Добірка наукової літератури з теми "Surface acoustics wave"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Surface acoustics wave".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Surface acoustics wave":

1

Daigle, G. A., and T. F. W. Embleton. "Surface waves and surface wave devices in atmospheric acoustics." Journal of the Acoustical Society of America 88, S1 (November 1990): S190. http://dx.doi.org/10.1121/1.2028857.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nakano, Masahiro. "Surface acoustic wave element, surface acoustic wave device, surface acoustic wave duplexer, and method of manufacturing surface acoustic wave element." Journal of the Acoustical Society of America 121, no. 4 (2007): 1826. http://dx.doi.org/10.1121/1.2723967.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gokani, Chirag A., Thomas S. Jerome, Michael R. Haberman, and Mark F. Hamilton. "Born approximation of acoustic radiation force used for acoustofluidic separation." Journal of the Acoustical Society of America 151, no. 4 (April 2022): A90. http://dx.doi.org/10.1121/10.0010753.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Acoustofluidic separation often involves biological targets with specific acoustic impedance similar to that of the host fluid, and with dimensions on the order of the acoustic wavelength. This parameter range, combined with the use of standing waves to separate the targets, lends itself to use of the Born approximation for calculating the acoustic radiation force. Considered here is the configuration analyzed by Peng et al. [J. Mech. Phys. Solids 145, 104134 (2020)], in which two intersecting plane waves radiated into the fluid by a standing surface acoustic wave exert a force on a eukaryotic cell modeled as a multilayered sphere. The angle of intersection is determined by the velocity of the surface wave and the sound speed in the fluid. The acoustic field in this case is a standing wave parallel to the substrate and a traveling wave perpendicular to the substrate. For all parameter values considered by Peng et al., including spheres several wavelengths in diameter, the Born approximation of the acoustic radiation force parallel to the substrate is in good agreement with a full theory based on spherical wave expansions of the incident and scattered fields. [C.A.G. and T.S.J. were supported by ARL:UT McKinney Fellowships in Acoustics.]
4

Sonner, Maximilian M., Farhad Khosravi, Lisa Janker, Daniel Rudolph, Gregor Koblmüller, Zubin Jacob, and Hubert J. Krenner. "Ultrafast electron cycloids driven by the transverse spin of a surface acoustic wave." Science Advances 7, no. 31 (July 2021): eabf7414. http://dx.doi.org/10.1126/sciadv.abf7414.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Spin-momentum locking is a universal wave phenomenon promising for applications in electronics and photonics. In acoustics, Lord Rayleigh showed that surface acoustic waves exhibit a characteristic elliptical particle motion strikingly similar to spin-momentum locking. Although these waves have become one of the few phononic technologies of industrial relevance, the observation of their transverse spin remained an open challenge. Here, we observe the full spin dynamics by detecting ultrafast electron cycloids driven by the gyrating electric field produced by a surface acoustic wave propagating on a slab of lithium niobate. A tubular quantum well wrapped around a nanowire serves as an ultrafast sensor tracking the full cyclic motion of electrons. Our acousto-optoelectrical approach opens previously unknown directions in the merged fields of nanoacoustics, nanophotonics, and nanoelectronics for future exploration.
5

Du, Liangfen, and Zheng Fan. "Anomalous refraction of acoustic waves using double layered acoustic grating." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 268, no. 6 (November 30, 2023): 2396–403. http://dx.doi.org/10.3397/in_2023_0353.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The paper proposes a double layered acoustic grating for fulfilling acoustic focusing in an anomalous direction. The acoustic grating consists of two layers of rigid panels with periodically perforated slits. By optimizing the positions of the slits on the two layers, both positive and negative refractive indices can be achieved with the phase shift tailored within [-π/2, π/2]. This allows acoustic energy of an obliquely incident plane wave to converge in a predefined focusing region in any direction. The paper predicts the wave propagation manipulated by the acoustic grating based on the surface coupling approach. Then, it discusses how to optimize the slits' positions to collimate the acoustic energy of an obliquely incident plane wave in a specific direction. Such acoustic grating has various potential applications, such as deflecting outdoor noise away from sensitive areas in building acoustics, enhancing acoustic energy in a target audience area in auditorium design, collimating acoustic surface waves, etc.
6

Noto, Kenichi. "Surface acoustic wave filter, surface acoustic wave device and communication device." Journal of the Acoustical Society of America 122, no. 6 (2007): 3143. http://dx.doi.org/10.1121/1.2822925.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yokota, Yuuko. "Surface acoustic wave device, surface acoustic wave apparatus, and communications equipment." Journal of the Acoustical Society of America 124, no. 2 (2008): 702. http://dx.doi.org/10.1121/1.2969605.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shen, Jian Qi. "Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials." Journal of the Physical Society of Japan 85, no. 8 (August 15, 2016): 084401. http://dx.doi.org/10.7566/jpsj.85.084401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, Likun, and Zheguang Zou. "Modeling of airborne ultrasound reflection from water surface waves." Journal of the Acoustical Society of America 152, no. 4 (October 2022): A232. http://dx.doi.org/10.1121/10.0016114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Airborne ultrasound reflection from water surface waves is modelled to advance uses of acoustic signals to measure water surface waves and apply the measurements to explore interactions of water waves with rigid structures in a laboratory setting. When the ultrasound is incident on a moving periodic water surface wave, the reflected signal can be treated as diffraction from a moving corrugated reflection grating. Under the condition that the amplitude of the water surface waves is much less than the incident acoustic wavelength, diffraction theory leads to analytical formulas for the spectra of the acoustic signal relating to the water wave amplitudes and frequencies. Complementary modeling based on ray theory and wave superposition illustrates the diffraction and validates formulas of water wave reflection from a surface-piercing barrier structure, where two counter-propagating water waves are involved.
10

Baev, A. R., A. L. Mayorov, M. V. Asadchaya, V. N. Levkovich, and K. G. Zhavoronkov. "Features of the Surface and Subsurface Waves Application for Ultrasonic Evaluation of Physicomechanical Properties of Solids. Part 1. Influence of the Geometrical Parameters." Devices and Methods of Measurements 9, no. 4 (December 17, 2018): 325–26. http://dx.doi.org/10.21122/2220-9506-2018-9-4-325-326.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Application of surface and subsurface waves for control of objects with a double-layer structure allows to extend possibilities of diagnostics of their physico-mechanical properties. The purpose of work was to determine conditions and offer recommendations providing measuring of ultrasonic velocity and amplitude of the former modes in protective layers and in basis of object at one-sided access to its surface.The analysis of an acoustic path of a measuring system in relation to ultrasonic evaluation of the objects having the restricted sizes and the protective coating according to velocity data of the surface and subsurface waves propagation is made. On the basis of representations of beam acoustics the dependences connecting a wavelength of the excited surface and subsurface modes, thickness and width of a controlled object, acoustic base of a sounding are defined. There are to provide a condition leveling of the influence of an acoustical noise created by the reflected and accompanying waves on parameters of acoustic signal with the given quantity of oscillations in an impulse.The principle opportunity is shown and conditions for determination of velocity of subsurface body waves in the base material which is under a protective coating layer are established. For these purposes on the basis of use of the block of ultrasonic probes the optimum scheme of a sounding is offered and the analytical expression for calculation of required velocity considering varying of thickness of a covering is received.The method of acoustical measuring realized by a direct and reverse sounding of the objects with small aperture and angle probes was analysed and formulas for determination of speed of subsurface wave under protective layer of the wedge form have been got. An ultrasonic device is suggested for the excitationreception of subsurface waves with different speed in objects (on 20–35 %) using for the acoustic concordance of environments of metallic sound duct as a wedge. Possibility of leveling of interference in a protective layer to control efects in basis of material by a volume wave by creation of supporting echo-signal of longitudinal wave of the set frequency and entered normally to the surface of object was studied.

Дисертації з теми "Surface acoustics wave":

1

Chiu, Ching-Sang Denner Warren W. "Report on the Office of Naval Research USA-China Conference on Shallow Water Acoustics, December 18-21, 1995." Monterey, CA : Naval Postgraduate School, 1997. http://catalog.hathitrust.org/api/volumes/oclc/37486128.html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hughes, Adrian. "Transduction and guidance by narrow aperture surface acoustic wave structures." Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236172.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Blake, Christina Diane. "Narrow apperture surface acoustic wave transducers and their application in spectrum analysis." Thesis, University of Oxford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329903.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Buchine, Brent Alan. "Acoustics in nanotechnology: manipulation, device application and modeling." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/26542.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph.D)--Materials Science and Engineering, Georgia Institute of Technology, 2008.
Committee Chair: Wang, Zhong Lin; Committee Member: Degertekin, F. Levent; Committee Member: Liu, Meilin; Committee Member: Snyder, Robert L.; Committee Member: Tannenbaum, Rina. Part of the SMARTech Electronic Thesis and Dissertation Collection.
5

Du, Xinpeng. "Laser-Ultrasonic Measurement of Single-Crystal Elastic Constants from Polycrystalline Samples by Measuring and Modeling Surface Acoustic Wave Velocities." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1524177819455643.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Freed, Shaun L. "High Resolution Ultrasonic Rayleigh Wave Interrogation of a Thermally Aged Polymeric Surface." University of Dayton / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1291685460.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Blimbaum, Jordan Matthew. "Finite element analysis of acoustic wave transverse to longitudinal coupling during transverse combustion instability." Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44757.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Velocity-coupled combustion instability is a major issue facing lean combustor design in modern gas turbine applications. In this study, we analyze the complex acoustic field excited by a transverse acoustic mode in an annular combustor. This work is motivated by the need to understand the various velocity disturbance mechanisms present in the flame region during a transverse instability event. Recent simulation and experimental studies have shown that much of the flame response during these transverse instabilities may be due to the longitudinal motion induced by the fluctuating pressure field above the nozzles. This transverse to longitudinal coupling has been discussed in previous work, but in this work it is given a robust acoustic treatment via computational methods in order to verify the mechanisms by which these two motions couple. We will provide an in-depth discussion of this coupling mechanism and propose a parameter, Rz, also referred to as the Impedance Ratio, in order to compare the pressure/velocity relationship at the nozzle outlet to quasi one-dimensional theoretical acoustic approximations. A three-dimensional inviscid simulation was developed to simulate transversely propagating acoustic pressure waves, based on an earlier experiment designed to measure these effects. Modifications to this geometry have been made to account for lack of viscosity in the pure acoustic simulation and are discussed. Results from this study show that transverse acoustic pressure excites significant axial motion in and around the nozzle over a large range of frequencies. Furthermore, the development of Rz offers a defined physical parameter through which to reference this important velocity-coupled instability mechanism. Therefore, this study offers an in-depth and quantifiable understanding of the instability mechanism caused by transversely propagating acoustic waves across a combustor inlet, which can be applied to greatly improve annular combustor design in future low-emissions gas turbine engines.
8

Haskell, Reichl B. "A Surface Acoustic Wave Mercury Vapor Sensor." Fogler Library, University of Maine, 2003. http://www.library.umaine.edu/theses/pdf/HaskellRB2003.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wang, TingTing. "Acoustic / elastic wave propagation in coupled-resonator waveguides." Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCD061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Lorsqu'un défaut est introduit dans un cristal phononique, des états apparaissent dans les bandes interdites et se localisent au niveau des défauts. Ils décroissent rapidement loin du défaut. Par conséquent, il est possible de localiser et de guider la propagation des ondes en concevant des défauts dans un cristal phononique parfait. Le guide d’onde à résonateurs couplés, fondé sur le couplage d'une séquence de cavités, présente simultanément un fort confinement des ondes et une faible vitesse de groupe ; il peut être utilisé pour concevoir des circuits plutôt arbitraires. En outre, la propagation des ondes élastiques dans une matrice solide peut être contrôlée en remplissant des cavités d'un fluide, sur la base des systèmes couplés fluides-solides. Ils ont des applications essentielles pour la réduction des vibrations et l’isolation acoustique. Dans cette thèse, les ondes acoustiques et élastiques se propageant dans les guides d’ondes à résonateurs couplés périodiques et apériodiques sont étudiées. L’interaction fluide-solide dans les cristaux phononiques fluide / solide est étudiée. Les travaux sont menés en combinant simulation numérique, analyse par modèles théoriques et investigation expérimentale
When a defect is introduced into a phononic crystal, states localized at the defect appear in the band gaps. They decay rapidly far away from the defect. Therefore, it is possible to localize and guide wave propagation by designing defects in the perfect phononic crystal. Coupled-resonator waveguides based on the coupling effect between a sequence of defect cavities have simultaneously strong wave confinement and low group velocity, and can be used to design rather arbitrary circuits. Furthermore, the propagation of elastic waves in a solid matrix can be controlled through changing fluid fillings based on fluid-solid interaction. Thus, they have essential applications in vibration reduction and noise isolation. In this thesis, the acoustic and elastic waves propagating in both periodic and aperiodic coupled-resonator waveguides are investigated. The fluid-solid interaction in fluid/solid phononic crystals is studied. The work is conducted by combining numerical simulations, theoretical model analysis and experimental investigations
10

Riaud, Antoine Jean-Pierre René. "Etude des potentialités offertes par la synthèse de champs d'ondes acoustiques de surface pour l'actionnement de liquides et la manipulation sans contact." Thesis, Ecole centrale de Lille, 2016. http://www.theses.fr/2016ECLI0010/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Lorsque des ondes acoustiques de surface rayonnent dans des fluides, elles provoquent deux effets non linéaires : la pression de radiation et le streaming acoustique. Ces deux effets ont trouvé un grand nombre d’applications pour la microfluidique digitale, la manipulation sans contact et le tri cellulaire. Néanmoins, ces systèmes se heurtent à deux limites. D’une part, chaque application requiert une onde acoustique spécifique : il n’existe pas de dispositif multifonction à ce jour. D’autre part, l’exploration des fonctionnalités offertes par les ondes de surface les plus simples (ondes planes, ondes focalisées) n’a pas permis de réaliser des pinces sélectives permettant de manipuler individuellement des particules ou cellules indépendamment de leurs voisines.Dans une première partie de la thèse, nous développons deux méthodologies pour synthétiser des champs complexes d’ondes de surface. La première méthode utilise un réseau de 32 peignes interdigités contrôlé par la technique du filtre inverse pour générer des champs sur demande. La seconde résout un problème inverse afin de concevoir un transducteur holographique générant spécifiquement le champ demandé. Dans la seconde partie de la thèse, nous utilisons le filtre inverse pour (i) réaliser un laboratoire sur puce multifonction et (ii) étudier le potentiel d’ondes de surface particulières appelées ondes de surface tourbillonnaires. Ces ondes permettent une manipulation sélective et sans contact d’objets microscopiques. Nous terminons la thèse en équipant un microscope d’un transducteur holographique de vortex acoustiques afin de réaliser une manipulation sélective et sans contact de cellules
When surface acoustic waves radiate in nearby fluids, they trigger two nonlinear effects: acoustic radiation pressure and acoustic streaming. These two effects find numerous applications for digital microfluidics, contactless manipulation and biological cell sorting. Nonetheless, these systems face two limitations. On the one hand, each application requires a specific acoustic wave: there is no multifunction device so far. On the other hand, search for functionalities offered by simple surface acoustic waves (plane and focused waves) has failed to provide a selective tweezers able to manipulate individual particles or cells independently of their neighbors. In the first part of this thesis, we develop two methods to synthesize complex surface acoustic wave fields. The first one employs an array of 32 interdigitated transducers controlled by the inverse filter to generate arbitrary fields on demand. The second method solves an inverse problem to design a holographic transducer to generate a predefined field. In the second part of the thesis, we use the inverse filter to (i) implement a multifunction lab on a chip and (ii) investigate the potentialities of a special type of surface acoustic waves called swirling surface waves. These waves enable a selective and contactless manipulation of microscopic objects. We conclude the thesis by integrating a holographic acoustical vortex transducer on a microscope in order to selectively manipulate biological cells without contact

Книги з теми "Surface acoustics wave":

1

Beltzer, A. I. Acoustics of solids. Berlin: Springer-Verlag, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Janeliauskas, Artūras. Akustoelektroniniai įtaisai: Projektavimas ir taikymas : monografija. Kaunas: Technologija, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Frisk, George V. Ocean and seabed acoustics: A theory of wave propagation. Englewood Cliffs, N.J: PTR Prentice Hall, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Frisk, George V. Report on the Office of Naval Research Shallow Water Acoustics Workshop: April 24-26, 1991. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Felizardo, Francis Camomot. Ambient noise and surface wave dissipation in the ocean. [Woods Hole, Mass: Woods Hole Oceanographic Institution and Massachusetts Institute of Technology, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hashimoto, Ken-ya. Surface Acoustic Wave Devices in Telecommunications: Modelling and Simulation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kaufman, Alexander A. Acoustic and elastic wave fields in geophysics. Amsterdam: Elsevier, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Datta, Supriyo. Surface acoustic wave devices. Englewood Cliffs: Prentice-Hall, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Royer, D. Elastic waves in solids. Berlin: Springer, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Datta, Supriyo. Surface acoustic wave devices. Englewood Cliffs, N.J: Prentice-Hall, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Surface acoustics wave":

1

Duclos, J., and M. Leduc. "Surface Acoustic Wave Reception by an Interdigital Transducer." In Physical Acoustics, 307–12. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-9573-1_35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tinel, Alain, Jean Duclos, and Michel Leduc. "Scholte Wave Diffraction by a Periodically Rough Surface." In Physical Acoustics, 635–39. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-9573-1_86.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hashimoto, Ken-ya, and Masatsune Yamaguchi. "Boundary Element Method Analysis of Surface Acoustic Wave Devices." In Physical Acoustics, 353–58. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-9573-1_42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zelenka, Jiri, and Miloslav Kosek. "Properties of Surface Acoustic Wave Devices under Strong External Fields." In Physical Acoustics, 709–13. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-9573-1_96.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Danicki, E. "Analysis of Surface Acoustic Wave in Layered Structure with Periodic Delamination." In Physical Acoustics, 281–85. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-9573-1_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Garrett, Steven L. "Reflection, Transmission, and Refraction." In Understanding Acoustics, 513–42. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44787-8_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The behavior of one-dimensional waves propagating through media that are not homogeneous will be the focus of this chapter. We start with an examination of the behavior of planewaves impinging on a planar interface between two fluid media with different properties and then extend that analysis to multiple interfaces and to waves that impinge on such an interface from an angle that is not perpendicular to that surface. The extent of those boundaries separating regions with different acoustical properties will be much larger than the wavelength of the sound. Many cases to be examined here will assume that the extent of the boundary is infinite and the wave incident on such an interface will be both reflected back into the medium from which it originated and be transmitted into the second medium on the other side of the interface. This exploration concludes with consideration of wave propagation through a medium whose properties change slowly and continuously through space resulting in curved ray paths. If the variation of sound speed is linear with height or depth, then the ray paths are arcs of circles. Complicated sound speed profiles will be approximated by piecewise-linear segments that have constant sound speed gradients.
7

Danicki, E. "Surface Acoustic Wave Scattering by Elliptic Metal Disk on Anisotropic Piezoelectric Halfspace." In Physical Acoustics, 287–90. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-9573-1_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Neubrand, A., L. Konstantinov, and P. Hess. "Interferometric Probing of Optically Excited Surface Acoustic Wave Pulses for Thin Film Characterization." In Physical Acoustics, 551–56. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-9573-1_73.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bauerschmidt, P., R. Lerch, J. Machui, W. Ruile, and G. Visintini. "Determination of Parameters for the Simulation of Surface Acoustic Wave Devices with Finite Elements." In Physical Acoustics, 237–41. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-9573-1_25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Aref, Thomas, Per Delsing, Maria K. Ekström, Anton Frisk Kockum, Martin V. Gustafsson, Göran Johansson, Peter J. Leek, Einar Magnusson, and Riccardo Manenti. "Quantum Acoustics with Surface Acoustic Waves." In Quantum Science and Technology, 217–44. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24091-6_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Surface acoustics wave":

1

Vilchinska, Nora A., Bengt Enflo, Claes M. Hedberg, and Leif Kari. "Impact Induced Surface Wave Propagation In Concrete Massif." In NONLINEAR ACOUSTICS - FUNDAMENTALS AND APPLICATIONS: 18th International Symposium on Nonlinear Acoustics - ISNA 18. AIP, 2008. http://dx.doi.org/10.1063/1.2956221.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Clement, Eric, Lenaic Bonneau, Bruno Andreotti, Masami Nakagawa, and Stefan Luding. "Surface wave acoustics of granular packing under gravity." In POWDERS AND GRAINS 2009: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON MICROMECHANICS OF GRANULAR MEDIA. AIP, 2009. http://dx.doi.org/10.1063/1.3179945.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Zongru, and Erzheng Fang. "Water Surface Capillary Wave Simulation and Detection Using Optical Method." In 2021 OES China Ocean Acoustics (COA). IEEE, 2021. http://dx.doi.org/10.1109/coa50123.2021.9520027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

KRYNKIN, A., G. DOLCETTI, KV HOROSHENKOV, and T. VAN RENTERGHAM. "USE OF SCATTERED AIRBORNE ACOUSTIC WAVE-FIELD TO RECOVER PROFILE OF SURFACE OF SHALLOW WATER FLOW." In ACOUSTICS 2015. Institute of Acoustics, 2023. http://dx.doi.org/10.25144/16078.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kondoh, Jun, and Tomohiko Fukaya. "Experimental considerations of droplet manipulation mechanism using surface acoustic wave devices." In 21st International Symposium on Nonlinear Acoustics. Acoustical Society of America, 2018. http://dx.doi.org/10.1121/2.0000904.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kumon, R. E. "Dependence of surface acoustic wave nonlinearity on propagation direction in crystalline silicon." In 15th international symposium on nonlinear acoustics: Nonlinear acoustics at the turn of the millennium. AIP, 2000. http://dx.doi.org/10.1063/1.1309219.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Liu, ZhongYang, Ming Li, Kai Huang, Xin Xia, KunPeng Li, and GongBin Tang. "Automated Electro-Thermal Model of Surface Acoustic Wave Filters." In 2024 IEEE MTT-S International Conference on Microwave Acoustics & Mechanics (IC-MAM). IEEE, 2024. http://dx.doi.org/10.1109/ic-mam60575.2024.10539043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hu, Yi, Guoqing Miao, Bengt Enflo, Claes M. Hedberg, and Leif Kari. "Water surface wave in an annular trough with periodic topographical bottom under vertical vibration." In NONLINEAR ACOUSTICS - FUNDAMENTALS AND APPLICATIONS: 18th International Symposium on Nonlinear Acoustics - ISNA 18. AIP, 2008. http://dx.doi.org/10.1063/1.2956167.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hashimoto, Ken-ya, Zhaohui Wu, Ting Wu, Yiwen He, Yawei Li, Keyuan Gong, Yu-Po Wong, and Jingfu Bao. "Revisiting Piston Mode Design for Radio Frequency Surface Acoustic Wave Resonators." In 2022 IEEE MTT-S International Conference on Microwave Acoustics and Mechanics (IC-MAM). IEEE, 2022. http://dx.doi.org/10.1109/ic-mam55200.2022.9855359.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yang, Yang, Huiling Liu, Hao Sun, and Qiaozhen Zhang. "A Differential Surface Acoustic Wave Magnetic Field Sensor With Temperature Compensation." In 2024 IEEE MTT-S International Conference on Microwave Acoustics & Mechanics (IC-MAM). IEEE, 2024. http://dx.doi.org/10.1109/ic-mam60575.2024.10539049.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Surface acoustics wave":

1

Joshua Caron. SURFACE ACOUSTIC WAVE MERCURY VAPOR SENSOR. Office of Scientific and Technical Information (OSTI), June 1998. http://dx.doi.org/10.2172/807870.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

JOSHUA CARON. SURFACE ACOUSTIC WAVE MERCURY VAPOR SENSOR. Office of Scientific and Technical Information (OSTI), September 1998. http://dx.doi.org/10.2172/7107.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Johnson, Rolland Paul, Mona Zaghluol, Andrei Afanasev, and Boqun Dong. Surface Acoustic Wave Enhancement of Photocathode Performance. Office of Scientific and Technical Information (OSTI), October 2018. http://dx.doi.org/10.2172/1476852.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

King, Michael B., and Jeffrey C. Andle. Surface Acoustic Wave Band Elimination Filter. Phase 1. Fort Belvoir, VA: Defense Technical Information Center, January 1988. http://dx.doi.org/10.21236/ada207051.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

McGowan, Raymond, John Kosinski, Jeffrey Himmel, Richard Piekarz, and Theodore Lukaszek. Frequency Trimming Technique for Surface Acoustic Wave Devices. Fort Belvoir, VA: Defense Technical Information Center, June 1992. http://dx.doi.org/10.21236/ada261465.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pfeifer, K. B., S. J. Martin, and A. J. Ricco. Surface acoustic wave sensing of VOCs in harsh chemical environments. Office of Scientific and Technical Information (OSTI), June 1993. http://dx.doi.org/10.2172/10184126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tiersten, Harry F. Analytical Investigations of the Acceleration Sensitivity of Acoustic Surface Wave Resonators. Fort Belvoir, VA: Defense Technical Information Center, October 1988. http://dx.doi.org/10.21236/ada201413.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Thallapally, Praveen. Surface Acoustic Wave Sensor for Refrigerant Leak Detection - CRADA 402 (Abstract). Office of Scientific and Technical Information (OSTI), February 2024. http://dx.doi.org/10.2172/2293589.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Branch, Darren W., Grant D. Meyer, Christopher Jay Bourdon, and Harold G. Craighead. Active Mixing in Microchannels using Surface Acoustic Wave Streaming on Lithium Niobate. Office of Scientific and Technical Information (OSTI), November 2005. http://dx.doi.org/10.2172/1126940.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Thallapally, Praveen, Jian Liu, Huidong Li, Jun Lu, Jay Grate, Bernard McGrail, Zhiqun Deng, et al. Surface Acoustic Wave Sensors for Refrigerant Leak Detection - CRADA 402 (Final Report). Office of Scientific and Technical Information (OSTI), October 2021. http://dx.doi.org/10.2172/1959803.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії