Добірка наукової літератури з теми "Submillimeter radiation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Submillimeter radiation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Submillimeter radiation":

1

Lindsey, Charles. "The Sun in Submillimeter Radiation." Symposium - International Astronomical Union 154 (1994): 85–92. http://dx.doi.org/10.1017/s0074180900124301.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Continuum observations in the far IR have given us a broad spectrum of new and powerful diagnostic utilities for the solar atmosphere. The infrared continuum is formed in LTE with thermal free electrons by free-free interactions. This gives us a flexible and accurate atmospheric thermometer that has made infrared measurements fundamental to modeling of the quiet solar medium for more than two decades. The submillimeter and millimeter continua are particularly useful with respect to thermal diagnostics of the low chromospheric temperature minimum, where non-radiative heating of the solar medium becomes clearly manifest. Modern submillimeter telescopes and instrumentation on Mauna Kea, in Hawaii, are now revolutionizing solar observations in the submillimeter spectrum, giving us the first observations of detail on the scale of the chromospheric supergranular network, sunspots and prominences. These observations are showing us a remarkable and unexpected view of thermal structure that emerges as one probes to successively higher levels above the chromospheric temperature minimum.
2

Jin, Hai Wei, Lan Zhang, Jie Liu, and Xu Qian. "The Progress of Millimeter / Submillimeter Wave TWT Research." Applied Mechanics and Materials 705 (December 2014): 219–22. http://dx.doi.org/10.4028/www.scientific.net/amm.705.219.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Millimeter / Submillimeter wave traveling wave tubes have the merits of high output power, frequency bandwidth, compact, light weight, etc. Millimeter / Submillimeter wave traveling wave tube is an ideal millimeter / submillimeter radiation source, can be used in fields of radar, electronic warfare, communication, etc. The paper introduced and summarized the research status of foreign Millimeter / submillimeter TWT wave tube, analyzed and discussed its trend.
3

Esman, A. K., V. K. Kuleshov, G. L. Zykov, and V. B. Zalesskiĭ. "Planar system for recording submillimeter radiation." Journal of Optical Technology 79, no. 6 (June 29, 2012): 363. http://dx.doi.org/10.1364/jot.79.000363.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cox, P., and P. G. Mezger. "The galactic infrared/submillimeter dust radiation." Astronomy and Astrophysics Review 1, no. 1 (1989): 49–83. http://dx.doi.org/10.1007/bf00872484.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

ZHOU, J. Y., Q. X. LI, H. Z. WANG, Z. G. CAI, X. G. HUANG, and Z. X. YU. "APPLICATIONS OF SUBMILLIMETER WAVEGUIDE TO LASER-MODE SELECTION AND NONLINEAR OPTICS." Journal of Nonlinear Optical Physics & Materials 01, no. 01 (January 1992): 151–66. http://dx.doi.org/10.1142/s0218199192000091.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Use of submillimeter waveguide for laser transverse mode control, four-wave parametric frequency conversion, ultrafast broadband radiation generation and optical pulse shortening are presented. This paper begins with a general introduction to the applications of submillimeter waveguide to laser physics and nonlinear optics. Transverse mode selection by using an intracavity capillary is then described. Nonlinear optical frequency conversion in gas-filled hollow dielectric and hollow metallic waveguide structures is discussed. Applications of submillimeter liquid-core fiber to stimulated scattering, ultrafast broadband radiation generation and optical pulse shortening are presented, and transient stimulated Rayleigh-Kerr scattering is proposed to explain the observations of these nonlinear optical processes. It is shown that the unique characterization of high usable pump power and high power emission of submillimeter waveguides makes the waveguide structures ideal for high-power, high-energy laser physics and nonlinear optics.
6

