Добірка наукової літератури з теми "Submersible pump"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Submersible pump".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Submersible pump"
Wang, Linan, Yunfei Ma, Jinhua Han, Yusheng Zheng, Xiaopeng Zhang, Xiaofeng Guo, Hanbo Zheng, and Guangqi Shao. "Analysis of Total Hydrocarbon Exceeding Standard in Oil Chromatogram of a 500kV Main Transformer." Journal of Physics: Conference Series 2136, no. 1 (December 1, 2021): 012008. http://dx.doi.org/10.1088/1742-6596/2136/1/012008.
Повний текст джерелаИлеменов, Михаил Валерьевич, Владимир Иванович Логинов, Сергей Михайлович Ртищев, and Владимир Николаевич Козырев. "Submersible pumps - application practice, technical requirements, development paths." Pozharnaia bezopasnost`, no. 4(105) (December 11, 2021): 55–62. http://dx.doi.org/10.37657/vniipo.pb.2021.22.76.005.
Повний текст джерелаDong, Jian, Wuke Liang, and Wei Dong. "Numerical calculation and analysis of axial force of multistage centrifugal submersible pump." Journal of Physics: Conference Series 2217, no. 1 (April 1, 2022): 012046. http://dx.doi.org/10.1088/1742-6596/2217/1/012046.
Повний текст джерелаMeng, Xian Jun, Tie Xin Hou, and Hai Qing Cui. "Optimization Design Method for Production Parameters of Submersible Pump Well of Polymer Flooding." Advanced Materials Research 997 (August 2014): 69–72. http://dx.doi.org/10.4028/www.scientific.net/amr.997.69.
Повний текст джерелаChirkov, D. A., and E. O. Timashev. "Efficiency of a submersible plunger pump linear motor." E3S Web of Conferences 140 (2019): 02012. http://dx.doi.org/10.1051/e3sconf/201914002012.
Повний текст джерелаBudiyanto, Hery, Pindo Tutuko, Aries Boedi Setiawan, Razqyan Mas Bimatyugra Jati, and Muhammad Iqbal. "Listrik Tenaga Surya untuk Pompa Submersible pada Greenhouse Hidroganik di Kabupaten Malang." Abdimas: Jurnal Pengabdian Masyarakat Universitas Merdeka Malang 6, no. 3 (August 4, 2021): 336–46. http://dx.doi.org/10.26905/abdimas.v6i3.5298.
Повний текст джерелаSwandi, Ahmad, Sri Rahmadhanningsih, Sparisoma Viridi, and Inge Magdalena Sutjahja. "Trial of DC Submersible Pump 12 Volt 50 Watt with Solar Power and Relationship between Water Discharge and Storage Height." JPSE (Journal of Physical Science and Engineering) 6, no. 2 (July 4, 2021): 61–67. http://dx.doi.org/10.17977/um024v6i22021p061.
Повний текст джерелаAA, Gareev. "Salt Deposition in Electric Submersible Centrifugal Pumps under Intermittent Operation." Petroleum & Petrochemical Engineering Journal 5, no. 2 (2021): 1–6. http://dx.doi.org/10.23880/ppej-16000267.
Повний текст джерелаSucipto, Hari, Sigit Setya Wiwaha, and Imron Ridzki. "INSTALASI ESP (ELECTRIC SUBMERSIBLE PUMP) SISTEM TANDEM PADA SUMUR MINYAK DENGAN VARIABLE SPEED DRIVE." JURNAL ELTEK 16, no. 1 (August 21, 2018): 51. http://dx.doi.org/10.33795/eltek.v16i1.86.
Повний текст джерелаJiang, Minzheng, Tiancai Cheng, Kangxing Dong, Shufan Xu, and Yulong Geng. "Fault diagnosis method of submersible screw pump based on random forest." PLOS ONE 15, no. 11 (November 16, 2020): e0242458. http://dx.doi.org/10.1371/journal.pone.0242458.
Повний текст джерелаДисертації з теми "Submersible pump"
Engin, Ertan. "Design, Construction And Performance Evaluation Of A Submersible Pump With Numerical Experimentation." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/12606532/index.pdf.
Повний текст джерелаGuler, Ozan Nuri. "Production System Optimization For Submersible Pump Lifted Wells:a Case Study." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605000/index.pdf.
Повний текст джерелаCarvalho, Paulo Moreira de. "Modeling the electrical submersible jet pump producing high gas-liquid-ratio petroleum wells /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Повний текст джерелаEllis, Cameron B. "Tribopairs in Wellbore Drilling: A Study of PCD Tilting Pad Bearings in an Electric Submersible Pump." BYU ScholarsArchive, 2017. https://scholarsarchive.byu.edu/etd/7233.
Повний текст джерелаCeylan, Sevil Ezgi. "Design And Economical Evaluation Of Sucker Rod And Electrical Submesible Pumps: Oil Wells In A Field, Turkey." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605416/index.pdf.
Повний текст джерелаCastañeda, Jimenez German Efrain 1988. "Simulação do controle de escoamento multifásico em uma bomba centrífuga submersa - BCS : Simulation control of multiphase flow an electrical submersible pump - EPS." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/265922.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-24T20:57:24Z (GMT). No. of bitstreams: 1 CastanedaJimenez_GermanEfrain_M.pdf: 6173136 bytes, checksum: 10447f1e90575f51111560bad8f24df0 (MD5) Previous issue date: 2014
Resumo: Na indústria do petróleo é comum à utilização de bombas centrífugas submersas (BCS) operando em escoamento multifásico líquido-gás. A presença de elevadas vazões de gás causam uma degradação severa no desempenho da bomba, gerando instabilidades nas curvas de pressão-vazão, como o `surging¿ e o `gas locking¿. Portanto o conhecimento destas instabilidades é fundamental para a adequada operação da bomba e assim evitar falhas prematuras no equipamento. Na atualidade não existem modelos matemáticos que representem de forma adequada o comportamento da BCS na região de `surging¿ e no `gas locking¿, gerando a necessidade de empregar circuitos de testes para fazer o levantamento das curvas de desempenho das bombas. A maioria dos circuitos de testes é operada de forma manual para obter às condições de operação da bomba, tornando os ensaios repetitivos, cansativos e trabalhosos. Por isto nasce a necessidade de automatizar estas bancadas com a finalidade de facilitar o processo do levantamento das curvas de desempenho das bombas. Este trabalho apresenta o projeto e simulação de um controle robusto tipo H_? que permita manter o escoamento multifásico na entrada de uma BCS em diferentes condições de operação da bomba. Este controlador é projetado a partir de um circuito de testes para BCS virtual que é modelado empregando formulações físicas e modelos ajustados mediante dados experimentais usando algoritmos de aprendizagem de máquinas baseados em máquinas de suporte vetorial para regressão (SVMr). Após o projeto de controle, o controlador projetado é testado no circuito de testes virtual mediante simulações em tempo real `software in the loop¿ (SIL)
Abstract: In the oil industry, it is common to use electrical submersible pumps (ESP) operating with gas -liquid multiphase flow. The presence of high gas flows cause severe degradation in performance of the pump, generating instabilities in the flow-pressure curves, as "surging" and "gas locking". Therefore knowledge of these instabilities is essential for the proper functioning of the pump and thereby prevents premature failure of the equipment. Currently there are no mathematical models that adequately represent the behavior of the EPS in the region of "surging" and "gas locking", creating the need to use test circuits to make a study of the performance curves of the pumps. Most test circuits are operated manually to reach the operating conditions of the pump, making repetitive, tedious and laborious trials. Therefore there is a need to automate these circuits in order to facilitate the process of obtaining the performance curve of the pump. In this paper the project and simulation of a robust control type H_? for keeping the multiphase flow in the entrance of a EPS operating at different conditions is performed. This controller is designed based on a test circuit virtual for EPS which is modeled using physical formulations and adjusted models obtained by experimental data using machine learning algorithms based on support vector machines for regression (SVMR). After the controller design, the control is tested in the virtual test circuits using simulations in real time "software in the loop" (SIL)
Mestrado
Mecanica dos Sólidos e Projeto Mecanico
Mestre em Engenharia Mecânica
Betônico, Gustavo de Carvalho. "Estudo da distribuição de temperatura em motores de bombas centrífugas submersas." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/265663.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica e Instituto de Geociências
Made available in DSpace on 2018-08-22T03:35:14Z (GMT). No. of bitstreams: 1 Betonico_GustavodeCarvalho_M.pdf: 2382106 bytes, checksum: a84e8f76b2a2dcf28078dd9283ecef59 (MD5) Previous issue date: 2013
Resumo: Neste trabalho foi desenvolvido um modelo para determinação da temperatura do motor de uma bomba centrífuga submersa (BCS) sob condições variáveis de vazão e carga. Este leva em consideração o comportamento acoplado entre o motor, a bomba e o sistema de produção. Assim, dada uma frequência ajustada no variador de frequência, a temperatura do motor é determinada como resultado do equilíbrio entre a produção de calor, calculada a partir da potência que a bomba demanda do motor, e a extração do calor, calculada a partir da vazão. Neste modelo, considera-se a BCS instalada num módulo de bombeamento submarino localizado perto do poço produtor. Foi estudada a transferência de calor por convecção no módulo de bombeio, onde um escoamento descendente ocorre no anular externo entre o revestimento e a camisa de refrigeração e um fluxo ascendente ocorre no anular interno entre a camisa de refrigeração e o motor. Um estudo de transferência de calor por convecção foi elaborado comparando modelos baseados no perfil de temperatura plenamente desenvolvido com modelos que consideram o desenvolvimento da camada limite térmica. Uma vez que o único ponto de medição da temperatura se localiza na extremidade inferior do enrolamento de estator, o modelo desenvolvido neste trabalho também determina a distribuição de temperatura do motor. Um estudo de caso foi realizado com diversas viscosidades de óleo e frações de água. Os resultados mostram a elevação da temperatura do motor, quando sua velocidade é continuamente aumentada. Também se mostrou que, negligenciar os efeitos do desenvolvimento da camada limite térmica, quando ocorre escoamento laminar, pode resultar num motor superaquecido, onde na verdade, a temperatura máxima do motor é muito menor do que o seu limite superior. Modelos baseados no perfil temperatura plenamente desenvolvidos sofrem de imprecisão, quando utilizados em aplicações de fluidos viscosos, devido ao grande comprimento entrada térmica
Abstract: A model to predict the motor temperature of an electrical submersible pump, under variable conditions of flow rate and loading, has been developed. This model takes into account the coupled behavior between motor, pump and production system. Thus, given a frequency set in the variable speed drive, the motor temperature is determined as a result of the equilibrium between the heat generation, calculated from the power that the pump demands from the motor, and the heat extraction, calculated from the flow rate. In this model, the electrical submersible pump is supposed to be installed in a subsea pumping module located near the producer well. It has been studied the convective heat transfer in the pumping module, where a downward flow occurs in the external annulus between the casing and the shroud, and an upward flow happens in the internal annulus between the shroud and the motor. A convective heat transfer study has been run comparing models based on fully developed temperature profile and models that consider the development of the thermal boundary layer. Since the only point of temperature measurement is located at the lower end of the stator winding, the model developed in this work also determines the temperature distribution of the motor. A case study has been run with several oil viscosities and water cut. The results show a motor temperature rise when motor speed is continuously increased. It is also showed that, when laminar flow occurs, neglecting the effect of the thermal boundary layer development may result in an overheated motor prediction where actually, motor maximum temperature is much smaller than its upper limit. Fully developed temperature profile models suffer of inaccuracy when used in viscous fluid applications, due to its big thermal entry length
Mestrado
Explotação
Mestre em Ciências e Engenharia de Petróleo
Martinez, Ricardo Diana Marcela 1986. "Identificação da vazão de gás de uma bomba centrífuga em regime de escoamento multifásico através de dados experimentais : Identification of the gas flow of an electric submersible pump under multiphase flow thou experimental data." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/265921.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-24T20:08:14Z (GMT). No. of bitstreams: 1 MartinezRicardo_DianaMarcela_M.pdf: 3485991 bytes, checksum: 9bd64ce80b2e1c25ed98644d4f52fd64 (MD5) Previous issue date: 2014
Resumo: Este trabalho tem como objetivo desenvolver um processo de identificação da vazão de gás em um dos equipamentos usados na indústria petrolífera, às bombas centrífugas submersas (BCS) em regime de escoamento multifásico. Estas bombas apresentam falhas frequentes prematuras quando a vazão de gás é alta, as quais ocorrem por falta de informação do tipo de escoamento bifásico presente na bomba no tempo de operação. Por isto estudos de identificação experimental são requeridos nesta área. Neste contexto a presente pesquisa tem seu foco na obtenção de modelos mediante dados experimentais, recompilados diretamente da resposta do sistema que descrevem o comportamento da vazão de gás na planta de interesse, como: vibração, vazão, elevação entre outros. Estes modelos estão baseados na identificação não paramétrica e no algoritmo de aprendizagem de Máquina de Vetores de Suporte (SVM), onde os parâmetros ocultos da máquina de aprendizagem serão obtidos mediante algoritmos genéticos, visando obter modelos mais representativos
Abstract: This work develops a process to identify the flow of gas in one of the equipment used in the oil industry, the electric submersible pump (EPS) under multiphase flow. These pumps feature frequent premature failures when the gas flow is high. That occurs due to lack of information on the type of two ¿ phase flow in the pump in operation time. Experimental studies for this identification are required in this area. In this context, the present research focuses on obtaining models by experimental data collected directly from the system response which describes the behavior of the gas flow on the system of interest such as: vibration, fluid, elevation etc. These models are based on nonparametric identification and in learning algorithm support vector machine (SVM), where the hidden parameters of the learning machine will be obtained by genetic algorithms in order to obtain more representative models
Mestrado
Mecanica dos Sólidos e Projeto Mecanico
Mestra em Engenharia Mecânica
Молошний, Олександр Миколайович, Александр Николаевич Молошный та Oleksandr Mykolaiovych Moloshnyi. "Вплив конструкції підвідного пристрою герметичного моноблочного насоса з порожнистим валом на його робочий процес та характеристики". Thesis, Сумський державний університет, 2019. http://essuir.sumdu.edu.ua/handle/123456789/75137.
Повний текст джерелаThe work is focused on the pump construction, which ensures high performance correlated with the safety aspects. It leads to the application of the pump, where the likelihood of the failure of the unit is minimal. The double entry pumps are commonly used due to the reduction of the hydraulic forces and also hermetic units, with closed, seal-less construction. The thesis presents a new solution to the scientific problem, which focuses on the improvement of the design of a sealless double entry close coupled centrifugal pump with a hollow shaft. In this conception, the inside of the hollow shaft is an axial inlet device, which consists of a straight part and diffuser. The design of a sealless close coupled centrifugal pump has been developed. Conducted analyses are based on the results of the investigation of the influence of axial inlet device geometrical features on pump working process in order to achieve minimal energy losses in the flowing part of the pump. The mutual influence of the construction of plain bearings and forces acting on the motion elements of the pump was elaborated. The rotating parts are loaded with the hydrodynamic, magnetic and gravity forces, which are the preliminary design data of bearing. On the other hand, the construction of bearing is severely acting on the mentioned above forces, which leads to the crucial design problem. Conducted numerical simulations made it possible to estimate the flow structure in the flowing part of the pump. In detail, the influence of the axial inlet device with rotating walls and the diffuser before the impeller inlet on the performance of the pump was recognized. The range of optimum values of axial inlet device diameters is also determined in terms of minimum hydraulic losses in the axial inlet device and electric losses in the rotor magnetic circuits of the motor under the condition of a hollow pump shaft with specific speed (ns) in the range from 60 to 70. Moreover, the flow structure at the impeller inlet, the parameters of the distribution of the absolute velocity components and the cavitation processes in the axial inlet device and the impeller were investigated. It is established that the first appearance of the cavitation was observed in the impeller. The reduction of the axial inlet device diameter leads to the change in the locations of the cavitation zones and the direction of their distribution. The methodical recommendations for the design of sealless close-coupled pump with a hollow shaft and the influence of the geometric parameters of the axial inlet device on the structural features of the leading edge of the blades of the impeller were developed. The results obtained by the numerical simulation were experimentally confirmed.
Sachdeva, Rajesh. "Two-phase flow through electric submersible pumps /." Access abstract and link to full text, 1988. http://0-wwwlib.umi.com.library.utulsa.edu/dissertations/fullcit/9021070.
Повний текст джерелаКниги з теми "Submersible pump"
American Petroleum Institute. Exploration and Production Dept. Recommended practice for electric submersible pump testing. 2nd ed. Washington, D.C: American Petroleum Institute, 1997.
Знайти повний текст джерелаElectrical submersible pump manual: Design, operations, and maintenance. Burlington, MA: Gulf Professional Pub., 2009.
Знайти повний текст джерелаGreat Lakes Laboratory for Fisheries and Aquatic Sciences. A comparison of freshwater zooplankton sampling gear: Nets, traps and submersible pump. Burlington, Ont: Great Lakes Laboratory for Fisheries and Aquatic Sciences, 1992.
Знайти повний текст джерелаAnderson, H. H. Submersible pumps and their applications. Morden, Surrey, England: Trade & Technical Press, 1986.
Знайти повний текст джерелаSachs, P. L. A large-volume, deep-sea submersible pumping system. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1989.
Знайти повний текст джерелаSachs, P. L. A large-volume, deep-sea submersible pumping system. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1989.
Знайти повний текст джерелаIEEE Industry Applications Society. Petroleum and Chemical Industry Committee. and Institute of Electrical and Electronics Engineers., eds. IEEE recommended practice for field testing electric submersible pump cable. New York, N.Y: Institute of Electrical and Electronics Engineers, 1992.
Знайти повний текст джерелаIEEE Industry Applications Society. Petroleum and Chemical Industry Committee., ed. IEEE recommended practice for specifying electric submersible pump cable - polypropylene insulation. New York: the Institute of Electrical and Electronics Engineers, 1992.
Знайти повний текст джерелаIEEE recommended practice for specifying electric submersible pump cable, ethylene-propylene rubber insulation. New York, N.Y: Institute of Electrical and Electronics Engineers, 1992.
Знайти повний текст джерелаParker, Philip M. The 2007-2012 World Outlook for Non-Submersible Domestic Water Pump Systems Including Drivers. ICON Group International, Inc., 2006.
Знайти повний текст джерелаЧастини книг з теми "Submersible pump"
Nguyen, Tan. "Electrical Submersible Pump." In Artificial Lift Methods, 107–79. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40720-9_3.
Повний текст джерелаSamani, Zohrab A. "Deep-Well Turbine and Submersible Pump Curves." In Hydraulic and Hydrologic Engineering, 81–85. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003287537-4.
Повний текст джерелаPedersen, Henrik Ørskov. "SQ - Submersible Pump with Integrated Permanent Magnet Motor Drive." In Energy Efficiency Improvements in Electronic Motors and Drives, 300–306. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59785-5_27.
Повний текст джерелаHarmon, A., K. Crippen, and S. Leleika. "Failure Analysis of Tubing in an Electrical Submersible Pump Well." In Failure Analysis of Microbiologically Influenced Corrosion, 251–61. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429355479-14.
Повний текст джерелаFeng, Ding, Cheng Yang, Bianyou Tan, Guanjun Xu, Yongxin Yuan, and Peng Wang. "The Diagnosis Research of Electric Submersible Pump Based on Neural Network." In Advances in Soft Computing, 721–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01216-7_77.
Повний текст джерелаTao, Fengyang, Guangfu Liu, and Wenjing Xi. "Research on the Fault Diagnosis of Excess Shaft Ran of Electric Submersible Pump." In Advances in Intelligent and Soft Computing, 509–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25989-0_82.
Повний текст джерелаHasan, Abdulqader, Salman Shahid, Sharul Sham Dol, Mohamed S. Gadala, Mohd Shiraz Aris, and Mohammed Alavi. "Effects of Rotation Speeds on Electrical Submersible Pump Performance Under Two-Phase Flow." In Intelligent Manufacturing and Energy Sustainability, 599–608. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6482-3_59.
Повний текст джерелаGojiya, Anil, Ravi Patel, and Dipankar Deb. "PI Plus Feed-Forward Control of Water Submersible Pump Specially Used in Ground Water Shortage Areas." In Soft Computing Applications, 357–65. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52190-5_25.
Повний текст джерелаMonteiro, Ulisses A., Ricardo S. Minette, Ricardo H. R. Gutiérrez, and Luiz A. Vaz. "Modal Parameter Identification of an Electrical Submersible Pump Installed in a Test Well Using Drop Tests." In Lecture Notes in Civil Engineering, 631–38. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4680-8_43.
Повний текст джерелаFalkowski, Paul G., and Zbigniew Kolber. "Phytoplankton Photosynthesis in the Atlantic Ocean as Measured from a Submersible Pump and Probe Fluorometer in Situ." In Current Research in Photosynthesis, 3717–20. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0511-5_839.
Повний текст джерелаТези доповідей конференцій з теми "Submersible pump"
Kimery, D. W., J. C. Saponja, R. C. Chachula, and C. Jensen. "Breaking the 800 Psi ESP PIP Barrier: How A Proven Flow-Conditioning Technology can Dramatically Improve ESP Performance in Horizontal Wells." In SPE Electric Submersible Pump Symposium. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/185128-ms.
Повний текст джерелаHarris, Dennis, Jack English, and Jackris Leemasawatdigul. "Leveraging ESP Energy Efficiency with Permanent Magnet Motors." In SPE Electric Submersible Pump Symposium. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/185129-ms.
Повний текст джерелаAL-Awaid, Abdullah, Ali AL-Oufi, Khamis AL-Kindy, and Atika AL-Bimani. "Best Practice on ESP Hands on Operation: Troubleshooting & Optimization at Well Sites, Oman South Oil Fields." In SPE Electric Submersible Pump Symposium. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/185130-ms.
Повний текст джерелаBest, G., R. J. Delaloye, B. L. Nicholson, and W. B. Morrow. "Geared Centrifugal Pump Performance in an Enhanced Oil Recovery Field." In SPE Electric Submersible Pump Symposium. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/185131-ms.
Повний текст джерелаMerrill, Dan, and Jeff Dwiggins. "Understanding Seal Sections and the Phantom Failures." In SPE Electric Submersible Pump Symposium. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/185133-ms.
Повний текст джерелаMali, Prasanna, Hashem Al-Abdullah, Mariam Zerai, and Bader Al-Matar. "Strategy to Implement Relevant ESP Technologies for Mitigation of Reservoir Challenges and Reduction of Operating Costs in KOC." In SPE Electric Submersible Pump Symposium. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/185134-ms.
Повний текст джерелаAl-Bimani, Atika, Rahul Kulkarni, Harith Al-Muqbali, Angus Mackay, Antonio Andrade Marin, Assad Al-Busaidi, Shaymaa Touqi, et al. "Successful Standardization and Sustainable Well Management System for ESP Well Surveillance & Optimization Across PDO." In SPE Electric Submersible Pump Symposium. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/185135-ms.
Повний текст джерелаDowling, Michael A. "You Don't Know Pumps: Myths and Truths about ESP Operation in High-Gas Environments." In SPE Electric Submersible Pump Symposium. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/185136-ms.
Повний текст джерелаBallarini, Mariano, Marcelo Bruni, Heber Muñoz, Miguel Colla, Ricardo Teves, Juan Cruz Pirez, Martin Russo, Raul Oyarzun, and Daniel Fleitas. "High Efficiency ESP Applications for Slim Wells." In SPE Electric Submersible Pump Symposium. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/185137-ms.
Повний текст джерелаLedroz, Adrián, Robert Shoup, Barry Nicholson, and Thomas Favrot. "High Density Survey Data and ESP Placement - Case Studies." In SPE Electric Submersible Pump Symposium. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/185140-ms.
Повний текст джерелаЗвіти організацій з теми "Submersible pump"
Poirier, M. R. Submersible Blend Pump Mixing Evaluation. Office of Scientific and Technical Information (OSTI), April 2019. http://dx.doi.org/10.2172/1510929.
Повний текст джерелаLee, S. Y. Heat Balance Study for Submersible Mixer Pump. Office of Scientific and Technical Information (OSTI), July 2003. http://dx.doi.org/10.2172/816695.
Повний текст джерелаRob Beard. FIELD TRIALS OF NEWLY DEVELOPED POSITIVE DISPLACEMENT SUBMERSIBLE PUMP. Office of Scientific and Technical Information (OSTI), October 2003. http://dx.doi.org/10.2172/823233.
Повний текст джерелаRob Beard and Leland Traylor. FIELD TRIALS OF NEWLY DEVELOPED POSITIVE DISPLACEMENT SUBMERSIBLE PUMP. Office of Scientific and Technical Information (OSTI), December 2002. http://dx.doi.org/10.2172/820949.
Повний текст джерелаBremer, Nathan, Darius Lisowski, and Mitch Farmer. Submersible Multistage Centrifugal Pump for Versatile Test Reactor Cartridge Test Loop. Office of Scientific and Technical Information (OSTI), April 2022. http://dx.doi.org/10.2172/1868933.
Повний текст джерелаHANSEN, ERICH. PHYSICAL PROPERTIES OF KAOLIN/SAND SLURRY USED DURING SUBMERSIBLE MIXER PUMP TESTS AT TNX. Office of Scientific and Technical Information (OSTI), November 2005. http://dx.doi.org/10.2172/882706.
Повний текст джерелаHANSEN, ERICHK. Physical Properties of Kaolin/Sand Slurry Used During Submersible Mixer Pump Tests at TNX. Office of Scientific and Technical Information (OSTI), August 2004. http://dx.doi.org/10.2172/829909.
Повний текст джерелаRojas, M., C. K. Martin, L. Hernandez-Johnson, D. I. Ashford, J. F. Wright, K. Yamamoto, M. Numasawa, S. R. Dallimore, and R E Isted. Electric submersible pump as an effective artificial lift method to control bottom-hole pressure in a producing gas hydrate well, JOGMEC/NRCan/Aurora Mallik 2007-2008 Gas Hydrate Production Research Well Program. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2012. http://dx.doi.org/10.4095/292083.
Повний текст джерелаClausner, James E., Peter J. Neilans, Timothy L. Welp, and Darryl D. Bishop. Controlled Tests of Educators and Submersible Pumps. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada285387.
Повний текст джерелаPat Fort and Don L. Hanosh. USING CABLE SUSPENDED SUBMERSIBLE PUMPS TO REDUCE PRODUCTION COSTS TO INCREASE ULTIMATE RECOVERY IN THE RED MOUNTAIN FIELD IN SAN JUAN BASIN REGION. Office of Scientific and Technical Information (OSTI), November 2003. http://dx.doi.org/10.2172/823011.
Повний текст джерела