, Patrizia Marti, Alessandro Pollini, and Alessia Rullo. "Active surfaces." In the 4th Nordic conference. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1182475.1182486.
Повний текст джерелаMehta, Meghna, Ahmed Sabbir Arif, Apurva Gupta, Sean DeLong, Roozbeh Manshaei, Graceline Williams, Manasvi Lalwani, Sanjay Chandrasekharan, and Ali Mazalek. "Active Pathways." In ISS '16: 2016 ACM International Conference on Interactive Surfaces and Spaces. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2992154.2992176.
Повний текст джерелаMeyer, Sebastian, and Dmitry N. Chigrin. "Design of reconfigurable meta-surfaces: modeling done right (Conference Presentation)." In Active Photonic Platforms X, edited by Ganapathi S. Subramania and Stavroula Foteinopoulou. SPIE, 2018. http://dx.doi.org/10.1117/12.2321120.
Повний текст джерелаBurr, T. A., and K. D. Kolenbrander. "A Silicon Solid-State LED: Long-Lived Visible Electroluminescence from Silicon Nanocrystallites." In Microphysics of Surfaces: Nanoscale Processing. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/msnp.1995.msaa2.
Повний текст джерелаЗвіти організацій з теми "Surfaces actives"
López-Valverde, Nansi, Javier Aragoneses, Antonio López-Valverde, Cinthia Rodríguez, and Juan Manuel Aragoneses. Role in the osseointegration of titanium dental implants, of bioactive surfaces based on biomolecules: A systematic review and meta-analysis of in vivo studies. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, June 2022. http://dx.doi.org/10.37766/inplasy2022.6.0076.
Повний текст джерелаChoudhary, Ruplal, Victor Rodov, Punit Kohli, Elena Poverenov, John Haddock, and Moshe Shemesh. Antimicrobial functionalized nanoparticles for enhancing food safety and quality. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7598156.bard.
Повний текст джерелаAzad, MD. Active and passive meta-surfaces and their interaction with terahertz waves. Office of Scientific and Technical Information (OSTI), December 2014. http://dx.doi.org/10.2172/1164767.
Повний текст джерелаBalch, William M., and Cynthia H. Pilskaln. Transport of Optically Active Particles from the Surface Mixed Layer. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada620100.
Повний текст джерелаKuksenova, L. I. WEAR RESISTANCE OF BRONZES UNDER FRICTION IN SURFACE-ACTIVE LUBRICANTS. DOI СODE, 2022. http://dx.doi.org/10.18411/vntr2022-167-3.
Повний текст джерелаKevin Blinn, Yongman Choi, and Meilin Liu. Characterization of Atomic and Electronic Structures of Electrochemically Active SOFC Cathode Surfaces. Office of Scientific and Technical Information (OSTI), August 2009. http://dx.doi.org/10.2172/984650.
Повний текст джерелаHusson, Scott M., Viatcheslav Freger, and Moshe Herzberg. Antimicrobial and fouling-resistant membranes for treatment of agricultural and municipal wastewater. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7598151.bard.
Повний текст джерелаEric D. Wachsman. Electro-catalytically Active, High Surface Area Cathodes for Low Temperature SOFCs. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/909486.
Повний текст джерелаOwens, Donna, and H. Schuman. Demonstration of an Active Electronically Scanned Array on a Conic Surface. Fort Belvoir, VA: Defense Technical Information Center, June 1993. http://dx.doi.org/10.21236/ada344607.
Повний текст джерелаBae, I., H. Huang, E. Yeager, and D. A. Scherson. In-Situ Spectroscopic Studies of Redox Active Self-Assembled Monolayers on Gold Electrode Surfaces. Fort Belvoir, VA: Defense Technical Information Center, October 1990. http://dx.doi.org/10.21236/ada235564.
Повний текст джерела