De Zotti, G., L. Danese, L. Toffolatti, and A. Franceschini. "The Microwave Background Radiation." Symposium - International Astronomical Union 139 (1990): 333–43. http://dx.doi.org/10.1017/s0074180900240898.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We review the data on the spectrum and isotropy of the microwave background radiation and the astrophysical processes that may produce spectral distortions and anisotropies. As yet no fully satisfactory explanation has been found for the submillimeter excess observed by Matsumoto et al. (1988). The most precise data at λ > 1 mm disagree with nonrelativistic comptonization models which match the excess. Distortions produced by a very hot intergalactic medium yielding the X-ray background do not fit the submillimeter data. Very special requirements must be met for the interpretation in terms of high-redshift dust emission to work.Reported anisotropies on scales of several degrees and of tens of arcsec may be produced, at least in part, by discrete sources. Because the best experiments at cm wavelengths are close to the confusion limit, they provide interesting information on the large-scale distribution of radio sources.
7

Matsumoto, Toshio. "Submillimeter Spectrum of the Cosmic Background Radiation." Highlights of Astronomy 8 (1989): 689–91. http://dx.doi.org/10.1017/s1539299600008662.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Recent observations of the spectrum of the 3K cosmic background radiation (CBR) indicate that the CBR spectrum is consistent with a blackbody spectrum of T = 2.74 ±0.02K (Smoot et al. 1987). These measurements, however, were carried out in the Rayleigh-Jeans part of the spectrum, while theories predict spectral distortion in the Wien part. Therefore, we tried to observe the submillimeter spectrum of the CBR with a liq.He cooled radiometer onboard a sounding rocket. The experiment was a collaboration between Nagoya University and University of California, Berkeley.
8

Vlasov, G. K., E. I. Chizhikova, and D. N. Vylegzhanin. "Excitonic detectors of infrared and submillimeter radiation." International Journal of Infrared and Millimeter Waves 15, no. 1 (January 1994): 121–35. http://dx.doi.org/10.1007/bf02265879.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

S. Ol’shevskaya, Yuliya, Aleksandr S. Kozlov, Aleksandr K. Petrov, Tatyana A. Zapara, and Aleksandr S. Ratushnyak. "Cell Membrane Permeability Under the Influence of Terahertz (Submillimeter) Laser Radiation." Siberian Journal of Physics 5, no. 4 (December 1, 2010): 177–81. http://dx.doi.org/10.54362/1818-7919-2010-5-4-177-181.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Within the framework of the task of revealing the mechanisms of the action of terahertz (submillimeter) radiation on biological objects, the influence of terahertz (submillimeter) radiation on the processes of transmembrane transport in cell systems was experimentally analyzed. Complex research using dyes which do not penetrate through intact membranes (Trypan Blue) and reveal viable cells (BCECF-AM) together with electrophysiological analysis has shown that radiation with a 130-micron wavelength creates conditions for penetration of compounds that usually do not go through the membrane of living cells. The penetration of dye may be conditioned by reversible disturbance in the barrier properties of neuron membranes under the action of 130-micron waves. Radiation with a wavelength of 150 microns does not show such properties. The received results may offer the challenge of developing methods of directed transport of biologically active compounds into cells
10

Phillips, T. G. "A Submillimeter Mission for the 1990s: SMMM." International Astronomical Union Colloquium 123 (1990): 231–49. http://dx.doi.org/10.1017/s0252921100077071.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Submillimeter wavelengths hold the key to some of the most important aspects of astronomy. These range from star-forming molecular clouds and proto-planetary disks in our galaxy to infrared emitting galaxies at cosmological distances. Indeed, the essential problems of star-formation and galaxy-formation will be directly probed by the submillimeter spectral lines and continuum radiation emitted by these objects. Other fascinating topics falling into the submillimeter band include the Wien component of the cosmic background radiation, containing information on the nature of the early universe, and nearer to home, the spectroscopy of planetary atmospheres. Since the submillimeter contains fundamental information on the physics and chemistry of so many aspects of our universe, every effort should be made to provide the very best instrumentation for these astronomical studies. We should be capable of detection and analysis of even the most distant objects yet conceived.Telescopes specifically designed for submillimeter astronomy are now operating on high mountain sites and the field is developing in an exciting and rapid fashion. NASA’s airborne program has been in operation for some time and has been of the greatest importance in getting the field started. Both ground and airborne programs will continue to be essential because of their flexibility for implementing new investigations, for instrument development and to support the growth of an active science community, especially students. However, it is now essential to move forward on a space program.

Дисертації з теми "Submillimeter radiation":

1

Larsen, Mads Jacob Hedegaard. "Non-Contact Probes for Characterization of THz Devices and Components." Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1369393504.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Elmaleh, Coralie. "Développement d’un prototype ultrasensible d’analyse de gaz dans le domaine submillimétrique." Electronic Thesis or Diss., Littoral, 2024. http://www.theses.fr/2024DUNK0698.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse explore le développement technologique d'une expérience spectroscopique dans le domaine submillimétrique, aussi connu sous le nom de Terahertz (THz). Cette bande spectrale se distingue par sa capacité à résoudre finement des doublets moléculaires, permettant une identification précise et claire de mélanges gazeux complexes, même lorsque d'autres longueurs d'onde pourraient échouer.Bien que la région THz offre un pouvoir de résolution exceptionnel, les spectromètres qui y opèrent sont souvent confrontés à des défis de sensibilité en raison du développement de la technologie dans cette bande. Grâce à une approche innovante, nous avons mis en œuvre la première expérience de Cavity ring-down Spectroscopy (CRDS) capable de quantifier des composés avec une précision allant jusqu’au ppb. L'étude est concentrée entre 550 GHz et 650 GHz, une fenêtre du spectre THz qui non seulement offre une résolution et une sensibilité moléculaire inégalées, mais possède aussi la capacité de pénétrer des matériaux non conducteurs tout en étant non ionisante. Ces propriétés positionnent cette technologie à la pointe des outils d'analyse, promettant une pléthore d'applications, allant de la recherche fondamentale à des applications industrielles
This thesis explores the technological development of a spectroscopic experiment in the submillimeter range, also known as Terahertz (THz). This spectral band stands out for its ability to precisely resolve molecular doublets, enabling clear and precise identification of complex gas mixtures, even when other wavelengths might fail.Although the THz region offers exceptional resolving power, spectrometers operating in this region often face sensitivity challenges due to the development of technology in this band. Thanks to an innovative approach, we have implemented the first Cavity Ring-Down Spectroscopy (CRDS) experiment capable of quantifying compounds to ppb precision. The study is concentrated between 550 GHz and 650 GHz, a window of the THz spectrum that not only offers unrivalled resolution and molecular sensitivity, but also possesses the ability to penetrate non-conducting materials while being non-ionizing. These properties position this technology at the cutting edge of analysis tools, promising a plethora of applications, from fundamental research to industrial applications
3

Hayward, Christopher. "Physically Modeling High-Redshift Ultraluminous Infrared Galaxies." Thesis, Harvard University, 2011. http://dissertations.umi.com/gsas.harvard:10008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We have used a combination of hydrodynamical simulations, dust radiative transfer, and an empirically based analytical model for galaxy number densities and merger rates in order to physically model the bright high-redshift submillimeter-selected galaxy (SMG) population. We report the results of three projects: In the first we study the dependence of a galaxy’s observed-frame submillimeter (submm) flux on its physical properties. One of our principal conclusions is that the submm flux scales significantly more weakly with star formation rate for starbursts than for quiescently star-forming galaxies. Consequently, we argue that the SMG population is not exclusively merger-induced starbursts but rather a mix of merger-induced starbursts, early-stage mergers where two quiescently star-forming disk galaxies are blended into one submm source ("galaxy-pair SMGs"), and isolated disk galaxies. In the second work we present testable predictions of this model by demonstrating how quiescently star-forming and starburst SMGs can be distinguished from integrated data alone. Starbursts tend to have higher luminosity, effective dust temperature, global star formation efficiency \((L_{IR}/M_{gas})\), and infrared excess \((L_{IR}/L_{FUV})\) and tend to lie significantly above the star formation rate-stellar mass relation defined by quiescently star-forming galaxies. These diagnostics can be used to observationally determine the relative contribution of quiescently star-forming and starburst galaxies to the SMG population. In the final work we present the SMG number density, cumulative number counts, and redshift distribution predicted by our model. We show that, contrary to previous claims, the observed SMG number counts do not provide evidence for a top-heavy initial mass function. We also show that starbursts and galaxy-pair SMGs both contribute significantly to the bright SMG counts, whereas isolated disks contribute significantly only at the faint end.
Astronomy
4

Garet, Frédéric. "Génération optoélectronique d'impulsions électromagnétiques ultra-courtes : application à la spectroscopie THz." Grenoble INPG, 1997. http://www.theses.fr/1997INPG0175.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nous presentons la construction et l'utilisation d'une experience de spectroscopie terahertz pour la caracterisation de materiaux dans le domaine sub-millimetrique, les mesures etant realisees dans le domaine temporel. Dans une premiere partie, nous decrivons tout d'abord l'experience dediee a la generation et a la mesure d'impulsions electromagnetiques (em) ultracourtes. Nous employons des photocommutateurs sur substrat de lt-gaas excites par une impulsion laser de 100 fs de duree, et utilises comme dipole de hertz. Nous obtenons ainsi des impulsions em de durees voisines de la picoseconde et dont les spectres s'etendent de quelques dizaines de ghz a plus de 2 thz. Pour caracteriser un materiau, ce dernier est positionne entre les antennes emettrice et receptrice. On mesure ainsi sa fonction de transfert temporelle. Par transformee de fourier numerique, on calcule son coefficient de transmission frequentiel, dont on deduit l'indice de refraction et l'absorption intrinseque du materiau. Nous presentons des resultats de caracterisation pour differents cas rencontres en pratique : echantillons optiquement epais, fins (dont les films minces sur un substrat), materiaux anisotropes. Pour traiter tous ces cas, nous proposons une methode originale d'extraction des parametres materiaux. Nous montrons aussi que l'epaisseur precise des echantillons peut etre simultanement deduite de ces mesures. Cette technique peut aussi etre utilisee pour une etude dynamique de materiaux. Nous avons construit une experience pompe (optique) - sonde (thz). Nous avons teste plusieurs materiaux semi-conducteurs, et compare les resultats avec ceux obtenus avec une experience pompe - sonde tout optique. Nous analysons ces resultats, en particulier pour des echantillons de semi-conducteurs iii-v.
5

Aguirre, James. "Properties of astrophysical submillimeter emission near the South Celestial Pole from the TopHat telescope /." 2003. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3088707.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Maxwell, Aaron J. "Kicking at the darkness: detecting deeply embedded protostars at 1–10 μm". Thesis, 2010. http://hdl.handle.net/1828/3081.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We present an analysis of observations using the Spitzer Space Telescope and the James Clerk Maxwell Telescope of deeply embedded protostars in the Perseus Giant Molecular Cloud. Building on the results of Jørgensen et al. (2007), we attempt to characterize the physical properties of these deeply embedded protostars, discovered due to their extremely red near infrared colours and their proximity to protostellar cores detected at 850 μm. Using a grid of radiative transfer models by Robitaille et al. (2006), we fit the observed fluxes of each source, and build statistical descriptions of the best fits. We also use simple one dimensional analytic approximations to the protostars in order to determine the physical size and mass of the protostellar envelope, and use these 1D models to provide a goodness-of-fit criterion when considering the model grid fits to the Perseus sources. We find that it is possible to create red [3.6]-[4.5] and [8.0]-[24] colours by inflating the inner envelope radius, as well as by observing embedded protostars through the bipolar outflows. The majority of the deeply embedded protostars, however, are well fit by models seen at intermediate inclinations, with outflow cavity opening angles < 30o, and scattering of photons off of the cavity walls produces the red colours. We also discuss other results of the SED fitting.

Книги з теми "Submillimeter radiation":

1

International Conference on Millimeter and Submillimeter Waves and Applications (1996 Denver, Colo.). Millimeter and submillimeter waves III: Proceedings of the International Conference on Millimeter and Submillimeter Waves and Applications III, 5-7 August 1996, Denver, Colorado. Edited by Afsar Mohammed N, Rome Laboratory (Griffiss Air Force Base, N.Y.), Society of Photo-optical Instrumentation Engineers., and Tufts University. Bellingham, Wash., USA: SPIE, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Richards, Paul L. Far infrared all-sky survey: Final technical report. [Washington, DC: National Aeronautics and Space Administration, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

United States. National Aeronautics and Space Administration., ed. Far infrared all-sky survey: Final technical report. [Washington, DC: National Aeronautics and Space Administration, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fazio, Giovanni G. Balloon-borne three-meter telescope for far-infrared and submillimeter astronomy. Cambridge, Mass: Smithsonian Institution, Astrophysical Observatory, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fazio, Giovanni G. Balloon-borne three-meter telescope for far-infrared and submillimeter astronomy. Cambridge, Mass: Smithsonian Institution, Astrophysical Observatory, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Royal Society (Great Britain). Discussion Meeting. The terahertz gap: The generation of far-infrared radiation and its applications : papers of a discussion meeting held at The Royal Society on 4 and 5 June 2003. London: The Royal Society, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fazio, Giovanni G. Balloon-borne three-meter telescope for far-infrared and submillimeter astronomy: Semiannual status report no. 2 for the period 1 March 1984 through 31 August 1984. Cambridge, Mass: Smithsonian Institution, Astrophysical Observatory, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Observatory, Smithsonian Astrophysical, and United States. National Aeronautics and Space Administration, eds. Balloon-borne three-meter telescope for far-infrared and submillimeter astronomy: Semiannual status report no. 2 for the period 1 March 1984 through 31 August 1984. Cambridge, Mass: Smithsonian Institution, Astrophysical Observatory, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Observatory, Smithsonian Astrophysical, and United States. National Aeronautics and Space Administration, eds. Balloon-borne three-meter telescope for far-infrared and submillimeter astronomy: Semiannual status report no. 4 for the period 1 March 1985 through 31 August 1985. Cambridge, Mass: Smithsonian Institution, Astrophysical Observatory, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fazio, Giovanni G. Balloon-borne three-meter telescope for far-infrared and submillimeter astronomy: Semiannual status report no. 2 for the period 1 March 1984 through 31 August 1984. Cambridge, Mass: Smithsonian Institution, Astrophysical Observatory, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Submillimeter radiation":

1

Lindsey, Charles. "The Sun in Submillimeter Radiation." In Infrared Solar Physics, 85–92. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1926-9_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Matsumoto, Toshio. "Submillimeter Spectrum of the Cosmic Background Radiation." In Highlights of Astronomy, 689–91. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0977-9_122.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Matsumoto, T. "Cosmic Background Radiation in the Submillimeter Range." In Dark Matter in the Universe, 19–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-86029-4_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Apollonov, V. V. "Generation of a Submillimeter Half-Cycle Radiation Pulse." In High-Energy Molecular Lasers, 407–12. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33359-5_48.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wang, Boqi, and George B. Field. "Explaining the Infrared and Submillimeter Backgrounds by Decaying Particles." In The Galactic and Extragalactic Background Radiation, 387–89. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0653-2_68.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pompea, Stephen M. "The Management of Stray Radiation Issues in Space Optical Systems." In Infrared and Submillimeter Space Missions in the Coming Decade, 181–93. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0363-3_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nagano, K., E. Kawate, N. Hirose, Y. Uzawa, M. Sekine, M. Agu, and M. Okaji. "The Response to Millimeter and Submillimeter Radiation of All-Nb Thin Film Nanobridges." In Advances in Superconductivity VI, 1147–50. Tokyo: Springer Japan, 1994. http://dx.doi.org/10.1007/978-4-431-68266-0_260.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Urban, J., K. Küllmann, K. Künzi, J. Wohlgemuth, A. Goede, Q. Kleipool, N. Whyborn, G. Schwaab, and M. P. Chipperfield. "Stratospheric ClO Across the Edge of the Arctic Polar Vortex: Measurements of the Airborne Submillimeter SIS Radiometer Compared to 3-D Model Calculations." In Chemistry and Radiation Changes in the Ozone Layer, 233–40. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4353-0_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Silk, Joseph. "The Cosmic Microwave Background Radiation." In The Infrared and Submillimetre Sky after COBE, 129–41. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2448-5_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Carr, B. J. "Sources of Cosmic Infrared-Submillimetre Background Radiation." In The Infrared and Submillimetre Sky after COBE, 213–30. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2448-5_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Submillimeter radiation":

1

Wengler, Michael J. "Submillimeter radiation from quasioptically coupled Josephson junctions." In International Conference on Millimeter and Submillimeter Waves and Applications 1994. SPIE, 1994. http://dx.doi.org/10.1117/12.2303104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dmitriev, Alexander I., and George V. Lashkarev. "Sensitivity of low-dimensional crystals to submillimeter radiation." In SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation, edited by Mohammed N. Afsar. SPIE, 1995. http://dx.doi.org/10.1117/12.224241.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, X. C., Y. Jin, T. Hewitt, L. E. Kingsley, and M. Weiner. "Generation of terahertz radiation by means of nonlinear susceptibilities." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/oam.1993.mbb.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lederer, Dimitri C. "Planar Schottky technology for submillimeter wave radiometric applications." In 2008 International Workshop "THz Radiation: Basic Research and Applications" (TERA). IEEE, 2008. http://dx.doi.org/10.1109/tera.2008.4673823.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kozhanov, Aleksander, Dmitry Dolzhenko, Ivan Ivanchik, Dan Watson, and Dmitry Khokhlov. "New type of sensitive infrared and submillimeter radiation photodetectors." In Defense and Security, edited by R. Jennifer Hwu, Dwight L. Woolard, and Mark J. Rosker. SPIE, 2005. http://dx.doi.org/10.1117/12.602054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kozhanov, Aleksander. "Submillimeter Radiation - Induced Persistent Photoconductivity in Pb1−xSnxTe(In)." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994543.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Walsh, J. "Smith-Purcell radiation at submillimeter and far-infrared wavelengths." In 17th International Conference on Infrared and Millimeter Waves. SPIE, 2017. http://dx.doi.org/10.1117/12.2298120.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Peebles, W. A. "Development of terahertz radiation sources." In International Conference on Millimeter and Submillimeter Waves and Applications 1994. SPIE, 1994. http://dx.doi.org/10.1117/12.2303097.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Son, Joo-Hiuk. "Terahertz radiation for cancer treatment?" In Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XVII, edited by Laurence P. Sadwick and Tianxin Yang. SPIE, 2024. http://dx.doi.org/10.1117/12.3014727.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhang, X. C., and D. H. Auston. "Generation of steerable electromagnetic waves from semiconductor surfaces by spatial light modulators." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.mtt1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We describe a novel optoelectronic technique to steer a submillimeter wave with two degrees of freedom. The propagation direction and the center frequency of an electromagnetic radiation can be controlled by varying the optical pattern of a laser beam on the semiconductor surface. This technique provides a comprehensive method to steer submillimeter waves in a line-of-sight arrangement.

Звіти організацій з теми "Submillimeter radiation":

1

Taylor, A. J., J. P. Roberts, N. A. Kurnit, P. K. Benicewicz, G. Rodriquez, A. Redondo, D. L. G. Smith, and T. J. Carrig. Generation of high-power, subpicosecond, submillimeter radiation for applications in novel device development and materials research. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/205970.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

BOSTON COLL CHESTNUT HILL MA. Generation and Amplification of Radiation in Millimeter/Submillimeter Range through Current Driven Plasma Instabilities in Modulated Lower Dimensional Solid State Systems. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada358302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії